| // SPDX-License-Identifier: GPL-2.0+ |
| /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */ |
| |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/pci.h> |
| #include <linux/ptp_classify.h> |
| |
| #include "igb.h" |
| |
| #define INCVALUE_MASK 0x7fffffff |
| #define ISGN 0x80000000 |
| |
| /* The 82580 timesync updates the system timer every 8ns by 8ns, |
| * and this update value cannot be reprogrammed. |
| * |
| * Neither the 82576 nor the 82580 offer registers wide enough to hold |
| * nanoseconds time values for very long. For the 82580, SYSTIM always |
| * counts nanoseconds, but the upper 24 bits are not available. The |
| * frequency is adjusted by changing the 32 bit fractional nanoseconds |
| * register, TIMINCA. |
| * |
| * For the 82576, the SYSTIM register time unit is affect by the |
| * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this |
| * field are needed to provide the nominal 16 nanosecond period, |
| * leaving 19 bits for fractional nanoseconds. |
| * |
| * We scale the NIC clock cycle by a large factor so that relatively |
| * small clock corrections can be added or subtracted at each clock |
| * tick. The drawbacks of a large factor are a) that the clock |
| * register overflows more quickly (not such a big deal) and b) that |
| * the increment per tick has to fit into 24 bits. As a result we |
| * need to use a shift of 19 so we can fit a value of 16 into the |
| * TIMINCA register. |
| * |
| * |
| * SYSTIMH SYSTIML |
| * +--------------+ +---+---+------+ |
| * 82576 | 32 | | 8 | 5 | 19 | |
| * +--------------+ +---+---+------+ |
| * \________ 45 bits _______/ fract |
| * |
| * +----------+---+ +--------------+ |
| * 82580 | 24 | 8 | | 32 | |
| * +----------+---+ +--------------+ |
| * reserved \______ 40 bits _____/ |
| * |
| * |
| * The 45 bit 82576 SYSTIM overflows every |
| * 2^45 * 10^-9 / 3600 = 9.77 hours. |
| * |
| * The 40 bit 82580 SYSTIM overflows every |
| * 2^40 * 10^-9 / 60 = 18.3 minutes. |
| * |
| * SYSTIM is converted to real time using a timecounter. As |
| * timecounter_cyc2time() allows old timestamps, the timecounter needs |
| * to be updated at least once per half of the SYSTIM interval. |
| * Scheduling of delayed work is not very accurate, and also the NIC |
| * clock can be adjusted to run up to 6% faster and the system clock |
| * up to 10% slower, so we aim for 6 minutes to be sure the actual |
| * interval in the NIC time is shorter than 9.16 minutes. |
| */ |
| |
| #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6) |
| #define IGB_PTP_TX_TIMEOUT (HZ * 15) |
| #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT) |
| #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0) |
| #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT) |
| #define IGB_NBITS_82580 40 |
| |
| static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); |
| |
| /* SYSTIM read access for the 82576 */ |
| static u64 igb_ptp_read_82576(const struct cyclecounter *cc) |
| { |
| struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); |
| struct e1000_hw *hw = &igb->hw; |
| u64 val; |
| u32 lo, hi; |
| |
| lo = rd32(E1000_SYSTIML); |
| hi = rd32(E1000_SYSTIMH); |
| |
| val = ((u64) hi) << 32; |
| val |= lo; |
| |
| return val; |
| } |
| |
| /* SYSTIM read access for the 82580 */ |
| static u64 igb_ptp_read_82580(const struct cyclecounter *cc) |
| { |
| struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); |
| struct e1000_hw *hw = &igb->hw; |
| u32 lo, hi; |
| u64 val; |
| |
| /* The timestamp latches on lowest register read. For the 82580 |
| * the lowest register is SYSTIMR instead of SYSTIML. However we only |
| * need to provide nanosecond resolution, so we just ignore it. |
| */ |
| rd32(E1000_SYSTIMR); |
| lo = rd32(E1000_SYSTIML); |
| hi = rd32(E1000_SYSTIMH); |
| |
| val = ((u64) hi) << 32; |
| val |= lo; |
| |
| return val; |
| } |
| |
| /* SYSTIM read access for I210/I211 */ |
| static void igb_ptp_read_i210(struct igb_adapter *adapter, |
| struct timespec64 *ts) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 sec, nsec; |
| |
| /* The timestamp latches on lowest register read. For I210/I211, the |
| * lowest register is SYSTIMR. Since we only need to provide nanosecond |
| * resolution, we can ignore it. |
| */ |
| rd32(E1000_SYSTIMR); |
| nsec = rd32(E1000_SYSTIML); |
| sec = rd32(E1000_SYSTIMH); |
| |
| ts->tv_sec = sec; |
| ts->tv_nsec = nsec; |
| } |
| |
| static void igb_ptp_write_i210(struct igb_adapter *adapter, |
| const struct timespec64 *ts) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Writing the SYSTIMR register is not necessary as it only provides |
| * sub-nanosecond resolution. |
| */ |
| wr32(E1000_SYSTIML, ts->tv_nsec); |
| wr32(E1000_SYSTIMH, (u32)ts->tv_sec); |
| } |
| |
| /** |
| * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp |
| * @adapter: board private structure |
| * @hwtstamps: timestamp structure to update |
| * @systim: unsigned 64bit system time value. |
| * |
| * We need to convert the system time value stored in the RX/TXSTMP registers |
| * into a hwtstamp which can be used by the upper level timestamping functions. |
| * |
| * The 'tmreg_lock' spinlock is used to protect the consistency of the |
| * system time value. This is needed because reading the 64 bit time |
| * value involves reading two (or three) 32 bit registers. The first |
| * read latches the value. Ditto for writing. |
| * |
| * In addition, here have extended the system time with an overflow |
| * counter in software. |
| **/ |
| static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, |
| struct skb_shared_hwtstamps *hwtstamps, |
| u64 systim) |
| { |
| unsigned long flags; |
| u64 ns; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| ns = timecounter_cyc2time(&adapter->tc, systim); |
| |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| /* Upper 32 bits contain s, lower 32 bits contain ns. */ |
| hwtstamps->hwtstamp = ktime_set(systim >> 32, |
| systim & 0xFFFFFFFF); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* PTP clock operations */ |
| static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| int neg_adj = 0; |
| u64 rate; |
| u32 incvalue; |
| |
| if (ppb < 0) { |
| neg_adj = 1; |
| ppb = -ppb; |
| } |
| rate = ppb; |
| rate <<= 14; |
| rate = div_u64(rate, 1953125); |
| |
| incvalue = 16 << IGB_82576_TSYNC_SHIFT; |
| |
| if (neg_adj) |
| incvalue -= rate; |
| else |
| incvalue += rate; |
| |
| wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| int neg_adj = 0; |
| u64 rate; |
| u32 inca; |
| |
| if (scaled_ppm < 0) { |
| neg_adj = 1; |
| scaled_ppm = -scaled_ppm; |
| } |
| rate = scaled_ppm; |
| rate <<= 13; |
| rate = div_u64(rate, 15625); |
| |
| inca = rate & INCVALUE_MASK; |
| if (neg_adj) |
| inca |= ISGN; |
| |
| wr32(E1000_TIMINCA, inca); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| timecounter_adjtime(&igb->tc, delta); |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| struct timespec64 now, then = ns_to_timespec64(delta); |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| igb_ptp_read_i210(igb, &now); |
| now = timespec64_add(now, then); |
| igb_ptp_write_i210(igb, (const struct timespec64 *)&now); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp, |
| struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| unsigned long flags; |
| u32 lo, hi; |
| u64 ns; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| ptp_read_system_prets(sts); |
| lo = rd32(E1000_SYSTIML); |
| ptp_read_system_postts(sts); |
| hi = rd32(E1000_SYSTIMH); |
| |
| ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| *ts = ns_to_timespec64(ns); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp, |
| struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| unsigned long flags; |
| u32 lo, hi; |
| u64 ns; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| ptp_read_system_prets(sts); |
| rd32(E1000_SYSTIMR); |
| ptp_read_system_postts(sts); |
| lo = rd32(E1000_SYSTIML); |
| hi = rd32(E1000_SYSTIMH); |
| |
| ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| *ts = ns_to_timespec64(ns); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp, |
| struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| ptp_read_system_prets(sts); |
| rd32(E1000_SYSTIMR); |
| ptp_read_system_postts(sts); |
| ts->tv_nsec = rd32(E1000_SYSTIML); |
| ts->tv_sec = rd32(E1000_SYSTIMH); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| u64 ns; |
| |
| ns = timespec64_to_ns(ts); |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| timecounter_init(&igb->tc, &igb->cc, ns); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| igb_ptp_write_i210(igb, ts); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) |
| { |
| u32 *ptr = pin < 2 ? ctrl : ctrl_ext; |
| static const u32 mask[IGB_N_SDP] = { |
| E1000_CTRL_SDP0_DIR, |
| E1000_CTRL_SDP1_DIR, |
| E1000_CTRL_EXT_SDP2_DIR, |
| E1000_CTRL_EXT_SDP3_DIR, |
| }; |
| |
| if (input) |
| *ptr &= ~mask[pin]; |
| else |
| *ptr |= mask[pin]; |
| } |
| |
| static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) |
| { |
| static const u32 aux0_sel_sdp[IGB_N_SDP] = { |
| AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, |
| }; |
| static const u32 aux1_sel_sdp[IGB_N_SDP] = { |
| AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, |
| }; |
| static const u32 ts_sdp_en[IGB_N_SDP] = { |
| TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, |
| }; |
| struct e1000_hw *hw = &igb->hw; |
| u32 ctrl, ctrl_ext, tssdp = 0; |
| |
| ctrl = rd32(E1000_CTRL); |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| tssdp = rd32(E1000_TSSDP); |
| |
| igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); |
| |
| /* Make sure this pin is not enabled as an output. */ |
| tssdp &= ~ts_sdp_en[pin]; |
| |
| if (chan == 1) { |
| tssdp &= ~AUX1_SEL_SDP3; |
| tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; |
| } else { |
| tssdp &= ~AUX0_SEL_SDP3; |
| tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; |
| } |
| |
| wr32(E1000_TSSDP, tssdp); |
| wr32(E1000_CTRL, ctrl); |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| } |
| |
| static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq) |
| { |
| static const u32 aux0_sel_sdp[IGB_N_SDP] = { |
| AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, |
| }; |
| static const u32 aux1_sel_sdp[IGB_N_SDP] = { |
| AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, |
| }; |
| static const u32 ts_sdp_en[IGB_N_SDP] = { |
| TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, |
| }; |
| static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { |
| TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, |
| TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, |
| }; |
| static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { |
| TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, |
| TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, |
| }; |
| static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = { |
| TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0, |
| TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0, |
| }; |
| static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = { |
| TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, |
| TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, |
| }; |
| static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { |
| TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, |
| TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, |
| }; |
| struct e1000_hw *hw = &igb->hw; |
| u32 ctrl, ctrl_ext, tssdp = 0; |
| |
| ctrl = rd32(E1000_CTRL); |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| tssdp = rd32(E1000_TSSDP); |
| |
| igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); |
| |
| /* Make sure this pin is not enabled as an input. */ |
| if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) |
| tssdp &= ~AUX0_TS_SDP_EN; |
| |
| if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) |
| tssdp &= ~AUX1_TS_SDP_EN; |
| |
| tssdp &= ~ts_sdp_sel_clr[pin]; |
| if (freq) { |
| if (chan == 1) |
| tssdp |= ts_sdp_sel_fc1[pin]; |
| else |
| tssdp |= ts_sdp_sel_fc0[pin]; |
| } else { |
| if (chan == 1) |
| tssdp |= ts_sdp_sel_tt1[pin]; |
| else |
| tssdp |= ts_sdp_sel_tt0[pin]; |
| } |
| tssdp |= ts_sdp_en[pin]; |
| |
| wr32(E1000_TSSDP, tssdp); |
| wr32(E1000_CTRL, ctrl); |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| } |
| |
| static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct igb_adapter *igb = |
| container_of(ptp, struct igb_adapter, ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; |
| unsigned long flags; |
| struct timespec64 ts; |
| int use_freq = 0, pin = -1; |
| s64 ns; |
| |
| switch (rq->type) { |
| case PTP_CLK_REQ_EXTTS: |
| /* Reject requests with unsupported flags */ |
| if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | |
| PTP_RISING_EDGE | |
| PTP_FALLING_EDGE | |
| PTP_STRICT_FLAGS)) |
| return -EOPNOTSUPP; |
| |
| /* Reject requests failing to enable both edges. */ |
| if ((rq->extts.flags & PTP_STRICT_FLAGS) && |
| (rq->extts.flags & PTP_ENABLE_FEATURE) && |
| (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) |
| return -EOPNOTSUPP; |
| |
| if (on) { |
| pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, |
| rq->extts.index); |
| if (pin < 0) |
| return -EBUSY; |
| } |
| if (rq->extts.index == 1) { |
| tsauxc_mask = TSAUXC_EN_TS1; |
| tsim_mask = TSINTR_AUTT1; |
| } else { |
| tsauxc_mask = TSAUXC_EN_TS0; |
| tsim_mask = TSINTR_AUTT0; |
| } |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| tsauxc = rd32(E1000_TSAUXC); |
| tsim = rd32(E1000_TSIM); |
| if (on) { |
| igb_pin_extts(igb, rq->extts.index, pin); |
| tsauxc |= tsauxc_mask; |
| tsim |= tsim_mask; |
| } else { |
| tsauxc &= ~tsauxc_mask; |
| tsim &= ~tsim_mask; |
| } |
| wr32(E1000_TSAUXC, tsauxc); |
| wr32(E1000_TSIM, tsim); |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| return 0; |
| |
| case PTP_CLK_REQ_PEROUT: |
| /* Reject requests with unsupported flags */ |
| if (rq->perout.flags) |
| return -EOPNOTSUPP; |
| |
| if (on) { |
| pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, |
| rq->perout.index); |
| if (pin < 0) |
| return -EBUSY; |
| } |
| ts.tv_sec = rq->perout.period.sec; |
| ts.tv_nsec = rq->perout.period.nsec; |
| ns = timespec64_to_ns(&ts); |
| ns = ns >> 1; |
| if (on && ((ns <= 70000000LL) || (ns == 125000000LL) || |
| (ns == 250000000LL) || (ns == 500000000LL))) { |
| if (ns < 8LL) |
| return -EINVAL; |
| use_freq = 1; |
| } |
| ts = ns_to_timespec64(ns); |
| if (rq->perout.index == 1) { |
| if (use_freq) { |
| tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1; |
| tsim_mask = 0; |
| } else { |
| tsauxc_mask = TSAUXC_EN_TT1; |
| tsim_mask = TSINTR_TT1; |
| } |
| trgttiml = E1000_TRGTTIML1; |
| trgttimh = E1000_TRGTTIMH1; |
| freqout = E1000_FREQOUT1; |
| } else { |
| if (use_freq) { |
| tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0; |
| tsim_mask = 0; |
| } else { |
| tsauxc_mask = TSAUXC_EN_TT0; |
| tsim_mask = TSINTR_TT0; |
| } |
| trgttiml = E1000_TRGTTIML0; |
| trgttimh = E1000_TRGTTIMH0; |
| freqout = E1000_FREQOUT0; |
| } |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| tsauxc = rd32(E1000_TSAUXC); |
| tsim = rd32(E1000_TSIM); |
| if (rq->perout.index == 1) { |
| tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); |
| tsim &= ~TSINTR_TT1; |
| } else { |
| tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); |
| tsim &= ~TSINTR_TT0; |
| } |
| if (on) { |
| int i = rq->perout.index; |
| igb_pin_perout(igb, i, pin, use_freq); |
| igb->perout[i].start.tv_sec = rq->perout.start.sec; |
| igb->perout[i].start.tv_nsec = rq->perout.start.nsec; |
| igb->perout[i].period.tv_sec = ts.tv_sec; |
| igb->perout[i].period.tv_nsec = ts.tv_nsec; |
| wr32(trgttimh, rq->perout.start.sec); |
| wr32(trgttiml, rq->perout.start.nsec); |
| if (use_freq) |
| wr32(freqout, ns); |
| tsauxc |= tsauxc_mask; |
| tsim |= tsim_mask; |
| } |
| wr32(E1000_TSAUXC, tsauxc); |
| wr32(E1000_TSIM, tsim); |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| return 0; |
| |
| case PTP_CLK_REQ_PPS: |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| tsim = rd32(E1000_TSIM); |
| if (on) |
| tsim |= TSINTR_SYS_WRAP; |
| else |
| tsim &= ~TSINTR_SYS_WRAP; |
| igb->pps_sys_wrap_on = !!on; |
| wr32(E1000_TSIM, tsim); |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| return 0; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, |
| enum ptp_pin_function func, unsigned int chan) |
| { |
| switch (func) { |
| case PTP_PF_NONE: |
| case PTP_PF_EXTTS: |
| case PTP_PF_PEROUT: |
| break; |
| case PTP_PF_PHYSYNC: |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * igb_ptp_tx_work |
| * @work: pointer to work struct |
| * |
| * This work function polls the TSYNCTXCTL valid bit to determine when a |
| * timestamp has been taken for the current stored skb. |
| **/ |
| static void igb_ptp_tx_work(struct work_struct *work) |
| { |
| struct igb_adapter *adapter = container_of(work, struct igb_adapter, |
| ptp_tx_work); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tsynctxctl; |
| |
| if (!adapter->ptp_tx_skb) |
| return; |
| |
| if (time_is_before_jiffies(adapter->ptp_tx_start + |
| IGB_PTP_TX_TIMEOUT)) { |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| adapter->tx_hwtstamp_timeouts++; |
| /* Clear the tx valid bit in TSYNCTXCTL register to enable |
| * interrupt |
| */ |
| rd32(E1000_TXSTMPH); |
| dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); |
| return; |
| } |
| |
| tsynctxctl = rd32(E1000_TSYNCTXCTL); |
| if (tsynctxctl & E1000_TSYNCTXCTL_VALID) |
| igb_ptp_tx_hwtstamp(adapter); |
| else |
| /* reschedule to check later */ |
| schedule_work(&adapter->ptp_tx_work); |
| } |
| |
| static void igb_ptp_overflow_check(struct work_struct *work) |
| { |
| struct igb_adapter *igb = |
| container_of(work, struct igb_adapter, ptp_overflow_work.work); |
| struct timespec64 ts; |
| u64 ns; |
| |
| /* Update the timecounter */ |
| ns = timecounter_read(&igb->tc); |
| |
| ts = ns_to_timespec64(ns); |
| pr_debug("igb overflow check at %lld.%09lu\n", |
| (long long) ts.tv_sec, ts.tv_nsec); |
| |
| schedule_delayed_work(&igb->ptp_overflow_work, |
| IGB_SYSTIM_OVERFLOW_PERIOD); |
| } |
| |
| /** |
| * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched |
| * @adapter: private network adapter structure |
| * |
| * This watchdog task is scheduled to detect error case where hardware has |
| * dropped an Rx packet that was timestamped when the ring is full. The |
| * particular error is rare but leaves the device in a state unable to timestamp |
| * any future packets. |
| **/ |
| void igb_ptp_rx_hang(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); |
| unsigned long rx_event; |
| |
| /* Other hardware uses per-packet timestamps */ |
| if (hw->mac.type != e1000_82576) |
| return; |
| |
| /* If we don't have a valid timestamp in the registers, just update the |
| * timeout counter and exit |
| */ |
| if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { |
| adapter->last_rx_ptp_check = jiffies; |
| return; |
| } |
| |
| /* Determine the most recent watchdog or rx_timestamp event */ |
| rx_event = adapter->last_rx_ptp_check; |
| if (time_after(adapter->last_rx_timestamp, rx_event)) |
| rx_event = adapter->last_rx_timestamp; |
| |
| /* Only need to read the high RXSTMP register to clear the lock */ |
| if (time_is_before_jiffies(rx_event + 5 * HZ)) { |
| rd32(E1000_RXSTMPH); |
| adapter->last_rx_ptp_check = jiffies; |
| adapter->rx_hwtstamp_cleared++; |
| dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); |
| } |
| } |
| |
| /** |
| * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes |
| * @adapter: private network adapter structure |
| */ |
| void igb_ptp_tx_hang(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + |
| IGB_PTP_TX_TIMEOUT); |
| |
| if (!adapter->ptp_tx_skb) |
| return; |
| |
| if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state)) |
| return; |
| |
| /* If we haven't received a timestamp within the timeout, it is |
| * reasonable to assume that it will never occur, so we can unlock the |
| * timestamp bit when this occurs. |
| */ |
| if (timeout) { |
| cancel_work_sync(&adapter->ptp_tx_work); |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| adapter->tx_hwtstamp_timeouts++; |
| /* Clear the tx valid bit in TSYNCTXCTL register to enable |
| * interrupt |
| */ |
| rd32(E1000_TXSTMPH); |
| dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); |
| } |
| } |
| |
| /** |
| * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp |
| * @adapter: Board private structure. |
| * |
| * If we were asked to do hardware stamping and such a time stamp is |
| * available, then it must have been for this skb here because we only |
| * allow only one such packet into the queue. |
| **/ |
| static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) |
| { |
| struct sk_buff *skb = adapter->ptp_tx_skb; |
| struct e1000_hw *hw = &adapter->hw; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 regval; |
| int adjust = 0; |
| |
| regval = rd32(E1000_TXSTMPL); |
| regval |= (u64)rd32(E1000_TXSTMPH) << 32; |
| |
| igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); |
| /* adjust timestamp for the TX latency based on link speed */ |
| if (adapter->hw.mac.type == e1000_i210) { |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adjust = IGB_I210_TX_LATENCY_10; |
| break; |
| case SPEED_100: |
| adjust = IGB_I210_TX_LATENCY_100; |
| break; |
| case SPEED_1000: |
| adjust = IGB_I210_TX_LATENCY_1000; |
| break; |
| } |
| } |
| |
| shhwtstamps.hwtstamp = |
| ktime_add_ns(shhwtstamps.hwtstamp, adjust); |
| |
| /* Clear the lock early before calling skb_tstamp_tx so that |
| * applications are not woken up before the lock bit is clear. We use |
| * a copy of the skb pointer to ensure other threads can't change it |
| * while we're notifying the stack. |
| */ |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| |
| /* Notify the stack and free the skb after we've unlocked */ |
| skb_tstamp_tx(skb, &shhwtstamps); |
| dev_kfree_skb_any(skb); |
| } |
| |
| /** |
| * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp |
| * @q_vector: Pointer to interrupt specific structure |
| * @va: Pointer to address containing Rx buffer |
| * @timestamp: Pointer where timestamp will be stored |
| * |
| * This function is meant to retrieve a timestamp from the first buffer of an |
| * incoming frame. The value is stored in little endian format starting on |
| * byte 8 |
| * |
| * Returns: The timestamp header length or 0 if not available |
| **/ |
| int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va, |
| ktime_t *timestamp) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct skb_shared_hwtstamps ts; |
| __le64 *regval = (__le64 *)va; |
| int adjust = 0; |
| |
| if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) |
| return 0; |
| |
| /* The timestamp is recorded in little endian format. |
| * DWORD: 0 1 2 3 |
| * Field: Reserved Reserved SYSTIML SYSTIMH |
| */ |
| |
| /* check reserved dwords are zero, be/le doesn't matter for zero */ |
| if (regval[0]) |
| return 0; |
| |
| igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1])); |
| |
| /* adjust timestamp for the RX latency based on link speed */ |
| if (adapter->hw.mac.type == e1000_i210) { |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adjust = IGB_I210_RX_LATENCY_10; |
| break; |
| case SPEED_100: |
| adjust = IGB_I210_RX_LATENCY_100; |
| break; |
| case SPEED_1000: |
| adjust = IGB_I210_RX_LATENCY_1000; |
| break; |
| } |
| } |
| |
| *timestamp = ktime_sub_ns(ts.hwtstamp, adjust); |
| |
| return IGB_TS_HDR_LEN; |
| } |
| |
| /** |
| * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register |
| * @q_vector: Pointer to interrupt specific structure |
| * @skb: Buffer containing timestamp and packet |
| * |
| * This function is meant to retrieve a timestamp from the internal registers |
| * of the adapter and store it in the skb. |
| **/ |
| void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| int adjust = 0; |
| u64 regval; |
| |
| if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) |
| return; |
| |
| /* If this bit is set, then the RX registers contain the time stamp. No |
| * other packet will be time stamped until we read these registers, so |
| * read the registers to make them available again. Because only one |
| * packet can be time stamped at a time, we know that the register |
| * values must belong to this one here and therefore we don't need to |
| * compare any of the additional attributes stored for it. |
| * |
| * If nothing went wrong, then it should have a shared tx_flags that we |
| * can turn into a skb_shared_hwtstamps. |
| */ |
| if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_RXSTMPL); |
| regval |= (u64)rd32(E1000_RXSTMPH) << 32; |
| |
| igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); |
| |
| /* adjust timestamp for the RX latency based on link speed */ |
| if (adapter->hw.mac.type == e1000_i210) { |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adjust = IGB_I210_RX_LATENCY_10; |
| break; |
| case SPEED_100: |
| adjust = IGB_I210_RX_LATENCY_100; |
| break; |
| case SPEED_1000: |
| adjust = IGB_I210_RX_LATENCY_1000; |
| break; |
| } |
| } |
| skb_hwtstamps(skb)->hwtstamp = |
| ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust); |
| |
| /* Update the last_rx_timestamp timer in order to enable watchdog check |
| * for error case of latched timestamp on a dropped packet. |
| */ |
| adapter->last_rx_timestamp = jiffies; |
| } |
| |
| /** |
| * igb_ptp_get_ts_config - get hardware time stamping config |
| * @netdev: netdev struct |
| * @ifr: interface struct |
| * |
| * Get the hwtstamp_config settings to return to the user. Rather than attempt |
| * to deconstruct the settings from the registers, just return a shadow copy |
| * of the last known settings. |
| **/ |
| int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config *config = &adapter->tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * igb_ptp_set_timestamp_mode - setup hardware for timestamping |
| * @adapter: networking device structure |
| * @config: hwtstamp configuration |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't case any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware |
| * filters. Not all combinations are supported, in particular event |
| * type has to be specified. Matching the kind of event packet is |
| * not supported, with the exception of "all V2 events regardless of |
| * level 2 or 4". |
| */ |
| static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, |
| struct hwtstamp_config *config) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| u32 tsync_rx_cfg = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| /* reserved for future extensions */ |
| if (config->flags) |
| return -EINVAL; |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| break; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| /* 82576 cannot timestamp all packets, which it needs to do to |
| * support both V1 Sync and Delay_Req messages |
| */ |
| if (hw->mac.type != e1000_82576) { |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| } |
| fallthrough; |
| default: |
| config->rx_filter = HWTSTAMP_FILTER_NONE; |
| return -ERANGE; |
| } |
| |
| if (hw->mac.type == e1000_82575) { |
| if (tsync_rx_ctl | tsync_tx_ctl) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* Per-packet timestamping only works if all packets are |
| * timestamped, so enable timestamping in all packets as |
| * long as one Rx filter was configured. |
| */ |
| if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { |
| tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| is_l2 = true; |
| is_l4 = true; |
| |
| if ((hw->mac.type == e1000_i210) || |
| (hw->mac.type == e1000_i211)) { |
| regval = rd32(E1000_RXPBS); |
| regval |= E1000_RXPBS_CFG_TS_EN; |
| wr32(E1000_RXPBS, regval); |
| } |
| } |
| |
| /* enable/disable TX */ |
| regval = rd32(E1000_TSYNCTXCTL); |
| regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| wr32(E1000_TSYNCTXCTL, regval); |
| |
| /* enable/disable RX */ |
| regval = rd32(E1000_TSYNCRXCTL); |
| regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| wr32(E1000_TSYNCRXCTL, regval); |
| |
| /* define which PTP packets are time stamped */ |
| wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); |
| |
| /* define ethertype filter for timestamped packets */ |
| if (is_l2) |
| wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), |
| (E1000_ETQF_FILTER_ENABLE | /* enable filter */ |
| E1000_ETQF_1588 | /* enable timestamping */ |
| ETH_P_1588)); /* 1588 eth protocol type */ |
| else |
| wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0); |
| |
| /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| if (is_l4) { |
| u32 ftqf = (IPPROTO_UDP /* UDP */ |
| | E1000_FTQF_VF_BP /* VF not compared */ |
| | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ |
| | E1000_FTQF_MASK); /* mask all inputs */ |
| ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ |
| |
| wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT)); |
| wr32(E1000_IMIREXT(3), |
| (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); |
| if (hw->mac.type == e1000_82576) { |
| /* enable source port check */ |
| wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT)); |
| ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; |
| } |
| wr32(E1000_FTQF(3), ftqf); |
| } else { |
| wr32(E1000_FTQF(3), E1000_FTQF_MASK); |
| } |
| wrfl(); |
| |
| /* clear TX/RX time stamp registers, just to be sure */ |
| regval = rd32(E1000_TXSTMPL); |
| regval = rd32(E1000_TXSTMPH); |
| regval = rd32(E1000_RXSTMPL); |
| regval = rd32(E1000_RXSTMPH); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_ptp_set_ts_config - set hardware time stamping config |
| * @netdev: netdev struct |
| * @ifr: interface struct |
| * |
| **/ |
| int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config config; |
| int err; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| err = igb_ptp_set_timestamp_mode(adapter, &config); |
| if (err) |
| return err; |
| |
| /* save these settings for future reference */ |
| memcpy(&adapter->tstamp_config, &config, |
| sizeof(adapter->tstamp_config)); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * igb_ptp_init - Initialize PTP functionality |
| * @adapter: Board private structure |
| * |
| * This function is called at device probe to initialize the PTP |
| * functionality. |
| */ |
| void igb_ptp_init(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| int i; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 999999881; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; |
| adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576; |
| adapter->ptp_caps.settime64 = igb_ptp_settime_82576; |
| adapter->ptp_caps.enable = igb_ptp_feature_enable; |
| adapter->cc.read = igb_ptp_read_82576; |
| adapter->cc.mask = CYCLECOUNTER_MASK(64); |
| adapter->cc.mult = 1; |
| adapter->cc.shift = IGB_82576_TSYNC_SHIFT; |
| adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; |
| break; |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 62499999; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; |
| adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580; |
| adapter->ptp_caps.settime64 = igb_ptp_settime_82576; |
| adapter->ptp_caps.enable = igb_ptp_feature_enable; |
| adapter->cc.read = igb_ptp_read_82580; |
| adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); |
| adapter->cc.mult = 1; |
| adapter->cc.shift = 0; |
| adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| for (i = 0; i < IGB_N_SDP; i++) { |
| struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; |
| |
| snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); |
| ppd->index = i; |
| ppd->func = PTP_PF_NONE; |
| } |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 62499999; |
| adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; |
| adapter->ptp_caps.n_per_out = IGB_N_PEROUT; |
| adapter->ptp_caps.n_pins = IGB_N_SDP; |
| adapter->ptp_caps.pps = 1; |
| adapter->ptp_caps.pin_config = adapter->sdp_config; |
| adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; |
| adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210; |
| adapter->ptp_caps.settime64 = igb_ptp_settime_i210; |
| adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; |
| adapter->ptp_caps.verify = igb_ptp_verify_pin; |
| break; |
| default: |
| adapter->ptp_clock = NULL; |
| return; |
| } |
| |
| spin_lock_init(&adapter->tmreg_lock); |
| INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); |
| |
| if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) |
| INIT_DELAYED_WORK(&adapter->ptp_overflow_work, |
| igb_ptp_overflow_check); |
| |
| adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; |
| adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; |
| |
| igb_ptp_reset(adapter); |
| |
| adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, |
| &adapter->pdev->dev); |
| if (IS_ERR(adapter->ptp_clock)) { |
| adapter->ptp_clock = NULL; |
| dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); |
| } else if (adapter->ptp_clock) { |
| dev_info(&adapter->pdev->dev, "added PHC on %s\n", |
| adapter->netdev->name); |
| adapter->ptp_flags |= IGB_PTP_ENABLED; |
| } |
| } |
| |
| /** |
| * igb_ptp_suspend - Disable PTP work items and prepare for suspend |
| * @adapter: Board private structure |
| * |
| * This function stops the overflow check work and PTP Tx timestamp work, and |
| * will prepare the device for OS suspend. |
| */ |
| void igb_ptp_suspend(struct igb_adapter *adapter) |
| { |
| if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) |
| return; |
| |
| if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) |
| cancel_delayed_work_sync(&adapter->ptp_overflow_work); |
| |
| cancel_work_sync(&adapter->ptp_tx_work); |
| if (adapter->ptp_tx_skb) { |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| } |
| } |
| |
| /** |
| * igb_ptp_stop - Disable PTP device and stop the overflow check. |
| * @adapter: Board private structure. |
| * |
| * This function stops the PTP support and cancels the delayed work. |
| **/ |
| void igb_ptp_stop(struct igb_adapter *adapter) |
| { |
| igb_ptp_suspend(adapter); |
| |
| if (adapter->ptp_clock) { |
| ptp_clock_unregister(adapter->ptp_clock); |
| dev_info(&adapter->pdev->dev, "removed PHC on %s\n", |
| adapter->netdev->name); |
| adapter->ptp_flags &= ~IGB_PTP_ENABLED; |
| } |
| } |
| |
| /** |
| * igb_ptp_reset - Re-enable the adapter for PTP following a reset. |
| * @adapter: Board private structure. |
| * |
| * This function handles the reset work required to re-enable the PTP device. |
| **/ |
| void igb_ptp_reset(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned long flags; |
| |
| /* reset the tstamp_config */ |
| igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| /* Dial the nominal frequency. */ |
| wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); |
| break; |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| case e1000_i210: |
| case e1000_i211: |
| wr32(E1000_TSAUXC, 0x0); |
| wr32(E1000_TSSDP, 0x0); |
| wr32(E1000_TSIM, |
| TSYNC_INTERRUPTS | |
| (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0)); |
| wr32(E1000_IMS, E1000_IMS_TS); |
| break; |
| default: |
| /* No work to do. */ |
| goto out; |
| } |
| |
| /* Re-initialize the timer. */ |
| if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { |
| struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); |
| |
| igb_ptp_write_i210(adapter, &ts); |
| } else { |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| } |
| out: |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| wrfl(); |
| |
| if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) |
| schedule_delayed_work(&adapter->ptp_overflow_work, |
| IGB_SYSTIM_OVERFLOW_PERIOD); |
| } |