| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Persistent Memory Driver |
| * |
| * Copyright (c) 2014-2015, Intel Corporation. |
| * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. |
| * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/pagemap.h> |
| #include <linux/hdreg.h> |
| #include <linux/init.h> |
| #include <linux/platform_device.h> |
| #include <linux/set_memory.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/badblocks.h> |
| #include <linux/memremap.h> |
| #include <linux/vmalloc.h> |
| #include <linux/blk-mq.h> |
| #include <linux/pfn_t.h> |
| #include <linux/slab.h> |
| #include <linux/uio.h> |
| #include <linux/dax.h> |
| #include <linux/nd.h> |
| #include <linux/mm.h> |
| #include <asm/cacheflush.h> |
| #include "pmem.h" |
| #include "btt.h" |
| #include "pfn.h" |
| #include "nd.h" |
| |
| static struct device *to_dev(struct pmem_device *pmem) |
| { |
| /* |
| * nvdimm bus services need a 'dev' parameter, and we record the device |
| * at init in bb.dev. |
| */ |
| return pmem->bb.dev; |
| } |
| |
| static struct nd_region *to_region(struct pmem_device *pmem) |
| { |
| return to_nd_region(to_dev(pmem)->parent); |
| } |
| |
| static void hwpoison_clear(struct pmem_device *pmem, |
| phys_addr_t phys, unsigned int len) |
| { |
| unsigned long pfn_start, pfn_end, pfn; |
| |
| /* only pmem in the linear map supports HWPoison */ |
| if (is_vmalloc_addr(pmem->virt_addr)) |
| return; |
| |
| pfn_start = PHYS_PFN(phys); |
| pfn_end = pfn_start + PHYS_PFN(len); |
| for (pfn = pfn_start; pfn < pfn_end; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| /* |
| * Note, no need to hold a get_dev_pagemap() reference |
| * here since we're in the driver I/O path and |
| * outstanding I/O requests pin the dev_pagemap. |
| */ |
| if (test_and_clear_pmem_poison(page)) |
| clear_mce_nospec(pfn); |
| } |
| } |
| |
| static blk_status_t pmem_clear_poison(struct pmem_device *pmem, |
| phys_addr_t offset, unsigned int len) |
| { |
| struct device *dev = to_dev(pmem); |
| sector_t sector; |
| long cleared; |
| blk_status_t rc = BLK_STS_OK; |
| |
| sector = (offset - pmem->data_offset) / 512; |
| |
| cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); |
| if (cleared < len) |
| rc = BLK_STS_IOERR; |
| if (cleared > 0 && cleared / 512) { |
| hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); |
| cleared /= 512; |
| dev_dbg(dev, "%#llx clear %ld sector%s\n", |
| (unsigned long long) sector, cleared, |
| cleared > 1 ? "s" : ""); |
| badblocks_clear(&pmem->bb, sector, cleared); |
| if (pmem->bb_state) |
| sysfs_notify_dirent(pmem->bb_state); |
| } |
| |
| arch_invalidate_pmem(pmem->virt_addr + offset, len); |
| |
| return rc; |
| } |
| |
| static void write_pmem(void *pmem_addr, struct page *page, |
| unsigned int off, unsigned int len) |
| { |
| unsigned int chunk; |
| void *mem; |
| |
| while (len) { |
| mem = kmap_atomic(page); |
| chunk = min_t(unsigned int, len, PAGE_SIZE - off); |
| memcpy_flushcache(pmem_addr, mem + off, chunk); |
| kunmap_atomic(mem); |
| len -= chunk; |
| off = 0; |
| page++; |
| pmem_addr += chunk; |
| } |
| } |
| |
| static blk_status_t read_pmem(struct page *page, unsigned int off, |
| void *pmem_addr, unsigned int len) |
| { |
| unsigned int chunk; |
| unsigned long rem; |
| void *mem; |
| |
| while (len) { |
| mem = kmap_atomic(page); |
| chunk = min_t(unsigned int, len, PAGE_SIZE - off); |
| rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk); |
| kunmap_atomic(mem); |
| if (rem) |
| return BLK_STS_IOERR; |
| len -= chunk; |
| off = 0; |
| page++; |
| pmem_addr += chunk; |
| } |
| return BLK_STS_OK; |
| } |
| |
| static blk_status_t pmem_do_read(struct pmem_device *pmem, |
| struct page *page, unsigned int page_off, |
| sector_t sector, unsigned int len) |
| { |
| blk_status_t rc; |
| phys_addr_t pmem_off = sector * 512 + pmem->data_offset; |
| void *pmem_addr = pmem->virt_addr + pmem_off; |
| |
| if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) |
| return BLK_STS_IOERR; |
| |
| rc = read_pmem(page, page_off, pmem_addr, len); |
| flush_dcache_page(page); |
| return rc; |
| } |
| |
| static blk_status_t pmem_do_write(struct pmem_device *pmem, |
| struct page *page, unsigned int page_off, |
| sector_t sector, unsigned int len) |
| { |
| blk_status_t rc = BLK_STS_OK; |
| bool bad_pmem = false; |
| phys_addr_t pmem_off = sector * 512 + pmem->data_offset; |
| void *pmem_addr = pmem->virt_addr + pmem_off; |
| |
| if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) |
| bad_pmem = true; |
| |
| /* |
| * Note that we write the data both before and after |
| * clearing poison. The write before clear poison |
| * handles situations where the latest written data is |
| * preserved and the clear poison operation simply marks |
| * the address range as valid without changing the data. |
| * In this case application software can assume that an |
| * interrupted write will either return the new good |
| * data or an error. |
| * |
| * However, if pmem_clear_poison() leaves the data in an |
| * indeterminate state we need to perform the write |
| * after clear poison. |
| */ |
| flush_dcache_page(page); |
| write_pmem(pmem_addr, page, page_off, len); |
| if (unlikely(bad_pmem)) { |
| rc = pmem_clear_poison(pmem, pmem_off, len); |
| write_pmem(pmem_addr, page, page_off, len); |
| } |
| |
| return rc; |
| } |
| |
| static blk_qc_t pmem_submit_bio(struct bio *bio) |
| { |
| int ret = 0; |
| blk_status_t rc = 0; |
| bool do_acct; |
| unsigned long start; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data; |
| struct nd_region *nd_region = to_region(pmem); |
| |
| if (bio->bi_opf & REQ_PREFLUSH) |
| ret = nvdimm_flush(nd_region, bio); |
| |
| do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue); |
| if (do_acct) |
| start = bio_start_io_acct(bio); |
| bio_for_each_segment(bvec, bio, iter) { |
| if (op_is_write(bio_op(bio))) |
| rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset, |
| iter.bi_sector, bvec.bv_len); |
| else |
| rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset, |
| iter.bi_sector, bvec.bv_len); |
| if (rc) { |
| bio->bi_status = rc; |
| break; |
| } |
| } |
| if (do_acct) |
| bio_end_io_acct(bio, start); |
| |
| if (bio->bi_opf & REQ_FUA) |
| ret = nvdimm_flush(nd_region, bio); |
| |
| if (ret) |
| bio->bi_status = errno_to_blk_status(ret); |
| |
| bio_endio(bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| static int pmem_rw_page(struct block_device *bdev, sector_t sector, |
| struct page *page, unsigned int op) |
| { |
| struct pmem_device *pmem = bdev->bd_disk->private_data; |
| blk_status_t rc; |
| |
| if (op_is_write(op)) |
| rc = pmem_do_write(pmem, page, 0, sector, thp_size(page)); |
| else |
| rc = pmem_do_read(pmem, page, 0, sector, thp_size(page)); |
| /* |
| * The ->rw_page interface is subtle and tricky. The core |
| * retries on any error, so we can only invoke page_endio() in |
| * the successful completion case. Otherwise, we'll see crashes |
| * caused by double completion. |
| */ |
| if (rc == 0) |
| page_endio(page, op_is_write(op), 0); |
| |
| return blk_status_to_errno(rc); |
| } |
| |
| /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ |
| __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, |
| long nr_pages, void **kaddr, pfn_t *pfn) |
| { |
| resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; |
| |
| if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, |
| PFN_PHYS(nr_pages)))) |
| return -EIO; |
| |
| if (kaddr) |
| *kaddr = pmem->virt_addr + offset; |
| if (pfn) |
| *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); |
| |
| /* |
| * If badblocks are present, limit known good range to the |
| * requested range. |
| */ |
| if (unlikely(pmem->bb.count)) |
| return nr_pages; |
| return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); |
| } |
| |
| static const struct block_device_operations pmem_fops = { |
| .owner = THIS_MODULE, |
| .submit_bio = pmem_submit_bio, |
| .rw_page = pmem_rw_page, |
| }; |
| |
| static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, |
| size_t nr_pages) |
| { |
| struct pmem_device *pmem = dax_get_private(dax_dev); |
| |
| return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0, |
| PFN_PHYS(pgoff) >> SECTOR_SHIFT, |
| PAGE_SIZE)); |
| } |
| |
| static long pmem_dax_direct_access(struct dax_device *dax_dev, |
| pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) |
| { |
| struct pmem_device *pmem = dax_get_private(dax_dev); |
| |
| return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); |
| } |
| |
| /* |
| * Use the 'no check' versions of copy_from_iter_flushcache() and |
| * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds |
| * checking, both file offset and device offset, is handled by |
| * dax_iomap_actor() |
| */ |
| static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, |
| void *addr, size_t bytes, struct iov_iter *i) |
| { |
| return _copy_from_iter_flushcache(addr, bytes, i); |
| } |
| |
| static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, |
| void *addr, size_t bytes, struct iov_iter *i) |
| { |
| return _copy_mc_to_iter(addr, bytes, i); |
| } |
| |
| static const struct dax_operations pmem_dax_ops = { |
| .direct_access = pmem_dax_direct_access, |
| .dax_supported = generic_fsdax_supported, |
| .copy_from_iter = pmem_copy_from_iter, |
| .copy_to_iter = pmem_copy_to_iter, |
| .zero_page_range = pmem_dax_zero_page_range, |
| }; |
| |
| static const struct attribute_group *pmem_attribute_groups[] = { |
| &dax_attribute_group, |
| NULL, |
| }; |
| |
| static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap) |
| { |
| struct pmem_device *pmem = pgmap->owner; |
| |
| blk_cleanup_disk(pmem->disk); |
| } |
| |
| static void pmem_release_queue(void *pgmap) |
| { |
| pmem_pagemap_cleanup(pgmap); |
| } |
| |
| static void pmem_pagemap_kill(struct dev_pagemap *pgmap) |
| { |
| struct request_queue *q = |
| container_of(pgmap->ref, struct request_queue, q_usage_counter); |
| |
| blk_freeze_queue_start(q); |
| } |
| |
| static void pmem_release_disk(void *__pmem) |
| { |
| struct pmem_device *pmem = __pmem; |
| |
| kill_dax(pmem->dax_dev); |
| put_dax(pmem->dax_dev); |
| del_gendisk(pmem->disk); |
| } |
| |
| static const struct dev_pagemap_ops fsdax_pagemap_ops = { |
| .kill = pmem_pagemap_kill, |
| .cleanup = pmem_pagemap_cleanup, |
| }; |
| |
| static int pmem_attach_disk(struct device *dev, |
| struct nd_namespace_common *ndns) |
| { |
| struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); |
| struct nd_region *nd_region = to_nd_region(dev->parent); |
| int nid = dev_to_node(dev), fua; |
| struct resource *res = &nsio->res; |
| struct range bb_range; |
| struct nd_pfn *nd_pfn = NULL; |
| struct dax_device *dax_dev; |
| struct nd_pfn_sb *pfn_sb; |
| struct pmem_device *pmem; |
| struct request_queue *q; |
| struct device *gendev; |
| struct gendisk *disk; |
| void *addr; |
| int rc; |
| unsigned long flags = 0UL; |
| |
| pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); |
| if (!pmem) |
| return -ENOMEM; |
| |
| rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); |
| if (rc) |
| return rc; |
| |
| /* while nsio_rw_bytes is active, parse a pfn info block if present */ |
| if (is_nd_pfn(dev)) { |
| nd_pfn = to_nd_pfn(dev); |
| rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); |
| if (rc) |
| return rc; |
| } |
| |
| /* we're attaching a block device, disable raw namespace access */ |
| devm_namespace_disable(dev, ndns); |
| |
| dev_set_drvdata(dev, pmem); |
| pmem->phys_addr = res->start; |
| pmem->size = resource_size(res); |
| fua = nvdimm_has_flush(nd_region); |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { |
| dev_warn(dev, "unable to guarantee persistence of writes\n"); |
| fua = 0; |
| } |
| |
| if (!devm_request_mem_region(dev, res->start, resource_size(res), |
| dev_name(&ndns->dev))) { |
| dev_warn(dev, "could not reserve region %pR\n", res); |
| return -EBUSY; |
| } |
| |
| disk = blk_alloc_disk(nid); |
| if (!disk) |
| return -ENOMEM; |
| q = disk->queue; |
| |
| pmem->disk = disk; |
| pmem->pgmap.owner = pmem; |
| pmem->pfn_flags = PFN_DEV; |
| pmem->pgmap.ref = &q->q_usage_counter; |
| if (is_nd_pfn(dev)) { |
| pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; |
| pmem->pgmap.ops = &fsdax_pagemap_ops; |
| addr = devm_memremap_pages(dev, &pmem->pgmap); |
| pfn_sb = nd_pfn->pfn_sb; |
| pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); |
| pmem->pfn_pad = resource_size(res) - |
| range_len(&pmem->pgmap.range); |
| pmem->pfn_flags |= PFN_MAP; |
| bb_range = pmem->pgmap.range; |
| bb_range.start += pmem->data_offset; |
| } else if (pmem_should_map_pages(dev)) { |
| pmem->pgmap.range.start = res->start; |
| pmem->pgmap.range.end = res->end; |
| pmem->pgmap.nr_range = 1; |
| pmem->pgmap.type = MEMORY_DEVICE_FS_DAX; |
| pmem->pgmap.ops = &fsdax_pagemap_ops; |
| addr = devm_memremap_pages(dev, &pmem->pgmap); |
| pmem->pfn_flags |= PFN_MAP; |
| bb_range = pmem->pgmap.range; |
| } else { |
| addr = devm_memremap(dev, pmem->phys_addr, |
| pmem->size, ARCH_MEMREMAP_PMEM); |
| if (devm_add_action_or_reset(dev, pmem_release_queue, |
| &pmem->pgmap)) |
| return -ENOMEM; |
| bb_range.start = res->start; |
| bb_range.end = res->end; |
| } |
| |
| if (IS_ERR(addr)) |
| return PTR_ERR(addr); |
| pmem->virt_addr = addr; |
| |
| blk_queue_write_cache(q, true, fua); |
| blk_queue_physical_block_size(q, PAGE_SIZE); |
| blk_queue_logical_block_size(q, pmem_sector_size(ndns)); |
| blk_queue_max_hw_sectors(q, UINT_MAX); |
| blk_queue_flag_set(QUEUE_FLAG_NONROT, q); |
| if (pmem->pfn_flags & PFN_MAP) |
| blk_queue_flag_set(QUEUE_FLAG_DAX, q); |
| |
| disk->fops = &pmem_fops; |
| disk->private_data = pmem; |
| nvdimm_namespace_disk_name(ndns, disk->disk_name); |
| set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) |
| / 512); |
| if (devm_init_badblocks(dev, &pmem->bb)) |
| return -ENOMEM; |
| nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range); |
| disk->bb = &pmem->bb; |
| |
| if (is_nvdimm_sync(nd_region)) |
| flags = DAXDEV_F_SYNC; |
| dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags); |
| if (IS_ERR(dax_dev)) { |
| return PTR_ERR(dax_dev); |
| } |
| dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); |
| pmem->dax_dev = dax_dev; |
| gendev = disk_to_dev(disk); |
| gendev->groups = pmem_attribute_groups; |
| |
| device_add_disk(dev, disk, NULL); |
| if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) |
| return -ENOMEM; |
| |
| nvdimm_check_and_set_ro(disk); |
| |
| pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, |
| "badblocks"); |
| if (!pmem->bb_state) |
| dev_warn(dev, "'badblocks' notification disabled\n"); |
| |
| return 0; |
| } |
| |
| static int nd_pmem_probe(struct device *dev) |
| { |
| int ret; |
| struct nd_namespace_common *ndns; |
| |
| ndns = nvdimm_namespace_common_probe(dev); |
| if (IS_ERR(ndns)) |
| return PTR_ERR(ndns); |
| |
| if (is_nd_btt(dev)) |
| return nvdimm_namespace_attach_btt(ndns); |
| |
| if (is_nd_pfn(dev)) |
| return pmem_attach_disk(dev, ndns); |
| |
| ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve()); |
| if (ret) |
| return ret; |
| |
| ret = nd_btt_probe(dev, ndns); |
| if (ret == 0) |
| return -ENXIO; |
| |
| /* |
| * We have two failure conditions here, there is no |
| * info reserver block or we found a valid info reserve block |
| * but failed to initialize the pfn superblock. |
| * |
| * For the first case consider namespace as a raw pmem namespace |
| * and attach a disk. |
| * |
| * For the latter, consider this a success and advance the namespace |
| * seed. |
| */ |
| ret = nd_pfn_probe(dev, ndns); |
| if (ret == 0) |
| return -ENXIO; |
| else if (ret == -EOPNOTSUPP) |
| return ret; |
| |
| ret = nd_dax_probe(dev, ndns); |
| if (ret == 0) |
| return -ENXIO; |
| else if (ret == -EOPNOTSUPP) |
| return ret; |
| |
| /* probe complete, attach handles namespace enabling */ |
| devm_namespace_disable(dev, ndns); |
| |
| return pmem_attach_disk(dev, ndns); |
| } |
| |
| static void nd_pmem_remove(struct device *dev) |
| { |
| struct pmem_device *pmem = dev_get_drvdata(dev); |
| |
| if (is_nd_btt(dev)) |
| nvdimm_namespace_detach_btt(to_nd_btt(dev)); |
| else { |
| /* |
| * Note, this assumes nd_device_lock() context to not |
| * race nd_pmem_notify() |
| */ |
| sysfs_put(pmem->bb_state); |
| pmem->bb_state = NULL; |
| } |
| nvdimm_flush(to_nd_region(dev->parent), NULL); |
| } |
| |
| static void nd_pmem_shutdown(struct device *dev) |
| { |
| nvdimm_flush(to_nd_region(dev->parent), NULL); |
| } |
| |
| static void pmem_revalidate_poison(struct device *dev) |
| { |
| struct nd_region *nd_region; |
| resource_size_t offset = 0, end_trunc = 0; |
| struct nd_namespace_common *ndns; |
| struct nd_namespace_io *nsio; |
| struct badblocks *bb; |
| struct range range; |
| struct kernfs_node *bb_state; |
| |
| if (is_nd_btt(dev)) { |
| struct nd_btt *nd_btt = to_nd_btt(dev); |
| |
| ndns = nd_btt->ndns; |
| nd_region = to_nd_region(ndns->dev.parent); |
| nsio = to_nd_namespace_io(&ndns->dev); |
| bb = &nsio->bb; |
| bb_state = NULL; |
| } else { |
| struct pmem_device *pmem = dev_get_drvdata(dev); |
| |
| nd_region = to_region(pmem); |
| bb = &pmem->bb; |
| bb_state = pmem->bb_state; |
| |
| if (is_nd_pfn(dev)) { |
| struct nd_pfn *nd_pfn = to_nd_pfn(dev); |
| struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; |
| |
| ndns = nd_pfn->ndns; |
| offset = pmem->data_offset + |
| __le32_to_cpu(pfn_sb->start_pad); |
| end_trunc = __le32_to_cpu(pfn_sb->end_trunc); |
| } else { |
| ndns = to_ndns(dev); |
| } |
| |
| nsio = to_nd_namespace_io(&ndns->dev); |
| } |
| |
| range.start = nsio->res.start + offset; |
| range.end = nsio->res.end - end_trunc; |
| nvdimm_badblocks_populate(nd_region, bb, &range); |
| if (bb_state) |
| sysfs_notify_dirent(bb_state); |
| } |
| |
| static void pmem_revalidate_region(struct device *dev) |
| { |
| struct pmem_device *pmem; |
| |
| if (is_nd_btt(dev)) { |
| struct nd_btt *nd_btt = to_nd_btt(dev); |
| struct btt *btt = nd_btt->btt; |
| |
| nvdimm_check_and_set_ro(btt->btt_disk); |
| return; |
| } |
| |
| pmem = dev_get_drvdata(dev); |
| nvdimm_check_and_set_ro(pmem->disk); |
| } |
| |
| static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) |
| { |
| switch (event) { |
| case NVDIMM_REVALIDATE_POISON: |
| pmem_revalidate_poison(dev); |
| break; |
| case NVDIMM_REVALIDATE_REGION: |
| pmem_revalidate_region(dev); |
| break; |
| default: |
| dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event); |
| break; |
| } |
| } |
| |
| MODULE_ALIAS("pmem"); |
| MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); |
| MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); |
| static struct nd_device_driver nd_pmem_driver = { |
| .probe = nd_pmem_probe, |
| .remove = nd_pmem_remove, |
| .notify = nd_pmem_notify, |
| .shutdown = nd_pmem_shutdown, |
| .drv = { |
| .name = "nd_pmem", |
| }, |
| .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, |
| }; |
| |
| module_nd_driver(nd_pmem_driver); |
| |
| MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); |
| MODULE_LICENSE("GPL v2"); |