| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Network filesystem high-level read support. |
| * |
| * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/uio.h> |
| #include <linux/sched/mm.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include <linux/netfs.h> |
| #include "internal.h" |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/netfs.h> |
| |
| MODULE_DESCRIPTION("Network fs support"); |
| MODULE_AUTHOR("Red Hat, Inc."); |
| MODULE_LICENSE("GPL"); |
| |
| unsigned netfs_debug; |
| module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask"); |
| |
| static void netfs_rreq_work(struct work_struct *); |
| static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool); |
| |
| static void netfs_put_subrequest(struct netfs_read_subrequest *subreq, |
| bool was_async) |
| { |
| if (refcount_dec_and_test(&subreq->usage)) |
| __netfs_put_subrequest(subreq, was_async); |
| } |
| |
| static struct netfs_read_request *netfs_alloc_read_request( |
| const struct netfs_read_request_ops *ops, void *netfs_priv, |
| struct file *file) |
| { |
| static atomic_t debug_ids; |
| struct netfs_read_request *rreq; |
| |
| rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL); |
| if (rreq) { |
| rreq->netfs_ops = ops; |
| rreq->netfs_priv = netfs_priv; |
| rreq->inode = file_inode(file); |
| rreq->i_size = i_size_read(rreq->inode); |
| rreq->debug_id = atomic_inc_return(&debug_ids); |
| INIT_LIST_HEAD(&rreq->subrequests); |
| INIT_WORK(&rreq->work, netfs_rreq_work); |
| refcount_set(&rreq->usage, 1); |
| __set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags); |
| ops->init_rreq(rreq, file); |
| netfs_stat(&netfs_n_rh_rreq); |
| } |
| |
| return rreq; |
| } |
| |
| static void netfs_get_read_request(struct netfs_read_request *rreq) |
| { |
| refcount_inc(&rreq->usage); |
| } |
| |
| static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq, |
| bool was_async) |
| { |
| struct netfs_read_subrequest *subreq; |
| |
| while (!list_empty(&rreq->subrequests)) { |
| subreq = list_first_entry(&rreq->subrequests, |
| struct netfs_read_subrequest, rreq_link); |
| list_del(&subreq->rreq_link); |
| netfs_put_subrequest(subreq, was_async); |
| } |
| } |
| |
| static void netfs_free_read_request(struct work_struct *work) |
| { |
| struct netfs_read_request *rreq = |
| container_of(work, struct netfs_read_request, work); |
| netfs_rreq_clear_subreqs(rreq, false); |
| if (rreq->netfs_priv) |
| rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv); |
| trace_netfs_rreq(rreq, netfs_rreq_trace_free); |
| if (rreq->cache_resources.ops) |
| rreq->cache_resources.ops->end_operation(&rreq->cache_resources); |
| kfree(rreq); |
| netfs_stat_d(&netfs_n_rh_rreq); |
| } |
| |
| static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async) |
| { |
| if (refcount_dec_and_test(&rreq->usage)) { |
| if (was_async) { |
| rreq->work.func = netfs_free_read_request; |
| if (!queue_work(system_unbound_wq, &rreq->work)) |
| BUG(); |
| } else { |
| netfs_free_read_request(&rreq->work); |
| } |
| } |
| } |
| |
| /* |
| * Allocate and partially initialise an I/O request structure. |
| */ |
| static struct netfs_read_subrequest *netfs_alloc_subrequest( |
| struct netfs_read_request *rreq) |
| { |
| struct netfs_read_subrequest *subreq; |
| |
| subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL); |
| if (subreq) { |
| INIT_LIST_HEAD(&subreq->rreq_link); |
| refcount_set(&subreq->usage, 2); |
| subreq->rreq = rreq; |
| netfs_get_read_request(rreq); |
| netfs_stat(&netfs_n_rh_sreq); |
| } |
| |
| return subreq; |
| } |
| |
| static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq) |
| { |
| refcount_inc(&subreq->usage); |
| } |
| |
| static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq, |
| bool was_async) |
| { |
| struct netfs_read_request *rreq = subreq->rreq; |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_free); |
| kfree(subreq); |
| netfs_stat_d(&netfs_n_rh_sreq); |
| netfs_put_read_request(rreq, was_async); |
| } |
| |
| /* |
| * Clear the unread part of an I/O request. |
| */ |
| static void netfs_clear_unread(struct netfs_read_subrequest *subreq) |
| { |
| struct iov_iter iter; |
| |
| iov_iter_xarray(&iter, WRITE, &subreq->rreq->mapping->i_pages, |
| subreq->start + subreq->transferred, |
| subreq->len - subreq->transferred); |
| iov_iter_zero(iov_iter_count(&iter), &iter); |
| } |
| |
| static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, |
| bool was_async) |
| { |
| struct netfs_read_subrequest *subreq = priv; |
| |
| netfs_subreq_terminated(subreq, transferred_or_error, was_async); |
| } |
| |
| /* |
| * Issue a read against the cache. |
| * - Eats the caller's ref on subreq. |
| */ |
| static void netfs_read_from_cache(struct netfs_read_request *rreq, |
| struct netfs_read_subrequest *subreq, |
| bool seek_data) |
| { |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| struct iov_iter iter; |
| |
| netfs_stat(&netfs_n_rh_read); |
| iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, |
| subreq->start + subreq->transferred, |
| subreq->len - subreq->transferred); |
| |
| cres->ops->read(cres, subreq->start, &iter, seek_data, |
| netfs_cache_read_terminated, subreq); |
| } |
| |
| /* |
| * Fill a subrequest region with zeroes. |
| */ |
| static void netfs_fill_with_zeroes(struct netfs_read_request *rreq, |
| struct netfs_read_subrequest *subreq) |
| { |
| netfs_stat(&netfs_n_rh_zero); |
| __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); |
| netfs_subreq_terminated(subreq, 0, false); |
| } |
| |
| /* |
| * Ask the netfs to issue a read request to the server for us. |
| * |
| * The netfs is expected to read from subreq->pos + subreq->transferred to |
| * subreq->pos + subreq->len - 1. It may not backtrack and write data into the |
| * buffer prior to the transferred point as it might clobber dirty data |
| * obtained from the cache. |
| * |
| * Alternatively, the netfs is allowed to indicate one of two things: |
| * |
| * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and |
| * make progress. |
| * |
| * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be |
| * cleared. |
| */ |
| static void netfs_read_from_server(struct netfs_read_request *rreq, |
| struct netfs_read_subrequest *subreq) |
| { |
| netfs_stat(&netfs_n_rh_download); |
| rreq->netfs_ops->issue_op(subreq); |
| } |
| |
| /* |
| * Release those waiting. |
| */ |
| static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async) |
| { |
| trace_netfs_rreq(rreq, netfs_rreq_trace_done); |
| netfs_rreq_clear_subreqs(rreq, was_async); |
| netfs_put_read_request(rreq, was_async); |
| } |
| |
| /* |
| * Deal with the completion of writing the data to the cache. We have to clear |
| * the PG_fscache bits on the pages involved and release the caller's ref. |
| * |
| * May be called in softirq mode and we inherit a ref from the caller. |
| */ |
| static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq, |
| bool was_async) |
| { |
| struct netfs_read_subrequest *subreq; |
| struct page *page; |
| pgoff_t unlocked = 0; |
| bool have_unlocked = false; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); |
| |
| xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) { |
| /* We might have multiple writes from the same huge |
| * page, but we mustn't unlock a page more than once. |
| */ |
| if (have_unlocked && page->index <= unlocked) |
| continue; |
| unlocked = page->index; |
| end_page_fscache(page); |
| have_unlocked = true; |
| } |
| } |
| |
| rcu_read_unlock(); |
| netfs_rreq_completed(rreq, was_async); |
| } |
| |
| static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, |
| bool was_async) |
| { |
| struct netfs_read_subrequest *subreq = priv; |
| struct netfs_read_request *rreq = subreq->rreq; |
| |
| if (IS_ERR_VALUE(transferred_or_error)) { |
| netfs_stat(&netfs_n_rh_write_failed); |
| trace_netfs_failure(rreq, subreq, transferred_or_error, |
| netfs_fail_copy_to_cache); |
| } else { |
| netfs_stat(&netfs_n_rh_write_done); |
| } |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); |
| |
| /* If we decrement nr_wr_ops to 0, the ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_wr_ops)) |
| netfs_rreq_unmark_after_write(rreq, was_async); |
| |
| netfs_put_subrequest(subreq, was_async); |
| } |
| |
| /* |
| * Perform any outstanding writes to the cache. We inherit a ref from the |
| * caller. |
| */ |
| static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq) |
| { |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| struct netfs_read_subrequest *subreq, *next, *p; |
| struct iov_iter iter; |
| int ret; |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_write); |
| |
| /* We don't want terminating writes trying to wake us up whilst we're |
| * still going through the list. |
| */ |
| atomic_inc(&rreq->nr_wr_ops); |
| |
| list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { |
| if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) { |
| list_del_init(&subreq->rreq_link); |
| netfs_put_subrequest(subreq, false); |
| } |
| } |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| /* Amalgamate adjacent writes */ |
| while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { |
| next = list_next_entry(subreq, rreq_link); |
| if (next->start != subreq->start + subreq->len) |
| break; |
| subreq->len += next->len; |
| list_del_init(&next->rreq_link); |
| netfs_put_subrequest(next, false); |
| } |
| |
| ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, |
| rreq->i_size); |
| if (ret < 0) { |
| trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); |
| continue; |
| } |
| |
| iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages, |
| subreq->start, subreq->len); |
| |
| atomic_inc(&rreq->nr_wr_ops); |
| netfs_stat(&netfs_n_rh_write); |
| netfs_get_read_subrequest(subreq); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write); |
| cres->ops->write(cres, subreq->start, &iter, |
| netfs_rreq_copy_terminated, subreq); |
| } |
| |
| /* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_wr_ops)) |
| netfs_rreq_unmark_after_write(rreq, false); |
| } |
| |
| static void netfs_rreq_write_to_cache_work(struct work_struct *work) |
| { |
| struct netfs_read_request *rreq = |
| container_of(work, struct netfs_read_request, work); |
| |
| netfs_rreq_do_write_to_cache(rreq); |
| } |
| |
| static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq, |
| bool was_async) |
| { |
| if (was_async) { |
| rreq->work.func = netfs_rreq_write_to_cache_work; |
| if (!queue_work(system_unbound_wq, &rreq->work)) |
| BUG(); |
| } else { |
| netfs_rreq_do_write_to_cache(rreq); |
| } |
| } |
| |
| /* |
| * Unlock the pages in a read operation. We need to set PG_fscache on any |
| * pages we're going to write back before we unlock them. |
| */ |
| static void netfs_rreq_unlock(struct netfs_read_request *rreq) |
| { |
| struct netfs_read_subrequest *subreq; |
| struct page *page; |
| unsigned int iopos, account = 0; |
| pgoff_t start_page = rreq->start / PAGE_SIZE; |
| pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1; |
| bool subreq_failed = false; |
| int i; |
| |
| XA_STATE(xas, &rreq->mapping->i_pages, start_page); |
| |
| if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) { |
| __clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags); |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| __clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags); |
| } |
| } |
| |
| /* Walk through the pagecache and the I/O request lists simultaneously. |
| * We may have a mixture of cached and uncached sections and we only |
| * really want to write out the uncached sections. This is slightly |
| * complicated by the possibility that we might have huge pages with a |
| * mixture inside. |
| */ |
| subreq = list_first_entry(&rreq->subrequests, |
| struct netfs_read_subrequest, rreq_link); |
| iopos = 0; |
| subreq_failed = (subreq->error < 0); |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_unlock); |
| |
| rcu_read_lock(); |
| xas_for_each(&xas, page, last_page) { |
| unsigned int pgpos = (page->index - start_page) * PAGE_SIZE; |
| unsigned int pgend = pgpos + thp_size(page); |
| bool pg_failed = false; |
| |
| for (;;) { |
| if (!subreq) { |
| pg_failed = true; |
| break; |
| } |
| if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) |
| set_page_fscache(page); |
| pg_failed |= subreq_failed; |
| if (pgend < iopos + subreq->len) |
| break; |
| |
| account += subreq->transferred; |
| iopos += subreq->len; |
| if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { |
| subreq = list_next_entry(subreq, rreq_link); |
| subreq_failed = (subreq->error < 0); |
| } else { |
| subreq = NULL; |
| subreq_failed = false; |
| } |
| if (pgend == iopos) |
| break; |
| } |
| |
| if (!pg_failed) { |
| for (i = 0; i < thp_nr_pages(page); i++) |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| } |
| |
| if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) { |
| if (page->index == rreq->no_unlock_page && |
| test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags)) |
| _debug("no unlock"); |
| else |
| unlock_page(page); |
| } |
| } |
| rcu_read_unlock(); |
| |
| task_io_account_read(account); |
| if (rreq->netfs_ops->done) |
| rreq->netfs_ops->done(rreq); |
| } |
| |
| /* |
| * Handle a short read. |
| */ |
| static void netfs_rreq_short_read(struct netfs_read_request *rreq, |
| struct netfs_read_subrequest *subreq) |
| { |
| __clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags); |
| __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); |
| |
| netfs_stat(&netfs_n_rh_short_read); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); |
| |
| netfs_get_read_subrequest(subreq); |
| atomic_inc(&rreq->nr_rd_ops); |
| if (subreq->source == NETFS_READ_FROM_CACHE) |
| netfs_read_from_cache(rreq, subreq, true); |
| else |
| netfs_read_from_server(rreq, subreq); |
| } |
| |
| /* |
| * Resubmit any short or failed operations. Returns true if we got the rreq |
| * ref back. |
| */ |
| static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq) |
| { |
| struct netfs_read_subrequest *subreq; |
| |
| WARN_ON(in_interrupt()); |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); |
| |
| /* We don't want terminating submissions trying to wake us up whilst |
| * we're still going through the list. |
| */ |
| atomic_inc(&rreq->nr_rd_ops); |
| |
| __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| if (subreq->error) { |
| if (subreq->source != NETFS_READ_FROM_CACHE) |
| break; |
| subreq->source = NETFS_DOWNLOAD_FROM_SERVER; |
| subreq->error = 0; |
| netfs_stat(&netfs_n_rh_download_instead); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); |
| netfs_get_read_subrequest(subreq); |
| atomic_inc(&rreq->nr_rd_ops); |
| netfs_read_from_server(rreq, subreq); |
| } else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) { |
| netfs_rreq_short_read(rreq, subreq); |
| } |
| } |
| |
| /* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_rd_ops)) |
| return true; |
| |
| wake_up_var(&rreq->nr_rd_ops); |
| return false; |
| } |
| |
| /* |
| * Check to see if the data read is still valid. |
| */ |
| static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq) |
| { |
| struct netfs_read_subrequest *subreq; |
| |
| if (!rreq->netfs_ops->is_still_valid || |
| rreq->netfs_ops->is_still_valid(rreq)) |
| return; |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| if (subreq->source == NETFS_READ_FROM_CACHE) { |
| subreq->error = -ESTALE; |
| __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| } |
| } |
| } |
| |
| /* |
| * Assess the state of a read request and decide what to do next. |
| * |
| * Note that we could be in an ordinary kernel thread, on a workqueue or in |
| * softirq context at this point. We inherit a ref from the caller. |
| */ |
| static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async) |
| { |
| trace_netfs_rreq(rreq, netfs_rreq_trace_assess); |
| |
| again: |
| netfs_rreq_is_still_valid(rreq); |
| |
| if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && |
| test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { |
| if (netfs_rreq_perform_resubmissions(rreq)) |
| goto again; |
| return; |
| } |
| |
| netfs_rreq_unlock(rreq); |
| |
| clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); |
| wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); |
| |
| if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags)) |
| return netfs_rreq_write_to_cache(rreq, was_async); |
| |
| netfs_rreq_completed(rreq, was_async); |
| } |
| |
| static void netfs_rreq_work(struct work_struct *work) |
| { |
| struct netfs_read_request *rreq = |
| container_of(work, struct netfs_read_request, work); |
| netfs_rreq_assess(rreq, false); |
| } |
| |
| /* |
| * Handle the completion of all outstanding I/O operations on a read request. |
| * We inherit a ref from the caller. |
| */ |
| static void netfs_rreq_terminated(struct netfs_read_request *rreq, |
| bool was_async) |
| { |
| if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && |
| was_async) { |
| if (!queue_work(system_unbound_wq, &rreq->work)) |
| BUG(); |
| } else { |
| netfs_rreq_assess(rreq, was_async); |
| } |
| } |
| |
| /** |
| * netfs_subreq_terminated - Note the termination of an I/O operation. |
| * @subreq: The I/O request that has terminated. |
| * @transferred_or_error: The amount of data transferred or an error code. |
| * @was_async: The termination was asynchronous |
| * |
| * This tells the read helper that a contributory I/O operation has terminated, |
| * one way or another, and that it should integrate the results. |
| * |
| * The caller indicates in @transferred_or_error the outcome of the operation, |
| * supplying a positive value to indicate the number of bytes transferred, 0 to |
| * indicate a failure to transfer anything that should be retried or a negative |
| * error code. The helper will look after reissuing I/O operations as |
| * appropriate and writing downloaded data to the cache. |
| * |
| * If @was_async is true, the caller might be running in softirq or interrupt |
| * context and we can't sleep. |
| */ |
| void netfs_subreq_terminated(struct netfs_read_subrequest *subreq, |
| ssize_t transferred_or_error, |
| bool was_async) |
| { |
| struct netfs_read_request *rreq = subreq->rreq; |
| int u; |
| |
| _enter("[%u]{%llx,%lx},%zd", |
| subreq->debug_index, subreq->start, subreq->flags, |
| transferred_or_error); |
| |
| switch (subreq->source) { |
| case NETFS_READ_FROM_CACHE: |
| netfs_stat(&netfs_n_rh_read_done); |
| break; |
| case NETFS_DOWNLOAD_FROM_SERVER: |
| netfs_stat(&netfs_n_rh_download_done); |
| break; |
| default: |
| break; |
| } |
| |
| if (IS_ERR_VALUE(transferred_or_error)) { |
| subreq->error = transferred_or_error; |
| trace_netfs_failure(rreq, subreq, transferred_or_error, |
| netfs_fail_read); |
| goto failed; |
| } |
| |
| if (WARN(transferred_or_error > subreq->len - subreq->transferred, |
| "Subreq overread: R%x[%x] %zd > %zu - %zu", |
| rreq->debug_id, subreq->debug_index, |
| transferred_or_error, subreq->len, subreq->transferred)) |
| transferred_or_error = subreq->len - subreq->transferred; |
| |
| subreq->error = 0; |
| subreq->transferred += transferred_or_error; |
| if (subreq->transferred < subreq->len) |
| goto incomplete; |
| |
| complete: |
| __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); |
| if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) |
| set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags); |
| |
| out: |
| trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); |
| |
| /* If we decrement nr_rd_ops to 0, the ref belongs to us. */ |
| u = atomic_dec_return(&rreq->nr_rd_ops); |
| if (u == 0) |
| netfs_rreq_terminated(rreq, was_async); |
| else if (u == 1) |
| wake_up_var(&rreq->nr_rd_ops); |
| |
| netfs_put_subrequest(subreq, was_async); |
| return; |
| |
| incomplete: |
| if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { |
| netfs_clear_unread(subreq); |
| subreq->transferred = subreq->len; |
| goto complete; |
| } |
| |
| if (transferred_or_error == 0) { |
| if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { |
| subreq->error = -ENODATA; |
| goto failed; |
| } |
| } else { |
| __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); |
| } |
| |
| __set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags); |
| set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| goto out; |
| |
| failed: |
| if (subreq->source == NETFS_READ_FROM_CACHE) { |
| netfs_stat(&netfs_n_rh_read_failed); |
| set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| } else { |
| netfs_stat(&netfs_n_rh_download_failed); |
| set_bit(NETFS_RREQ_FAILED, &rreq->flags); |
| rreq->error = subreq->error; |
| } |
| goto out; |
| } |
| EXPORT_SYMBOL(netfs_subreq_terminated); |
| |
| static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq, |
| loff_t i_size) |
| { |
| struct netfs_read_request *rreq = subreq->rreq; |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| |
| if (cres->ops) |
| return cres->ops->prepare_read(subreq, i_size); |
| if (subreq->start >= rreq->i_size) |
| return NETFS_FILL_WITH_ZEROES; |
| return NETFS_DOWNLOAD_FROM_SERVER; |
| } |
| |
| /* |
| * Work out what sort of subrequest the next one will be. |
| */ |
| static enum netfs_read_source |
| netfs_rreq_prepare_read(struct netfs_read_request *rreq, |
| struct netfs_read_subrequest *subreq) |
| { |
| enum netfs_read_source source; |
| |
| _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); |
| |
| source = netfs_cache_prepare_read(subreq, rreq->i_size); |
| if (source == NETFS_INVALID_READ) |
| goto out; |
| |
| if (source == NETFS_DOWNLOAD_FROM_SERVER) { |
| /* Call out to the netfs to let it shrink the request to fit |
| * its own I/O sizes and boundaries. If it shinks it here, it |
| * will be called again to make simultaneous calls; if it wants |
| * to make serial calls, it can indicate a short read and then |
| * we will call it again. |
| */ |
| if (subreq->len > rreq->i_size - subreq->start) |
| subreq->len = rreq->i_size - subreq->start; |
| |
| if (rreq->netfs_ops->clamp_length && |
| !rreq->netfs_ops->clamp_length(subreq)) { |
| source = NETFS_INVALID_READ; |
| goto out; |
| } |
| } |
| |
| if (WARN_ON(subreq->len == 0)) |
| source = NETFS_INVALID_READ; |
| |
| out: |
| subreq->source = source; |
| trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); |
| return source; |
| } |
| |
| /* |
| * Slice off a piece of a read request and submit an I/O request for it. |
| */ |
| static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq, |
| unsigned int *_debug_index) |
| { |
| struct netfs_read_subrequest *subreq; |
| enum netfs_read_source source; |
| |
| subreq = netfs_alloc_subrequest(rreq); |
| if (!subreq) |
| return false; |
| |
| subreq->debug_index = (*_debug_index)++; |
| subreq->start = rreq->start + rreq->submitted; |
| subreq->len = rreq->len - rreq->submitted; |
| |
| _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted); |
| list_add_tail(&subreq->rreq_link, &rreq->subrequests); |
| |
| /* Call out to the cache to find out what it can do with the remaining |
| * subset. It tells us in subreq->flags what it decided should be done |
| * and adjusts subreq->len down if the subset crosses a cache boundary. |
| * |
| * Then when we hand the subset, it can choose to take a subset of that |
| * (the starts must coincide), in which case, we go around the loop |
| * again and ask it to download the next piece. |
| */ |
| source = netfs_rreq_prepare_read(rreq, subreq); |
| if (source == NETFS_INVALID_READ) |
| goto subreq_failed; |
| |
| atomic_inc(&rreq->nr_rd_ops); |
| |
| rreq->submitted += subreq->len; |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_submit); |
| switch (source) { |
| case NETFS_FILL_WITH_ZEROES: |
| netfs_fill_with_zeroes(rreq, subreq); |
| break; |
| case NETFS_DOWNLOAD_FROM_SERVER: |
| netfs_read_from_server(rreq, subreq); |
| break; |
| case NETFS_READ_FROM_CACHE: |
| netfs_read_from_cache(rreq, subreq, false); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return true; |
| |
| subreq_failed: |
| rreq->error = subreq->error; |
| netfs_put_subrequest(subreq, false); |
| return false; |
| } |
| |
| static void netfs_cache_expand_readahead(struct netfs_read_request *rreq, |
| loff_t *_start, size_t *_len, loff_t i_size) |
| { |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| |
| if (cres->ops && cres->ops->expand_readahead) |
| cres->ops->expand_readahead(cres, _start, _len, i_size); |
| } |
| |
| static void netfs_rreq_expand(struct netfs_read_request *rreq, |
| struct readahead_control *ractl) |
| { |
| /* Give the cache a chance to change the request parameters. The |
| * resultant request must contain the original region. |
| */ |
| netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size); |
| |
| /* Give the netfs a chance to change the request parameters. The |
| * resultant request must contain the original region. |
| */ |
| if (rreq->netfs_ops->expand_readahead) |
| rreq->netfs_ops->expand_readahead(rreq); |
| |
| /* Expand the request if the cache wants it to start earlier. Note |
| * that the expansion may get further extended if the VM wishes to |
| * insert THPs and the preferred start and/or end wind up in the middle |
| * of THPs. |
| * |
| * If this is the case, however, the THP size should be an integer |
| * multiple of the cache granule size, so we get a whole number of |
| * granules to deal with. |
| */ |
| if (rreq->start != readahead_pos(ractl) || |
| rreq->len != readahead_length(ractl)) { |
| readahead_expand(ractl, rreq->start, rreq->len); |
| rreq->start = readahead_pos(ractl); |
| rreq->len = readahead_length(ractl); |
| |
| trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), |
| netfs_read_trace_expanded); |
| } |
| } |
| |
| /** |
| * netfs_readahead - Helper to manage a read request |
| * @ractl: The description of the readahead request |
| * @ops: The network filesystem's operations for the helper to use |
| * @netfs_priv: Private netfs data to be retained in the request |
| * |
| * Fulfil a readahead request by drawing data from the cache if possible, or |
| * the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O |
| * requests from different sources will get munged together. If necessary, the |
| * readahead window can be expanded in either direction to a more convenient |
| * alighment for RPC efficiency or to make storage in the cache feasible. |
| * |
| * The calling netfs must provide a table of operations, only one of which, |
| * issue_op, is mandatory. It may also be passed a private token, which will |
| * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup(). |
| * |
| * This is usable whether or not caching is enabled. |
| */ |
| void netfs_readahead(struct readahead_control *ractl, |
| const struct netfs_read_request_ops *ops, |
| void *netfs_priv) |
| { |
| struct netfs_read_request *rreq; |
| struct page *page; |
| unsigned int debug_index = 0; |
| int ret; |
| |
| _enter("%lx,%x", readahead_index(ractl), readahead_count(ractl)); |
| |
| if (readahead_count(ractl) == 0) |
| goto cleanup; |
| |
| rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file); |
| if (!rreq) |
| goto cleanup; |
| rreq->mapping = ractl->mapping; |
| rreq->start = readahead_pos(ractl); |
| rreq->len = readahead_length(ractl); |
| |
| if (ops->begin_cache_operation) { |
| ret = ops->begin_cache_operation(rreq); |
| if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) |
| goto cleanup_free; |
| } |
| |
| netfs_stat(&netfs_n_rh_readahead); |
| trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), |
| netfs_read_trace_readahead); |
| |
| netfs_rreq_expand(rreq, ractl); |
| |
| atomic_set(&rreq->nr_rd_ops, 1); |
| do { |
| if (!netfs_rreq_submit_slice(rreq, &debug_index)) |
| break; |
| |
| } while (rreq->submitted < rreq->len); |
| |
| /* Drop the refs on the pages here rather than in the cache or |
| * filesystem. The locks will be dropped in netfs_rreq_unlock(). |
| */ |
| while ((page = readahead_page(ractl))) |
| put_page(page); |
| |
| /* If we decrement nr_rd_ops to 0, the ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_rd_ops)) |
| netfs_rreq_assess(rreq, false); |
| return; |
| |
| cleanup_free: |
| netfs_put_read_request(rreq, false); |
| return; |
| cleanup: |
| if (netfs_priv) |
| ops->cleanup(ractl->mapping, netfs_priv); |
| return; |
| } |
| EXPORT_SYMBOL(netfs_readahead); |
| |
| /** |
| * netfs_readpage - Helper to manage a readpage request |
| * @file: The file to read from |
| * @page: The page to read |
| * @ops: The network filesystem's operations for the helper to use |
| * @netfs_priv: Private netfs data to be retained in the request |
| * |
| * Fulfil a readpage request by drawing data from the cache if possible, or the |
| * netfs if not. Space beyond the EOF is zero-filled. Multiple I/O requests |
| * from different sources will get munged together. |
| * |
| * The calling netfs must provide a table of operations, only one of which, |
| * issue_op, is mandatory. It may also be passed a private token, which will |
| * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup(). |
| * |
| * This is usable whether or not caching is enabled. |
| */ |
| int netfs_readpage(struct file *file, |
| struct page *page, |
| const struct netfs_read_request_ops *ops, |
| void *netfs_priv) |
| { |
| struct netfs_read_request *rreq; |
| unsigned int debug_index = 0; |
| int ret; |
| |
| _enter("%lx", page_index(page)); |
| |
| rreq = netfs_alloc_read_request(ops, netfs_priv, file); |
| if (!rreq) { |
| if (netfs_priv) |
| ops->cleanup(netfs_priv, page_file_mapping(page)); |
| unlock_page(page); |
| return -ENOMEM; |
| } |
| rreq->mapping = page_file_mapping(page); |
| rreq->start = page_file_offset(page); |
| rreq->len = thp_size(page); |
| |
| if (ops->begin_cache_operation) { |
| ret = ops->begin_cache_operation(rreq); |
| if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) { |
| unlock_page(page); |
| goto out; |
| } |
| } |
| |
| netfs_stat(&netfs_n_rh_readpage); |
| trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage); |
| |
| netfs_get_read_request(rreq); |
| |
| atomic_set(&rreq->nr_rd_ops, 1); |
| do { |
| if (!netfs_rreq_submit_slice(rreq, &debug_index)) |
| break; |
| |
| } while (rreq->submitted < rreq->len); |
| |
| /* Keep nr_rd_ops incremented so that the ref always belongs to us, and |
| * the service code isn't punted off to a random thread pool to |
| * process. |
| */ |
| do { |
| wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1); |
| netfs_rreq_assess(rreq, false); |
| } while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)); |
| |
| ret = rreq->error; |
| if (ret == 0 && rreq->submitted < rreq->len) { |
| trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage); |
| ret = -EIO; |
| } |
| out: |
| netfs_put_read_request(rreq, false); |
| return ret; |
| } |
| EXPORT_SYMBOL(netfs_readpage); |
| |
| /** |
| * netfs_skip_page_read - prep a page for writing without reading first |
| * @page: page being prepared |
| * @pos: starting position for the write |
| * @len: length of write |
| * |
| * In some cases, write_begin doesn't need to read at all: |
| * - full page write |
| * - write that lies in a page that is completely beyond EOF |
| * - write that covers the the page from start to EOF or beyond it |
| * |
| * If any of these criteria are met, then zero out the unwritten parts |
| * of the page and return true. Otherwise, return false. |
| */ |
| static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len) |
| { |
| struct inode *inode = page->mapping->host; |
| loff_t i_size = i_size_read(inode); |
| size_t offset = offset_in_thp(page, pos); |
| |
| /* Full page write */ |
| if (offset == 0 && len >= thp_size(page)) |
| return true; |
| |
| /* pos beyond last page in the file */ |
| if (pos - offset >= i_size) |
| goto zero_out; |
| |
| /* Write that covers from the start of the page to EOF or beyond */ |
| if (offset == 0 && (pos + len) >= i_size) |
| goto zero_out; |
| |
| return false; |
| zero_out: |
| zero_user_segments(page, 0, offset, offset + len, thp_size(page)); |
| return true; |
| } |
| |
| /** |
| * netfs_write_begin - Helper to prepare for writing |
| * @file: The file to read from |
| * @mapping: The mapping to read from |
| * @pos: File position at which the write will begin |
| * @len: The length of the write (may extend beyond the end of the page chosen) |
| * @flags: AOP_* flags |
| * @_page: Where to put the resultant page |
| * @_fsdata: Place for the netfs to store a cookie |
| * @ops: The network filesystem's operations for the helper to use |
| * @netfs_priv: Private netfs data to be retained in the request |
| * |
| * Pre-read data for a write-begin request by drawing data from the cache if |
| * possible, or the netfs if not. Space beyond the EOF is zero-filled. |
| * Multiple I/O requests from different sources will get munged together. If |
| * necessary, the readahead window can be expanded in either direction to a |
| * more convenient alighment for RPC efficiency or to make storage in the cache |
| * feasible. |
| * |
| * The calling netfs must provide a table of operations, only one of which, |
| * issue_op, is mandatory. |
| * |
| * The check_write_begin() operation can be provided to check for and flush |
| * conflicting writes once the page is grabbed and locked. It is passed a |
| * pointer to the fsdata cookie that gets returned to the VM to be passed to |
| * write_end. It is permitted to sleep. It should return 0 if the request |
| * should go ahead; unlock the page and return -EAGAIN to cause the page to be |
| * regot; or return an error. |
| * |
| * This is usable whether or not caching is enabled. |
| */ |
| int netfs_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned int len, unsigned int flags, |
| struct page **_page, void **_fsdata, |
| const struct netfs_read_request_ops *ops, |
| void *netfs_priv) |
| { |
| struct netfs_read_request *rreq; |
| struct page *page, *xpage; |
| struct inode *inode = file_inode(file); |
| unsigned int debug_index = 0; |
| pgoff_t index = pos >> PAGE_SHIFT; |
| int ret; |
| |
| DEFINE_READAHEAD(ractl, file, NULL, mapping, index); |
| |
| retry: |
| page = grab_cache_page_write_begin(mapping, index, flags); |
| if (!page) |
| return -ENOMEM; |
| |
| if (ops->check_write_begin) { |
| /* Allow the netfs (eg. ceph) to flush conflicts. */ |
| ret = ops->check_write_begin(file, pos, len, page, _fsdata); |
| if (ret < 0) { |
| trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin); |
| if (ret == -EAGAIN) |
| goto retry; |
| goto error; |
| } |
| } |
| |
| if (PageUptodate(page)) |
| goto have_page; |
| |
| /* If the page is beyond the EOF, we want to clear it - unless it's |
| * within the cache granule containing the EOF, in which case we need |
| * to preload the granule. |
| */ |
| if (!ops->is_cache_enabled(inode) && |
| netfs_skip_page_read(page, pos, len)) { |
| netfs_stat(&netfs_n_rh_write_zskip); |
| goto have_page_no_wait; |
| } |
| |
| ret = -ENOMEM; |
| rreq = netfs_alloc_read_request(ops, netfs_priv, file); |
| if (!rreq) |
| goto error; |
| rreq->mapping = page->mapping; |
| rreq->start = page_offset(page); |
| rreq->len = thp_size(page); |
| rreq->no_unlock_page = page->index; |
| __set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags); |
| netfs_priv = NULL; |
| |
| if (ops->begin_cache_operation) { |
| ret = ops->begin_cache_operation(rreq); |
| if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) |
| goto error_put; |
| } |
| |
| netfs_stat(&netfs_n_rh_write_begin); |
| trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin); |
| |
| /* Expand the request to meet caching requirements and download |
| * preferences. |
| */ |
| ractl._nr_pages = thp_nr_pages(page); |
| netfs_rreq_expand(rreq, &ractl); |
| netfs_get_read_request(rreq); |
| |
| /* We hold the page locks, so we can drop the references */ |
| while ((xpage = readahead_page(&ractl))) |
| if (xpage != page) |
| put_page(xpage); |
| |
| atomic_set(&rreq->nr_rd_ops, 1); |
| do { |
| if (!netfs_rreq_submit_slice(rreq, &debug_index)) |
| break; |
| |
| } while (rreq->submitted < rreq->len); |
| |
| /* Keep nr_rd_ops incremented so that the ref always belongs to us, and |
| * the service code isn't punted off to a random thread pool to |
| * process. |
| */ |
| for (;;) { |
| wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1); |
| netfs_rreq_assess(rreq, false); |
| if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) |
| break; |
| cond_resched(); |
| } |
| |
| ret = rreq->error; |
| if (ret == 0 && rreq->submitted < rreq->len) { |
| trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin); |
| ret = -EIO; |
| } |
| netfs_put_read_request(rreq, false); |
| if (ret < 0) |
| goto error; |
| |
| have_page: |
| ret = wait_on_page_fscache_killable(page); |
| if (ret < 0) |
| goto error; |
| have_page_no_wait: |
| if (netfs_priv) |
| ops->cleanup(netfs_priv, mapping); |
| *_page = page; |
| _leave(" = 0"); |
| return 0; |
| |
| error_put: |
| netfs_put_read_request(rreq, false); |
| error: |
| unlock_page(page); |
| put_page(page); |
| if (netfs_priv) |
| ops->cleanup(netfs_priv, mapping); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| EXPORT_SYMBOL(netfs_write_begin); |