| /* | 
 |  * Freescale DMA ALSA SoC PCM driver | 
 |  * | 
 |  * Author: Timur Tabi <timur@freescale.com> | 
 |  * | 
 |  * Copyright 2007-2010 Freescale Semiconductor, Inc. | 
 |  * | 
 |  * This file is licensed under the terms of the GNU General Public License | 
 |  * version 2.  This program is licensed "as is" without any warranty of any | 
 |  * kind, whether express or implied. | 
 |  * | 
 |  * This driver implements ASoC support for the Elo DMA controller, which is | 
 |  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, | 
 |  * the PCM driver is what handles the DMA buffer. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/list.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <sound/core.h> | 
 | #include <sound/pcm.h> | 
 | #include <sound/pcm_params.h> | 
 | #include <sound/soc.h> | 
 |  | 
 | #include <asm/io.h> | 
 |  | 
 | #include "fsl_dma.h" | 
 | #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */ | 
 |  | 
 | /* | 
 |  * The formats that the DMA controller supports, which is anything | 
 |  * that is 8, 16, or 32 bits. | 
 |  */ | 
 | #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \ | 
 | 			    SNDRV_PCM_FMTBIT_U8 	| \ | 
 | 			    SNDRV_PCM_FMTBIT_S16_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_S16_BE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U16_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U16_BE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_S24_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_S24_BE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U24_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U24_BE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_S32_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_S32_BE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U32_LE     | \ | 
 | 			    SNDRV_PCM_FMTBIT_U32_BE) | 
 |  | 
 | #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ | 
 | 			  SNDRV_PCM_RATE_CONTINUOUS) | 
 |  | 
 | struct dma_object { | 
 | 	struct snd_soc_platform_driver dai; | 
 | 	dma_addr_t ssi_stx_phys; | 
 | 	dma_addr_t ssi_srx_phys; | 
 | 	unsigned int ssi_fifo_depth; | 
 | 	struct ccsr_dma_channel __iomem *channel; | 
 | 	unsigned int irq; | 
 | 	bool assigned; | 
 | 	char path[1]; | 
 | }; | 
 |  | 
 | /* | 
 |  * The number of DMA links to use.  Two is the bare minimum, but if you | 
 |  * have really small links you might need more. | 
 |  */ | 
 | #define NUM_DMA_LINKS   2 | 
 |  | 
 | /** fsl_dma_private: p-substream DMA data | 
 |  * | 
 |  * Each substream has a 1-to-1 association with a DMA channel. | 
 |  * | 
 |  * The link[] array is first because it needs to be aligned on a 32-byte | 
 |  * boundary, so putting it first will ensure alignment without padding the | 
 |  * structure. | 
 |  * | 
 |  * @link[]: array of link descriptors | 
 |  * @dma_channel: pointer to the DMA channel's registers | 
 |  * @irq: IRQ for this DMA channel | 
 |  * @substream: pointer to the substream object, needed by the ISR | 
 |  * @ssi_sxx_phys: bus address of the STX or SRX register to use | 
 |  * @ld_buf_phys: physical address of the LD buffer | 
 |  * @current_link: index into link[] of the link currently being processed | 
 |  * @dma_buf_phys: physical address of the DMA buffer | 
 |  * @dma_buf_next: physical address of the next period to process | 
 |  * @dma_buf_end: physical address of the byte after the end of the DMA | 
 |  * @buffer period_size: the size of a single period | 
 |  * @num_periods: the number of periods in the DMA buffer | 
 |  */ | 
 | struct fsl_dma_private { | 
 | 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; | 
 | 	struct ccsr_dma_channel __iomem *dma_channel; | 
 | 	unsigned int irq; | 
 | 	struct snd_pcm_substream *substream; | 
 | 	dma_addr_t ssi_sxx_phys; | 
 | 	unsigned int ssi_fifo_depth; | 
 | 	dma_addr_t ld_buf_phys; | 
 | 	unsigned int current_link; | 
 | 	dma_addr_t dma_buf_phys; | 
 | 	dma_addr_t dma_buf_next; | 
 | 	dma_addr_t dma_buf_end; | 
 | 	size_t period_size; | 
 | 	unsigned int num_periods; | 
 | }; | 
 |  | 
 | /** | 
 |  * fsl_dma_hardare: define characteristics of the PCM hardware. | 
 |  * | 
 |  * The PCM hardware is the Freescale DMA controller.  This structure defines | 
 |  * the capabilities of that hardware. | 
 |  * | 
 |  * Since the sampling rate and data format are not controlled by the DMA | 
 |  * controller, we specify no limits for those values.  The only exception is | 
 |  * period_bytes_min, which is set to a reasonably low value to prevent the | 
 |  * DMA controller from generating too many interrupts per second. | 
 |  * | 
 |  * Since each link descriptor has a 32-bit byte count field, we set | 
 |  * period_bytes_max to the largest 32-bit number.  We also have no maximum | 
 |  * number of periods. | 
 |  * | 
 |  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a | 
 |  * limitation in the SSI driver requires the sample rates for playback and | 
 |  * capture to be the same. | 
 |  */ | 
 | static const struct snd_pcm_hardware fsl_dma_hardware = { | 
 |  | 
 | 	.info   		= SNDRV_PCM_INFO_INTERLEAVED | | 
 | 				  SNDRV_PCM_INFO_MMAP | | 
 | 				  SNDRV_PCM_INFO_MMAP_VALID | | 
 | 				  SNDRV_PCM_INFO_JOINT_DUPLEX | | 
 | 				  SNDRV_PCM_INFO_PAUSE, | 
 | 	.formats		= FSLDMA_PCM_FORMATS, | 
 | 	.rates  		= FSLDMA_PCM_RATES, | 
 | 	.rate_min       	= 5512, | 
 | 	.rate_max       	= 192000, | 
 | 	.period_bytes_min       = 512,  	/* A reasonable limit */ | 
 | 	.period_bytes_max       = (u32) -1, | 
 | 	.periods_min    	= NUM_DMA_LINKS, | 
 | 	.periods_max    	= (unsigned int) -1, | 
 | 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */ | 
 | }; | 
 |  | 
 | /** | 
 |  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted | 
 |  * | 
 |  * This function should be called by the ISR whenever the DMA controller | 
 |  * halts data transfer. | 
 |  */ | 
 | static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	snd_pcm_stream_lock_irqsave(substream, flags); | 
 |  | 
 | 	if (snd_pcm_running(substream)) | 
 | 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); | 
 |  | 
 | 	snd_pcm_stream_unlock_irqrestore(substream, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_update_pointers - update LD pointers to point to the next period | 
 |  * | 
 |  * As each period is completed, this function changes the the link | 
 |  * descriptor pointers for that period to point to the next period. | 
 |  */ | 
 | static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) | 
 | { | 
 | 	struct fsl_dma_link_descriptor *link = | 
 | 		&dma_private->link[dma_private->current_link]; | 
 |  | 
 | 	/* Update our link descriptors to point to the next period. On a 36-bit | 
 | 	 * system, we also need to update the ESAD bits.  We also set (keep) the | 
 | 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping. | 
 | 	 */ | 
 | 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | 
 | 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next); | 
 | #ifdef CONFIG_PHYS_64BIT | 
 | 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | 
 | 			upper_32_bits(dma_private->dma_buf_next)); | 
 | #endif | 
 | 	} else { | 
 | 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); | 
 | #ifdef CONFIG_PHYS_64BIT | 
 | 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | 
 | 			upper_32_bits(dma_private->dma_buf_next)); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Update our variables for next time */ | 
 | 	dma_private->dma_buf_next += dma_private->period_size; | 
 |  | 
 | 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | 
 | 		dma_private->dma_buf_next = dma_private->dma_buf_phys; | 
 |  | 
 | 	if (++dma_private->current_link >= NUM_DMA_LINKS) | 
 | 		dma_private->current_link = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_isr: interrupt handler for the DMA controller | 
 |  * | 
 |  * @irq: IRQ of the DMA channel | 
 |  * @dev_id: pointer to the dma_private structure for this DMA channel | 
 |  */ | 
 | static irqreturn_t fsl_dma_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct fsl_dma_private *dma_private = dev_id; | 
 | 	struct snd_pcm_substream *substream = dma_private->substream; | 
 | 	struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
 | 	struct device *dev = rtd->platform->dev; | 
 | 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 | 	u32 sr, sr2 = 0; | 
 |  | 
 | 	/* We got an interrupt, so read the status register to see what we | 
 | 	   were interrupted for. | 
 | 	 */ | 
 | 	sr = in_be32(&dma_channel->sr); | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_TE) { | 
 | 		dev_err(dev, "dma transmit error\n"); | 
 | 		fsl_dma_abort_stream(substream); | 
 | 		sr2 |= CCSR_DMA_SR_TE; | 
 | 		ret = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_CH) | 
 | 		ret = IRQ_HANDLED; | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_PE) { | 
 | 		dev_err(dev, "dma programming error\n"); | 
 | 		fsl_dma_abort_stream(substream); | 
 | 		sr2 |= CCSR_DMA_SR_PE; | 
 | 		ret = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_EOLNI) { | 
 | 		sr2 |= CCSR_DMA_SR_EOLNI; | 
 | 		ret = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_CB) | 
 | 		ret = IRQ_HANDLED; | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_EOSI) { | 
 | 		/* Tell ALSA we completed a period. */ | 
 | 		snd_pcm_period_elapsed(substream); | 
 |  | 
 | 		/* | 
 | 		 * Update our link descriptors to point to the next period. We | 
 | 		 * only need to do this if the number of periods is not equal to | 
 | 		 * the number of links. | 
 | 		 */ | 
 | 		if (dma_private->num_periods != NUM_DMA_LINKS) | 
 | 			fsl_dma_update_pointers(dma_private); | 
 |  | 
 | 		sr2 |= CCSR_DMA_SR_EOSI; | 
 | 		ret = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (sr & CCSR_DMA_SR_EOLSI) { | 
 | 		sr2 |= CCSR_DMA_SR_EOLSI; | 
 | 		ret = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	/* Clear the bits that we set */ | 
 | 	if (sr2) | 
 | 		out_be32(&dma_channel->sr, sr2); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_new: initialize this PCM driver. | 
 |  * | 
 |  * This function is called when the codec driver calls snd_soc_new_pcms(), | 
 |  * once for each .dai_link in the machine driver's snd_soc_card | 
 |  * structure. | 
 |  * | 
 |  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which | 
 |  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM | 
 |  * is specified. Therefore, any DMA buffers we allocate will always be in low | 
 |  * memory, but we support for 36-bit physical addresses anyway. | 
 |  * | 
 |  * Regardless of where the memory is actually allocated, since the device can | 
 |  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. | 
 |  */ | 
 | static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) | 
 | { | 
 | 	struct snd_card *card = rtd->card->snd_card; | 
 | 	struct snd_soc_dai *dai = rtd->cpu_dai; | 
 | 	struct snd_pcm *pcm = rtd->pcm; | 
 | 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36); | 
 | 	int ret; | 
 |  | 
 | 	if (!card->dev->dma_mask) | 
 | 		card->dev->dma_mask = &fsl_dma_dmamask; | 
 |  | 
 | 	if (!card->dev->coherent_dma_mask) | 
 | 		card->dev->coherent_dma_mask = fsl_dma_dmamask; | 
 |  | 
 | 	/* Some codecs have separate DAIs for playback and capture, so we | 
 | 	 * should allocate a DMA buffer only for the streams that are valid. | 
 | 	 */ | 
 |  | 
 | 	if (pcm->streams[0].substream) { | 
 | 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, | 
 | 			fsl_dma_hardware.buffer_bytes_max, | 
 | 			&pcm->streams[0].substream->dma_buffer); | 
 | 		if (ret) { | 
 | 			dev_err(card->dev, "can't alloc playback dma buffer\n"); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pcm->streams[1].substream) { | 
 | 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, | 
 | 			fsl_dma_hardware.buffer_bytes_max, | 
 | 			&pcm->streams[1].substream->dma_buffer); | 
 | 		if (ret) { | 
 | 			dev_err(card->dev, "can't alloc capture dma buffer\n"); | 
 | 			snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_open: open a new substream. | 
 |  * | 
 |  * Each substream has its own DMA buffer. | 
 |  * | 
 |  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link | 
 |  * descriptors that ping-pong from one period to the next.  For example, if | 
 |  * there are six periods and two link descriptors, this is how they look | 
 |  * before playback starts: | 
 |  * | 
 |  *      	   The last link descriptor | 
 |  *   ____________  points back to the first | 
 |  *  |   	 | | 
 |  *  V   	 | | 
 |  *  ___    ___   | | 
 |  * |   |->|   |->| | 
 |  * |___|  |___| | 
 |  *   |      | | 
 |  *   |      | | 
 |  *   V      V | 
 |  *  _________________________________________ | 
 |  * |      |      |      |      |      |      |  The DMA buffer is | 
 |  * |      |      |      |      |      |      |    divided into 6 parts | 
 |  * |______|______|______|______|______|______| | 
 |  * | 
 |  * and here's how they look after the first period is finished playing: | 
 |  * | 
 |  *   ____________ | 
 |  *  |   	 | | 
 |  *  V   	 | | 
 |  *  ___    ___   | | 
 |  * |   |->|   |->| | 
 |  * |___|  |___| | 
 |  *   |      | | 
 |  *   |______________ | 
 |  *          |       | | 
 |  *          V       V | 
 |  *  _________________________________________ | 
 |  * |      |      |      |      |      |      | | 
 |  * |      |      |      |      |      |      | | 
 |  * |______|______|______|______|______|______| | 
 |  * | 
 |  * The first link descriptor now points to the third period.  The DMA | 
 |  * controller is currently playing the second period.  When it finishes, it | 
 |  * will jump back to the first descriptor and play the third period. | 
 |  * | 
 |  * There are four reasons we do this: | 
 |  * | 
 |  * 1. The only way to get the DMA controller to automatically restart the | 
 |  *    transfer when it gets to the end of the buffer is to use chaining | 
 |  *    mode.  Basic direct mode doesn't offer that feature. | 
 |  * 2. We need to receive an interrupt at the end of every period.  The DMA | 
 |  *    controller can generate an interrupt at the end of every link transfer | 
 |  *    (aka segment).  Making each period into a DMA segment will give us the | 
 |  *    interrupts we need. | 
 |  * 3. By creating only two link descriptors, regardless of the number of | 
 |  *    periods, we do not need to reallocate the link descriptors if the | 
 |  *    number of periods changes. | 
 |  * 4. All of the audio data is still stored in a single, contiguous DMA | 
 |  *    buffer, which is what ALSA expects.  We're just dividing it into | 
 |  *    contiguous parts, and creating a link descriptor for each one. | 
 |  */ | 
 | static int fsl_dma_open(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
 | 	struct device *dev = rtd->platform->dev; | 
 | 	struct dma_object *dma = | 
 | 		container_of(rtd->platform->driver, struct dma_object, dai); | 
 | 	struct fsl_dma_private *dma_private; | 
 | 	struct ccsr_dma_channel __iomem *dma_channel; | 
 | 	dma_addr_t ld_buf_phys; | 
 | 	u64 temp_link;  	/* Pointer to next link descriptor */ | 
 | 	u32 mr; | 
 | 	unsigned int channel; | 
 | 	int ret = 0; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Reject any DMA buffer whose size is not a multiple of the period | 
 | 	 * size.  We need to make sure that the DMA buffer can be evenly divided | 
 | 	 * into periods. | 
 | 	 */ | 
 | 	ret = snd_pcm_hw_constraint_integer(runtime, | 
 | 		SNDRV_PCM_HW_PARAM_PERIODS); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "invalid buffer size\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; | 
 |  | 
 | 	if (dma->assigned) { | 
 | 		dev_err(dev, "dma channel already assigned\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), | 
 | 					 &ld_buf_phys, GFP_KERNEL); | 
 | 	if (!dma_private) { | 
 | 		dev_err(dev, "can't allocate dma private data\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | 
 | 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys; | 
 | 	else | 
 | 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys; | 
 |  | 
 | 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; | 
 | 	dma_private->dma_channel = dma->channel; | 
 | 	dma_private->irq = dma->irq; | 
 | 	dma_private->substream = substream; | 
 | 	dma_private->ld_buf_phys = ld_buf_phys; | 
 | 	dma_private->dma_buf_phys = substream->dma_buffer.addr; | 
 |  | 
 | 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", | 
 | 			  dma_private); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", | 
 | 			dma_private->irq, ret); | 
 | 		dma_free_coherent(dev, sizeof(struct fsl_dma_private), | 
 | 			dma_private, dma_private->ld_buf_phys); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dma->assigned = 1; | 
 |  | 
 | 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); | 
 | 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); | 
 | 	runtime->private_data = dma_private; | 
 |  | 
 | 	/* Program the fixed DMA controller parameters */ | 
 |  | 
 | 	dma_channel = dma_private->dma_channel; | 
 |  | 
 | 	temp_link = dma_private->ld_buf_phys + | 
 | 		sizeof(struct fsl_dma_link_descriptor); | 
 |  | 
 | 	for (i = 0; i < NUM_DMA_LINKS; i++) { | 
 | 		dma_private->link[i].next = cpu_to_be64(temp_link); | 
 |  | 
 | 		temp_link += sizeof(struct fsl_dma_link_descriptor); | 
 | 	} | 
 | 	/* The last link descriptor points to the first */ | 
 | 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); | 
 |  | 
 | 	/* Tell the DMA controller where the first link descriptor is */ | 
 | 	out_be32(&dma_channel->clndar, | 
 | 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); | 
 | 	out_be32(&dma_channel->eclndar, | 
 | 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); | 
 |  | 
 | 	/* The manual says the BCR must be clear before enabling EMP */ | 
 | 	out_be32(&dma_channel->bcr, 0); | 
 |  | 
 | 	/* | 
 | 	 * Program the mode register for interrupts, external master control, | 
 | 	 * and source/destination hold.  Also clear the Channel Abort bit. | 
 | 	 */ | 
 | 	mr = in_be32(&dma_channel->mr) & | 
 | 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); | 
 |  | 
 | 	/* | 
 | 	 * We want External Master Start and External Master Pause enabled, | 
 | 	 * because the SSI is controlling the DMA controller.  We want the DMA | 
 | 	 * controller to be set up in advance, and then we signal only the SSI | 
 | 	 * to start transferring. | 
 | 	 * | 
 | 	 * We want End-Of-Segment Interrupts enabled, because this will generate | 
 | 	 * an interrupt at the end of each segment (each link descriptor | 
 | 	 * represents one segment).  Each DMA segment is the same thing as an | 
 | 	 * ALSA period, so this is how we get an interrupt at the end of every | 
 | 	 * period. | 
 | 	 * | 
 | 	 * We want Error Interrupt enabled, so that we can get an error if | 
 | 	 * the DMA controller is mis-programmed somehow. | 
 | 	 */ | 
 | 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | | 
 | 		CCSR_DMA_MR_EMS_EN; | 
 |  | 
 | 	/* For playback, we want the destination address to be held.  For | 
 | 	   capture, set the source address to be held. */ | 
 | 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? | 
 | 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; | 
 |  | 
 | 	out_be32(&dma_channel->mr, mr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_hw_params: continue initializing the DMA links | 
 |  * | 
 |  * This function obtains hardware parameters about the opened stream and | 
 |  * programs the DMA controller accordingly. | 
 |  * | 
 |  * One drawback of big-endian is that when copying integers of different | 
 |  * sizes to a fixed-sized register, the address to which the integer must be | 
 |  * copied is dependent on the size of the integer. | 
 |  * | 
 |  * For example, if P is the address of a 32-bit register, and X is a 32-bit | 
 |  * integer, then X should be copied to address P.  However, if X is a 16-bit | 
 |  * integer, then it should be copied to P+2.  If X is an 8-bit register, | 
 |  * then it should be copied to P+3. | 
 |  * | 
 |  * So for playback of 8-bit samples, the DMA controller must transfer single | 
 |  * bytes from the DMA buffer to the last byte of the STX0 register, i.e. | 
 |  * offset by 3 bytes. For 16-bit samples, the offset is two bytes. | 
 |  * | 
 |  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller | 
 |  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, | 
 |  * and 8 bytes at a time).  So we do not support packed 24-bit samples. | 
 |  * 24-bit data must be padded to 32 bits. | 
 |  */ | 
 | static int fsl_dma_hw_params(struct snd_pcm_substream *substream, | 
 | 	struct snd_pcm_hw_params *hw_params) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct fsl_dma_private *dma_private = runtime->private_data; | 
 | 	struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
 | 	struct device *dev = rtd->platform->dev; | 
 |  | 
 | 	/* Number of bits per sample */ | 
 | 	unsigned int sample_bits = | 
 | 		snd_pcm_format_physical_width(params_format(hw_params)); | 
 |  | 
 | 	/* Number of bytes per frame */ | 
 | 	unsigned int sample_bytes = sample_bits / 8; | 
 |  | 
 | 	/* Bus address of SSI STX register */ | 
 | 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; | 
 |  | 
 | 	/* Size of the DMA buffer, in bytes */ | 
 | 	size_t buffer_size = params_buffer_bytes(hw_params); | 
 |  | 
 | 	/* Number of bytes per period */ | 
 | 	size_t period_size = params_period_bytes(hw_params); | 
 |  | 
 | 	/* Pointer to next period */ | 
 | 	dma_addr_t temp_addr = substream->dma_buffer.addr; | 
 |  | 
 | 	/* Pointer to DMA controller */ | 
 | 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | 
 |  | 
 | 	u32 mr; /* DMA Mode Register */ | 
 |  | 
 | 	unsigned int i; | 
 |  | 
 | 	/* Initialize our DMA tracking variables */ | 
 | 	dma_private->period_size = period_size; | 
 | 	dma_private->num_periods = params_periods(hw_params); | 
 | 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; | 
 | 	dma_private->dma_buf_next = dma_private->dma_buf_phys + | 
 | 		(NUM_DMA_LINKS * period_size); | 
 |  | 
 | 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | 
 | 		/* This happens if the number of periods == NUM_DMA_LINKS */ | 
 | 		dma_private->dma_buf_next = dma_private->dma_buf_phys; | 
 |  | 
 | 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | | 
 | 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); | 
 |  | 
 | 	/* Due to a quirk of the SSI's STX register, the target address | 
 | 	 * for the DMA operations depends on the sample size.  So we calculate | 
 | 	 * that offset here.  While we're at it, also tell the DMA controller | 
 | 	 * how much data to transfer per sample. | 
 | 	 */ | 
 | 	switch (sample_bits) { | 
 | 	case 8: | 
 | 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; | 
 | 		ssi_sxx_phys += 3; | 
 | 		break; | 
 | 	case 16: | 
 | 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; | 
 | 		ssi_sxx_phys += 2; | 
 | 		break; | 
 | 	case 32: | 
 | 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; | 
 | 		break; | 
 | 	default: | 
 | 		/* We should never get here */ | 
 | 		dev_err(dev, "unsupported sample size %u\n", sample_bits); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * BWC determines how many bytes are sent/received before the DMA | 
 | 	 * controller checks the SSI to see if it needs to stop. BWC should | 
 | 	 * always be a multiple of the frame size, so that we always transmit | 
 | 	 * whole frames.  Each frame occupies two slots in the FIFO.  The | 
 | 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two | 
 | 	 * (MR[BWC] can only represent even powers of two). | 
 | 	 * | 
 | 	 * To simplify the process, we set BWC to the largest value that is | 
 | 	 * less than or equal to the FIFO watermark.  For playback, this ensures | 
 | 	 * that we transfer the maximum amount without overrunning the FIFO. | 
 | 	 * For capture, this ensures that we transfer the maximum amount without | 
 | 	 * underrunning the FIFO. | 
 | 	 * | 
 | 	 * f = SSI FIFO depth | 
 | 	 * w = SSI watermark value (which equals f - 2) | 
 | 	 * b = DMA bandwidth count (in bytes) | 
 | 	 * s = sample size (in bytes, which equals frame_size * 2) | 
 | 	 * | 
 | 	 * For playback, we never transmit more than the transmit FIFO | 
 | 	 * watermark, otherwise we might write more data than the FIFO can hold. | 
 | 	 * The watermark is equal to the FIFO depth minus two. | 
 | 	 * | 
 | 	 * For capture, two equations must hold: | 
 | 	 *	w > f - (b / s) | 
 | 	 *	w >= b / s | 
 | 	 * | 
 | 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set | 
 | 	 * b = s * w, which is equal to | 
 | 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes. | 
 | 	 */ | 
 | 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); | 
 |  | 
 | 	out_be32(&dma_channel->mr, mr); | 
 |  | 
 | 	for (i = 0; i < NUM_DMA_LINKS; i++) { | 
 | 		struct fsl_dma_link_descriptor *link = &dma_private->link[i]; | 
 |  | 
 | 		link->count = cpu_to_be32(period_size); | 
 |  | 
 | 		/* The snoop bit tells the DMA controller whether it should tell | 
 | 		 * the ECM to snoop during a read or write to an address. For | 
 | 		 * audio, we use DMA to transfer data between memory and an I/O | 
 | 		 * device (the SSI's STX0 or SRX0 register). Snooping is only | 
 | 		 * needed if there is a cache, so we need to snoop memory | 
 | 		 * addresses only.  For playback, that means we snoop the source | 
 | 		 * but not the destination.  For capture, we snoop the | 
 | 		 * destination but not the source. | 
 | 		 * | 
 | 		 * Note that failing to snoop properly is unlikely to cause | 
 | 		 * cache incoherency if the period size is larger than the | 
 | 		 * size of L1 cache.  This is because filling in one period will | 
 | 		 * flush out the data for the previous period.  So if you | 
 | 		 * increased period_bytes_min to a large enough size, you might | 
 | 		 * get more performance by not snooping, and you'll still be | 
 | 		 * okay.  You'll need to update fsl_dma_update_pointers() also. | 
 | 		 */ | 
 | 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | 
 | 			link->source_addr = cpu_to_be32(temp_addr); | 
 | 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | 
 | 				upper_32_bits(temp_addr)); | 
 |  | 
 | 			link->dest_addr = cpu_to_be32(ssi_sxx_phys); | 
 | 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | | 
 | 				upper_32_bits(ssi_sxx_phys)); | 
 | 		} else { | 
 | 			link->source_addr = cpu_to_be32(ssi_sxx_phys); | 
 | 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | | 
 | 				upper_32_bits(ssi_sxx_phys)); | 
 |  | 
 | 			link->dest_addr = cpu_to_be32(temp_addr); | 
 | 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | 
 | 				upper_32_bits(temp_addr)); | 
 | 		} | 
 |  | 
 | 		temp_addr += period_size; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_pointer: determine the current position of the DMA transfer | 
 |  * | 
 |  * This function is called by ALSA when ALSA wants to know where in the | 
 |  * stream buffer the hardware currently is. | 
 |  * | 
 |  * For playback, the SAR register contains the physical address of the most | 
 |  * recent DMA transfer.  For capture, the value is in the DAR register. | 
 |  * | 
 |  * The base address of the buffer is stored in the source_addr field of the | 
 |  * first link descriptor. | 
 |  */ | 
 | static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct fsl_dma_private *dma_private = runtime->private_data; | 
 | 	struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
 | 	struct device *dev = rtd->platform->dev; | 
 | 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; | 
 | 	dma_addr_t position; | 
 | 	snd_pcm_uframes_t frames; | 
 |  | 
 | 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we | 
 | 	 * only have 32-bit DMA addresses.  This function is typically called | 
 | 	 * in interrupt context, so we need to optimize it. | 
 | 	 */ | 
 | 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | 
 | 		position = in_be32(&dma_channel->sar); | 
 | #ifdef CONFIG_PHYS_64BIT | 
 | 		position |= (u64)(in_be32(&dma_channel->satr) & | 
 | 				  CCSR_DMA_ATR_ESAD_MASK) << 32; | 
 | #endif | 
 | 	} else { | 
 | 		position = in_be32(&dma_channel->dar); | 
 | #ifdef CONFIG_PHYS_64BIT | 
 | 		position |= (u64)(in_be32(&dma_channel->datr) & | 
 | 				  CCSR_DMA_ATR_ESAD_MASK) << 32; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When capture is started, the SSI immediately starts to fill its FIFO. | 
 | 	 * This means that the DMA controller is not started until the FIFO is | 
 | 	 * full.  However, ALSA calls this function before that happens, when | 
 | 	 * MR.DAR is still zero.  In this case, just return zero to indicate | 
 | 	 * that nothing has been received yet. | 
 | 	 */ | 
 | 	if (!position) | 
 | 		return 0; | 
 |  | 
 | 	if ((position < dma_private->dma_buf_phys) || | 
 | 	    (position > dma_private->dma_buf_end)) { | 
 | 		dev_err(dev, "dma pointer is out of range, halting stream\n"); | 
 | 		return SNDRV_PCM_POS_XRUN; | 
 | 	} | 
 |  | 
 | 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); | 
 |  | 
 | 	/* | 
 | 	 * If the current address is just past the end of the buffer, wrap it | 
 | 	 * around. | 
 | 	 */ | 
 | 	if (frames == runtime->buffer_size) | 
 | 		frames = 0; | 
 |  | 
 | 	return frames; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() | 
 |  * | 
 |  * Release the resources allocated in fsl_dma_hw_params() and de-program the | 
 |  * registers. | 
 |  * | 
 |  * This function can be called multiple times. | 
 |  */ | 
 | static int fsl_dma_hw_free(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct fsl_dma_private *dma_private = runtime->private_data; | 
 |  | 
 | 	if (dma_private) { | 
 | 		struct ccsr_dma_channel __iomem *dma_channel; | 
 |  | 
 | 		dma_channel = dma_private->dma_channel; | 
 |  | 
 | 		/* Stop the DMA */ | 
 | 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); | 
 | 		out_be32(&dma_channel->mr, 0); | 
 |  | 
 | 		/* Reset all the other registers */ | 
 | 		out_be32(&dma_channel->sr, -1); | 
 | 		out_be32(&dma_channel->clndar, 0); | 
 | 		out_be32(&dma_channel->eclndar, 0); | 
 | 		out_be32(&dma_channel->satr, 0); | 
 | 		out_be32(&dma_channel->sar, 0); | 
 | 		out_be32(&dma_channel->datr, 0); | 
 | 		out_be32(&dma_channel->dar, 0); | 
 | 		out_be32(&dma_channel->bcr, 0); | 
 | 		out_be32(&dma_channel->nlndar, 0); | 
 | 		out_be32(&dma_channel->enlndar, 0); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fsl_dma_close: close the stream. | 
 |  */ | 
 | static int fsl_dma_close(struct snd_pcm_substream *substream) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 	struct fsl_dma_private *dma_private = runtime->private_data; | 
 | 	struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
 | 	struct device *dev = rtd->platform->dev; | 
 | 	struct dma_object *dma = | 
 | 		container_of(rtd->platform->driver, struct dma_object, dai); | 
 |  | 
 | 	if (dma_private) { | 
 | 		if (dma_private->irq) | 
 | 			free_irq(dma_private->irq, dma_private); | 
 |  | 
 | 		if (dma_private->ld_buf_phys) { | 
 | 			dma_unmap_single(dev, dma_private->ld_buf_phys, | 
 | 					 sizeof(dma_private->link), | 
 | 					 DMA_TO_DEVICE); | 
 | 		} | 
 |  | 
 | 		/* Deallocate the fsl_dma_private structure */ | 
 | 		dma_free_coherent(dev, sizeof(struct fsl_dma_private), | 
 | 				  dma_private, dma_private->ld_buf_phys); | 
 | 		substream->runtime->private_data = NULL; | 
 | 	} | 
 |  | 
 | 	dma->assigned = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove this PCM driver. | 
 |  */ | 
 | static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) | 
 | { | 
 | 	struct snd_pcm_substream *substream; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { | 
 | 		substream = pcm->streams[i].substream; | 
 | 		if (substream) { | 
 | 			snd_dma_free_pages(&substream->dma_buffer); | 
 | 			substream->dma_buffer.area = NULL; | 
 | 			substream->dma_buffer.addr = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * find_ssi_node -- returns the SSI node that points to his DMA channel node | 
 |  * | 
 |  * Although this DMA driver attempts to operate independently of the other | 
 |  * devices, it still needs to determine some information about the SSI device | 
 |  * that it's working with.  Unfortunately, the device tree does not contain | 
 |  * a pointer from the DMA channel node to the SSI node -- the pointer goes the | 
 |  * other way.  So we need to scan the device tree for SSI nodes until we find | 
 |  * the one that points to the given DMA channel node.  It's ugly, but at least | 
 |  * it's contained in this one function. | 
 |  */ | 
 | static struct device_node *find_ssi_node(struct device_node *dma_channel_np) | 
 | { | 
 | 	struct device_node *ssi_np, *np; | 
 |  | 
 | 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { | 
 | 		/* Check each DMA phandle to see if it points to us.  We | 
 | 		 * assume that device_node pointers are a valid comparison. | 
 | 		 */ | 
 | 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); | 
 | 		of_node_put(np); | 
 | 		if (np == dma_channel_np) | 
 | 			return ssi_np; | 
 |  | 
 | 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); | 
 | 		of_node_put(np); | 
 | 		if (np == dma_channel_np) | 
 | 			return ssi_np; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct snd_pcm_ops fsl_dma_ops = { | 
 | 	.open   	= fsl_dma_open, | 
 | 	.close  	= fsl_dma_close, | 
 | 	.ioctl  	= snd_pcm_lib_ioctl, | 
 | 	.hw_params      = fsl_dma_hw_params, | 
 | 	.hw_free	= fsl_dma_hw_free, | 
 | 	.pointer	= fsl_dma_pointer, | 
 | }; | 
 |  | 
 | static int __devinit fsl_soc_dma_probe(struct platform_device *pdev) | 
 |  { | 
 | 	struct dma_object *dma; | 
 | 	struct device_node *np = pdev->dev.of_node; | 
 | 	struct device_node *ssi_np; | 
 | 	struct resource res; | 
 | 	const uint32_t *iprop; | 
 | 	int ret; | 
 |  | 
 | 	/* Find the SSI node that points to us. */ | 
 | 	ssi_np = find_ssi_node(np); | 
 | 	if (!ssi_np) { | 
 | 		dev_err(&pdev->dev, "cannot find parent SSI node\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ret = of_address_to_resource(ssi_np, 0, &res); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "could not determine resources for %s\n", | 
 | 			ssi_np->full_name); | 
 | 		of_node_put(ssi_np); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); | 
 | 	if (!dma) { | 
 | 		dev_err(&pdev->dev, "could not allocate dma object\n"); | 
 | 		of_node_put(ssi_np); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	strcpy(dma->path, np->full_name); | 
 | 	dma->dai.ops = &fsl_dma_ops; | 
 | 	dma->dai.pcm_new = fsl_dma_new; | 
 | 	dma->dai.pcm_free = fsl_dma_free_dma_buffers; | 
 |  | 
 | 	/* Store the SSI-specific information that we need */ | 
 | 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); | 
 | 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); | 
 |  | 
 | 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); | 
 | 	if (iprop) | 
 | 		dma->ssi_fifo_depth = be32_to_cpup(iprop); | 
 | 	else | 
 |                 /* Older 8610 DTs didn't have the fifo-depth property */ | 
 | 		dma->ssi_fifo_depth = 8; | 
 |  | 
 | 	of_node_put(ssi_np); | 
 |  | 
 | 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "could not register platform\n"); | 
 | 		kfree(dma); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	dma->channel = of_iomap(np, 0); | 
 | 	dma->irq = irq_of_parse_and_map(np, 0); | 
 |  | 
 | 	dev_set_drvdata(&pdev->dev, dma); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __devexit fsl_soc_dma_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct dma_object *dma = dev_get_drvdata(&pdev->dev); | 
 |  | 
 | 	snd_soc_unregister_platform(&pdev->dev); | 
 | 	iounmap(dma->channel); | 
 | 	irq_dispose_mapping(dma->irq); | 
 | 	kfree(dma); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct of_device_id fsl_soc_dma_ids[] = { | 
 | 	{ .compatible = "fsl,ssi-dma-channel", }, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); | 
 |  | 
 | static struct platform_driver fsl_soc_dma_driver = { | 
 | 	.driver = { | 
 | 		.name = "fsl-pcm-audio", | 
 | 		.owner = THIS_MODULE, | 
 | 		.of_match_table = fsl_soc_dma_ids, | 
 | 	}, | 
 | 	.probe = fsl_soc_dma_probe, | 
 | 	.remove = __devexit_p(fsl_soc_dma_remove), | 
 | }; | 
 |  | 
 | static int __init fsl_soc_dma_init(void) | 
 | { | 
 | 	pr_info("Freescale Elo DMA ASoC PCM Driver\n"); | 
 |  | 
 | 	return platform_driver_register(&fsl_soc_dma_driver); | 
 | } | 
 |  | 
 | static void __exit fsl_soc_dma_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&fsl_soc_dma_driver); | 
 | } | 
 |  | 
 | module_init(fsl_soc_dma_init); | 
 | module_exit(fsl_soc_dma_exit); | 
 |  | 
 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | 
 | MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); | 
 | MODULE_LICENSE("GPL v2"); |