| /* |
| $Id: fore200e.c,v 1.5 2000/04/14 10:10:34 davem Exp $ |
| |
| A FORE Systems 200E-series driver for ATM on Linux. |
| Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. |
| |
| Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). |
| |
| This driver simultaneously supports PCA-200E and SBA-200E adapters |
| on i386, alpha (untested), powerpc, sparc and sparc64 architectures. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/capability.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/atmdev.h> |
| #include <linux/sonet.h> |
| #include <linux/atm_suni.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/delay.h> |
| #include <asm/io.h> |
| #include <asm/string.h> |
| #include <asm/page.h> |
| #include <asm/irq.h> |
| #include <asm/dma.h> |
| #include <asm/byteorder.h> |
| #include <asm/uaccess.h> |
| #include <asm/atomic.h> |
| |
| #ifdef CONFIG_ATM_FORE200E_SBA |
| #include <asm/idprom.h> |
| #include <asm/sbus.h> |
| #include <asm/openprom.h> |
| #include <asm/oplib.h> |
| #include <asm/pgtable.h> |
| #endif |
| |
| #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ |
| #define FORE200E_USE_TASKLET |
| #endif |
| |
| #if 0 /* enable the debugging code of the buffer supply queues */ |
| #define FORE200E_BSQ_DEBUG |
| #endif |
| |
| #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ |
| #define FORE200E_52BYTE_AAL0_SDU |
| #endif |
| |
| #include "fore200e.h" |
| #include "suni.h" |
| |
| #define FORE200E_VERSION "0.3e" |
| |
| #define FORE200E "fore200e: " |
| |
| #if 0 /* override .config */ |
| #define CONFIG_ATM_FORE200E_DEBUG 1 |
| #endif |
| #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
| #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ |
| printk(FORE200E format, ##args); } while (0) |
| #else |
| #define DPRINTK(level, format, args...) do {} while (0) |
| #endif |
| |
| |
| #define FORE200E_ALIGN(addr, alignment) \ |
| ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) |
| |
| #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) |
| |
| #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) |
| |
| #define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo)) |
| |
| #if 1 |
| #define ASSERT(expr) if (!(expr)) { \ |
| printk(FORE200E "assertion failed! %s[%d]: %s\n", \ |
| __FUNCTION__, __LINE__, #expr); \ |
| panic(FORE200E "%s", __FUNCTION__); \ |
| } |
| #else |
| #define ASSERT(expr) do {} while (0) |
| #endif |
| |
| |
| static const struct atmdev_ops fore200e_ops; |
| static const struct fore200e_bus fore200e_bus[]; |
| |
| static LIST_HEAD(fore200e_boards); |
| |
| |
| MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); |
| MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); |
| MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); |
| |
| |
| static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
| { BUFFER_S1_NBR, BUFFER_L1_NBR }, |
| { BUFFER_S2_NBR, BUFFER_L2_NBR } |
| }; |
| |
| static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
| { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, |
| { BUFFER_S2_SIZE, BUFFER_L2_SIZE } |
| }; |
| |
| |
| #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
| static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; |
| #endif |
| |
| |
| #if 0 /* currently unused */ |
| static int |
| fore200e_fore2atm_aal(enum fore200e_aal aal) |
| { |
| switch(aal) { |
| case FORE200E_AAL0: return ATM_AAL0; |
| case FORE200E_AAL34: return ATM_AAL34; |
| case FORE200E_AAL5: return ATM_AAL5; |
| } |
| |
| return -EINVAL; |
| } |
| #endif |
| |
| |
| static enum fore200e_aal |
| fore200e_atm2fore_aal(int aal) |
| { |
| switch(aal) { |
| case ATM_AAL0: return FORE200E_AAL0; |
| case ATM_AAL34: return FORE200E_AAL34; |
| case ATM_AAL1: |
| case ATM_AAL2: |
| case ATM_AAL5: return FORE200E_AAL5; |
| } |
| |
| return -EINVAL; |
| } |
| |
| |
| static char* |
| fore200e_irq_itoa(int irq) |
| { |
| #if defined(__sparc_v9__) |
| return __irq_itoa(irq); |
| #else |
| static char str[8]; |
| sprintf(str, "%d", irq); |
| return str; |
| #endif |
| } |
| |
| |
| static void* |
| fore200e_kmalloc(int size, unsigned int __nocast flags) |
| { |
| void *chunk = kzalloc(size, flags); |
| |
| if (!chunk) |
| printk(FORE200E "kmalloc() failed, requested size = %d, flags = 0x%x\n", size, flags); |
| |
| return chunk; |
| } |
| |
| |
| static void |
| fore200e_kfree(void* chunk) |
| { |
| kfree(chunk); |
| } |
| |
| |
| /* allocate and align a chunk of memory intended to hold the data behing exchanged |
| between the driver and the adapter (using streaming DVMA) */ |
| |
| static int |
| fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) |
| { |
| unsigned long offset = 0; |
| |
| if (alignment <= sizeof(int)) |
| alignment = 0; |
| |
| chunk->alloc_size = size + alignment; |
| chunk->align_size = size; |
| chunk->direction = direction; |
| |
| chunk->alloc_addr = fore200e_kmalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA); |
| if (chunk->alloc_addr == NULL) |
| return -ENOMEM; |
| |
| if (alignment > 0) |
| offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); |
| |
| chunk->align_addr = chunk->alloc_addr + offset; |
| |
| chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction); |
| |
| return 0; |
| } |
| |
| |
| /* free a chunk of memory */ |
| |
| static void |
| fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| { |
| fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction); |
| |
| fore200e_kfree(chunk->alloc_addr); |
| } |
| |
| |
| static void |
| fore200e_spin(int msecs) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| while (time_before(jiffies, timeout)); |
| } |
| |
| |
| static int |
| fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| int ok; |
| |
| mb(); |
| do { |
| if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) |
| break; |
| |
| } while (time_before(jiffies, timeout)); |
| |
| #if 1 |
| if (!ok) { |
| printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", |
| *addr, val); |
| } |
| #endif |
| |
| return ok; |
| } |
| |
| |
| static int |
| fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| int ok; |
| |
| do { |
| if ((ok = (fore200e->bus->read(addr) == val))) |
| break; |
| |
| } while (time_before(jiffies, timeout)); |
| |
| #if 1 |
| if (!ok) { |
| printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", |
| fore200e->bus->read(addr), val); |
| } |
| #endif |
| |
| return ok; |
| } |
| |
| |
| static void |
| fore200e_free_rx_buf(struct fore200e* fore200e) |
| { |
| int scheme, magn, nbr; |
| struct buffer* buffer; |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| |
| if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { |
| |
| for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { |
| |
| struct chunk* data = &buffer[ nbr ].data; |
| |
| if (data->alloc_addr != NULL) |
| fore200e_chunk_free(fore200e, data); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void |
| fore200e_uninit_bs_queue(struct fore200e* fore200e) |
| { |
| int scheme, magn; |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| |
| struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; |
| struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; |
| |
| if (status->alloc_addr) |
| fore200e->bus->dma_chunk_free(fore200e, status); |
| |
| if (rbd_block->alloc_addr) |
| fore200e->bus->dma_chunk_free(fore200e, rbd_block); |
| } |
| } |
| } |
| |
| |
| static int |
| fore200e_reset(struct fore200e* fore200e, int diag) |
| { |
| int ok; |
| |
| fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; |
| |
| fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); |
| |
| fore200e->bus->reset(fore200e); |
| |
| if (diag) { |
| ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); |
| if (ok == 0) { |
| |
| printk(FORE200E "device %s self-test failed\n", fore200e->name); |
| return -ENODEV; |
| } |
| |
| printk(FORE200E "device %s self-test passed\n", fore200e->name); |
| |
| fore200e->state = FORE200E_STATE_RESET; |
| } |
| |
| return 0; |
| } |
| |
| |
| static void |
| fore200e_shutdown(struct fore200e* fore200e) |
| { |
| printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", |
| fore200e->name, fore200e->phys_base, |
| fore200e_irq_itoa(fore200e->irq)); |
| |
| if (fore200e->state > FORE200E_STATE_RESET) { |
| /* first, reset the board to prevent further interrupts or data transfers */ |
| fore200e_reset(fore200e, 0); |
| } |
| |
| /* then, release all allocated resources */ |
| switch(fore200e->state) { |
| |
| case FORE200E_STATE_COMPLETE: |
| kfree(fore200e->stats); |
| |
| case FORE200E_STATE_IRQ: |
| free_irq(fore200e->irq, fore200e->atm_dev); |
| |
| case FORE200E_STATE_ALLOC_BUF: |
| fore200e_free_rx_buf(fore200e); |
| |
| case FORE200E_STATE_INIT_BSQ: |
| fore200e_uninit_bs_queue(fore200e); |
| |
| case FORE200E_STATE_INIT_RXQ: |
| fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status); |
| fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); |
| |
| case FORE200E_STATE_INIT_TXQ: |
| fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status); |
| fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd); |
| |
| case FORE200E_STATE_INIT_CMDQ: |
| fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status); |
| |
| case FORE200E_STATE_INITIALIZE: |
| /* nothing to do for that state */ |
| |
| case FORE200E_STATE_START_FW: |
| /* nothing to do for that state */ |
| |
| case FORE200E_STATE_LOAD_FW: |
| /* nothing to do for that state */ |
| |
| case FORE200E_STATE_RESET: |
| /* nothing to do for that state */ |
| |
| case FORE200E_STATE_MAP: |
| fore200e->bus->unmap(fore200e); |
| |
| case FORE200E_STATE_CONFIGURE: |
| /* nothing to do for that state */ |
| |
| case FORE200E_STATE_REGISTER: |
| /* XXX shouldn't we *start* by deregistering the device? */ |
| atm_dev_deregister(fore200e->atm_dev); |
| |
| case FORE200E_STATE_BLANK: |
| /* nothing to do for that state */ |
| break; |
| } |
| } |
| |
| |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| |
| static u32 fore200e_pca_read(volatile u32 __iomem *addr) |
| { |
| /* on big-endian hosts, the board is configured to convert |
| the endianess of slave RAM accesses */ |
| return le32_to_cpu(readl(addr)); |
| } |
| |
| |
| static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) |
| { |
| /* on big-endian hosts, the board is configured to convert |
| the endianess of slave RAM accesses */ |
| writel(cpu_to_le32(val), addr); |
| } |
| |
| |
| static u32 |
| fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) |
| { |
| u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction); |
| |
| DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n", |
| virt_addr, size, direction, dma_addr); |
| |
| return dma_addr; |
| } |
| |
| |
| static void |
| fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n", |
| dma_addr, size, direction); |
| |
| pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| |
| static void |
| fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| |
| pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| static void |
| fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| |
| pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| |
| /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism |
| (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ |
| |
| static int |
| fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, |
| int size, int nbr, int alignment) |
| { |
| /* returned chunks are page-aligned */ |
| chunk->alloc_size = size * nbr; |
| chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev, |
| chunk->alloc_size, |
| &chunk->dma_addr); |
| |
| if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
| return -ENOMEM; |
| |
| chunk->align_addr = chunk->alloc_addr; |
| |
| return 0; |
| } |
| |
| |
| /* free a DMA consistent chunk of memory */ |
| |
| static void |
| fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| { |
| pci_free_consistent((struct pci_dev*)fore200e->bus_dev, |
| chunk->alloc_size, |
| chunk->alloc_addr, |
| chunk->dma_addr); |
| } |
| |
| |
| static int |
| fore200e_pca_irq_check(struct fore200e* fore200e) |
| { |
| /* this is a 1 bit register */ |
| int irq_posted = readl(fore200e->regs.pca.psr); |
| |
| #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) |
| if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { |
| DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); |
| } |
| #endif |
| |
| return irq_posted; |
| } |
| |
| |
| static void |
| fore200e_pca_irq_ack(struct fore200e* fore200e) |
| { |
| writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); |
| } |
| |
| |
| static void |
| fore200e_pca_reset(struct fore200e* fore200e) |
| { |
| writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); |
| fore200e_spin(10); |
| writel(0, fore200e->regs.pca.hcr); |
| } |
| |
| |
| static int __init |
| fore200e_pca_map(struct fore200e* fore200e) |
| { |
| DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); |
| |
| fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); |
| |
| if (fore200e->virt_base == NULL) { |
| printk(FORE200E "can't map device %s\n", fore200e->name); |
| return -EFAULT; |
| } |
| |
| DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
| |
| /* gain access to the PCA specific registers */ |
| fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; |
| fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; |
| fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; |
| |
| fore200e->state = FORE200E_STATE_MAP; |
| return 0; |
| } |
| |
| |
| static void |
| fore200e_pca_unmap(struct fore200e* fore200e) |
| { |
| DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); |
| |
| if (fore200e->virt_base != NULL) |
| iounmap(fore200e->virt_base); |
| } |
| |
| |
| static int __init |
| fore200e_pca_configure(struct fore200e* fore200e) |
| { |
| struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
| u8 master_ctrl, latency; |
| |
| DPRINTK(2, "device %s being configured\n", fore200e->name); |
| |
| if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { |
| printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); |
| return -EIO; |
| } |
| |
| pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); |
| |
| master_ctrl = master_ctrl |
| #if defined(__BIG_ENDIAN) |
| /* request the PCA board to convert the endianess of slave RAM accesses */ |
| | PCA200E_CTRL_CONVERT_ENDIAN |
| #endif |
| #if 0 |
| | PCA200E_CTRL_DIS_CACHE_RD |
| | PCA200E_CTRL_DIS_WRT_INVAL |
| | PCA200E_CTRL_ENA_CONT_REQ_MODE |
| | PCA200E_CTRL_2_CACHE_WRT_INVAL |
| #endif |
| | PCA200E_CTRL_LARGE_PCI_BURSTS; |
| |
| pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); |
| |
| /* raise latency from 32 (default) to 192, as this seems to prevent NIC |
| lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. |
| this may impact the performances of other PCI devices on the same bus, though */ |
| latency = 192; |
| pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); |
| |
| fore200e->state = FORE200E_STATE_CONFIGURE; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| struct prom_opcode opcode; |
| int ok; |
| u32 prom_dma; |
| |
| FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| |
| opcode.opcode = OPCODE_GET_PROM; |
| opcode.pad = 0; |
| |
| prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE); |
| |
| fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); |
| |
| *entry->status = STATUS_PENDING; |
| |
| fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); |
| |
| ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| |
| *entry->status = STATUS_FREE; |
| |
| fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); |
| |
| if (ok == 0) { |
| printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); |
| return -EIO; |
| } |
| |
| #if defined(__BIG_ENDIAN) |
| |
| #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) |
| |
| /* MAC address is stored as little-endian */ |
| swap_here(&prom->mac_addr[0]); |
| swap_here(&prom->mac_addr[4]); |
| #endif |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_pca_proc_read(struct fore200e* fore200e, char *page) |
| { |
| struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
| |
| return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", |
| pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); |
| } |
| |
| #endif /* CONFIG_ATM_FORE200E_PCA */ |
| |
| |
| #ifdef CONFIG_ATM_FORE200E_SBA |
| |
| static u32 |
| fore200e_sba_read(volatile u32 __iomem *addr) |
| { |
| return sbus_readl(addr); |
| } |
| |
| |
| static void |
| fore200e_sba_write(u32 val, volatile u32 __iomem *addr) |
| { |
| sbus_writel(val, addr); |
| } |
| |
| |
| static u32 |
| fore200e_sba_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) |
| { |
| u32 dma_addr = sbus_map_single((struct sbus_dev*)fore200e->bus_dev, virt_addr, size, direction); |
| |
| DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n", |
| virt_addr, size, direction, dma_addr); |
| |
| return dma_addr; |
| } |
| |
| |
| static void |
| fore200e_sba_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n", |
| dma_addr, size, direction); |
| |
| sbus_unmap_single((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| |
| static void |
| fore200e_sba_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| |
| sbus_dma_sync_single_for_cpu((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| static void |
| fore200e_sba_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| { |
| DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| |
| sbus_dma_sync_single_for_device((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| } |
| |
| |
| /* allocate a DVMA consistent chunk of memory intended to act as a communication mechanism |
| (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ |
| |
| static int |
| fore200e_sba_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, |
| int size, int nbr, int alignment) |
| { |
| chunk->alloc_size = chunk->align_size = size * nbr; |
| |
| /* returned chunks are page-aligned */ |
| chunk->alloc_addr = sbus_alloc_consistent((struct sbus_dev*)fore200e->bus_dev, |
| chunk->alloc_size, |
| &chunk->dma_addr); |
| |
| if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
| return -ENOMEM; |
| |
| chunk->align_addr = chunk->alloc_addr; |
| |
| return 0; |
| } |
| |
| |
| /* free a DVMA consistent chunk of memory */ |
| |
| static void |
| fore200e_sba_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| { |
| sbus_free_consistent((struct sbus_dev*)fore200e->bus_dev, |
| chunk->alloc_size, |
| chunk->alloc_addr, |
| chunk->dma_addr); |
| } |
| |
| |
| static void |
| fore200e_sba_irq_enable(struct fore200e* fore200e) |
| { |
| u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
| fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); |
| } |
| |
| |
| static int |
| fore200e_sba_irq_check(struct fore200e* fore200e) |
| { |
| return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; |
| } |
| |
| |
| static void |
| fore200e_sba_irq_ack(struct fore200e* fore200e) |
| { |
| u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
| fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); |
| } |
| |
| |
| static void |
| fore200e_sba_reset(struct fore200e* fore200e) |
| { |
| fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); |
| fore200e_spin(10); |
| fore200e->bus->write(0, fore200e->regs.sba.hcr); |
| } |
| |
| |
| static int __init |
| fore200e_sba_map(struct fore200e* fore200e) |
| { |
| struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev; |
| unsigned int bursts; |
| |
| /* gain access to the SBA specific registers */ |
| fore200e->regs.sba.hcr = sbus_ioremap(&sbus_dev->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); |
| fore200e->regs.sba.bsr = sbus_ioremap(&sbus_dev->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); |
| fore200e->regs.sba.isr = sbus_ioremap(&sbus_dev->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); |
| fore200e->virt_base = sbus_ioremap(&sbus_dev->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); |
| |
| if (fore200e->virt_base == NULL) { |
| printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); |
| return -EFAULT; |
| } |
| |
| DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
| |
| fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ |
| |
| /* get the supported DVMA burst sizes */ |
| bursts = prom_getintdefault(sbus_dev->bus->prom_node, "burst-sizes", 0x00); |
| |
| if (sbus_can_dma_64bit(sbus_dev)) |
| sbus_set_sbus64(sbus_dev, bursts); |
| |
| fore200e->state = FORE200E_STATE_MAP; |
| return 0; |
| } |
| |
| |
| static void |
| fore200e_sba_unmap(struct fore200e* fore200e) |
| { |
| sbus_iounmap(fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); |
| sbus_iounmap(fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); |
| sbus_iounmap(fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); |
| sbus_iounmap(fore200e->virt_base, SBA200E_RAM_LENGTH); |
| } |
| |
| |
| static int __init |
| fore200e_sba_configure(struct fore200e* fore200e) |
| { |
| fore200e->state = FORE200E_STATE_CONFIGURE; |
| return 0; |
| } |
| |
| |
| static struct fore200e* __init |
| fore200e_sba_detect(const struct fore200e_bus* bus, int index) |
| { |
| struct fore200e* fore200e; |
| struct sbus_bus* sbus_bus; |
| struct sbus_dev* sbus_dev = NULL; |
| |
| unsigned int count = 0; |
| |
| for_each_sbus (sbus_bus) { |
| for_each_sbusdev (sbus_dev, sbus_bus) { |
| if (strcmp(sbus_dev->prom_name, SBA200E_PROM_NAME) == 0) { |
| if (count >= index) |
| goto found; |
| count++; |
| } |
| } |
| } |
| return NULL; |
| |
| found: |
| if (sbus_dev->num_registers != 4) { |
| printk(FORE200E "this %s device has %d instead of 4 registers\n", |
| bus->model_name, sbus_dev->num_registers); |
| return NULL; |
| } |
| |
| fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL); |
| if (fore200e == NULL) |
| return NULL; |
| |
| fore200e->bus = bus; |
| fore200e->bus_dev = sbus_dev; |
| fore200e->irq = sbus_dev->irqs[ 0 ]; |
| |
| fore200e->phys_base = (unsigned long)sbus_dev; |
| |
| sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); |
| |
| return fore200e; |
| } |
| |
| |
| static int __init |
| fore200e_sba_prom_read(struct fore200e* fore200e, struct prom_data* prom) |
| { |
| struct sbus_dev* sbus_dev = (struct sbus_dev*) fore200e->bus_dev; |
| int len; |
| |
| len = prom_getproperty(sbus_dev->prom_node, "macaddrlo2", &prom->mac_addr[ 4 ], 4); |
| if (len < 0) |
| return -EBUSY; |
| |
| len = prom_getproperty(sbus_dev->prom_node, "macaddrhi4", &prom->mac_addr[ 2 ], 4); |
| if (len < 0) |
| return -EBUSY; |
| |
| prom_getproperty(sbus_dev->prom_node, "serialnumber", |
| (char*)&prom->serial_number, sizeof(prom->serial_number)); |
| |
| prom_getproperty(sbus_dev->prom_node, "promversion", |
| (char*)&prom->hw_revision, sizeof(prom->hw_revision)); |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_sba_proc_read(struct fore200e* fore200e, char *page) |
| { |
| struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev; |
| |
| return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", sbus_dev->slot, sbus_dev->prom_name); |
| } |
| #endif /* CONFIG_ATM_FORE200E_SBA */ |
| |
| |
| static void |
| fore200e_tx_irq(struct fore200e* fore200e) |
| { |
| struct host_txq* txq = &fore200e->host_txq; |
| struct host_txq_entry* entry; |
| struct atm_vcc* vcc; |
| struct fore200e_vc_map* vc_map; |
| |
| if (fore200e->host_txq.txing == 0) |
| return; |
| |
| for (;;) { |
| |
| entry = &txq->host_entry[ txq->tail ]; |
| |
| if ((*entry->status & STATUS_COMPLETE) == 0) { |
| break; |
| } |
| |
| DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", |
| entry, txq->tail, entry->vc_map, entry->skb); |
| |
| /* free copy of misaligned data */ |
| kfree(entry->data); |
| |
| /* remove DMA mapping */ |
| fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, |
| DMA_TO_DEVICE); |
| |
| vc_map = entry->vc_map; |
| |
| /* vcc closed since the time the entry was submitted for tx? */ |
| if ((vc_map->vcc == NULL) || |
| (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
| |
| DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", |
| fore200e->atm_dev->number); |
| |
| dev_kfree_skb_any(entry->skb); |
| } |
| else { |
| ASSERT(vc_map->vcc); |
| |
| /* vcc closed then immediately re-opened? */ |
| if (vc_map->incarn != entry->incarn) { |
| |
| /* when a vcc is closed, some PDUs may be still pending in the tx queue. |
| if the same vcc is immediately re-opened, those pending PDUs must |
| not be popped after the completion of their emission, as they refer |
| to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc |
| would be decremented by the size of the (unrelated) skb, possibly |
| leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. |
| we thus bind the tx entry to the current incarnation of the vcc |
| when the entry is submitted for tx. When the tx later completes, |
| if the incarnation number of the tx entry does not match the one |
| of the vcc, then this implies that the vcc has been closed then re-opened. |
| we thus just drop the skb here. */ |
| |
| DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", |
| fore200e->atm_dev->number); |
| |
| dev_kfree_skb_any(entry->skb); |
| } |
| else { |
| vcc = vc_map->vcc; |
| ASSERT(vcc); |
| |
| /* notify tx completion */ |
| if (vcc->pop) { |
| vcc->pop(vcc, entry->skb); |
| } |
| else { |
| dev_kfree_skb_any(entry->skb); |
| } |
| #if 1 |
| /* race fixed by the above incarnation mechanism, but... */ |
| if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) { |
| atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0); |
| } |
| #endif |
| /* check error condition */ |
| if (*entry->status & STATUS_ERROR) |
| atomic_inc(&vcc->stats->tx_err); |
| else |
| atomic_inc(&vcc->stats->tx); |
| } |
| } |
| |
| *entry->status = STATUS_FREE; |
| |
| fore200e->host_txq.txing--; |
| |
| FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); |
| } |
| } |
| |
| |
| #ifdef FORE200E_BSQ_DEBUG |
| int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) |
| { |
| struct buffer* buffer; |
| int count = 0; |
| |
| buffer = bsq->freebuf; |
| while (buffer) { |
| |
| if (buffer->supplied) { |
| printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", |
| where, scheme, magn, buffer->index); |
| } |
| |
| if (buffer->magn != magn) { |
| printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", |
| where, scheme, magn, buffer->index, buffer->magn); |
| } |
| |
| if (buffer->scheme != scheme) { |
| printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", |
| where, scheme, magn, buffer->index, buffer->scheme); |
| } |
| |
| if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { |
| printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", |
| where, scheme, magn, buffer->index); |
| } |
| |
| count++; |
| buffer = buffer->next; |
| } |
| |
| if (count != bsq->freebuf_count) { |
| printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", |
| where, scheme, magn, count, bsq->freebuf_count); |
| } |
| return 0; |
| } |
| #endif |
| |
| |
| static void |
| fore200e_supply(struct fore200e* fore200e) |
| { |
| int scheme, magn, i; |
| |
| struct host_bsq* bsq; |
| struct host_bsq_entry* entry; |
| struct buffer* buffer; |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| |
| bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| |
| #ifdef FORE200E_BSQ_DEBUG |
| bsq_audit(1, bsq, scheme, magn); |
| #endif |
| while (bsq->freebuf_count >= RBD_BLK_SIZE) { |
| |
| DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", |
| RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); |
| |
| entry = &bsq->host_entry[ bsq->head ]; |
| |
| for (i = 0; i < RBD_BLK_SIZE; i++) { |
| |
| /* take the first buffer in the free buffer list */ |
| buffer = bsq->freebuf; |
| if (!buffer) { |
| printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", |
| scheme, magn, bsq->freebuf_count); |
| return; |
| } |
| bsq->freebuf = buffer->next; |
| |
| #ifdef FORE200E_BSQ_DEBUG |
| if (buffer->supplied) |
| printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", |
| scheme, magn, buffer->index); |
| buffer->supplied = 1; |
| #endif |
| entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; |
| entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); |
| } |
| |
| FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); |
| |
| /* decrease accordingly the number of free rx buffers */ |
| bsq->freebuf_count -= RBD_BLK_SIZE; |
| |
| *entry->status = STATUS_PENDING; |
| fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); |
| } |
| } |
| } |
| } |
| |
| |
| static int |
| fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) |
| { |
| struct sk_buff* skb; |
| struct buffer* buffer; |
| struct fore200e_vcc* fore200e_vcc; |
| int i, pdu_len = 0; |
| #ifdef FORE200E_52BYTE_AAL0_SDU |
| u32 cell_header = 0; |
| #endif |
| |
| ASSERT(vcc); |
| |
| fore200e_vcc = FORE200E_VCC(vcc); |
| ASSERT(fore200e_vcc); |
| |
| #ifdef FORE200E_52BYTE_AAL0_SDU |
| if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { |
| |
| cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | |
| (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | |
| (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | |
| (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | |
| rpd->atm_header.clp; |
| pdu_len = 4; |
| } |
| #endif |
| |
| /* compute total PDU length */ |
| for (i = 0; i < rpd->nseg; i++) |
| pdu_len += rpd->rsd[ i ].length; |
| |
| skb = alloc_skb(pdu_len, GFP_ATOMIC); |
| if (skb == NULL) { |
| DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); |
| |
| atomic_inc(&vcc->stats->rx_drop); |
| return -ENOMEM; |
| } |
| |
| __net_timestamp(skb); |
| |
| #ifdef FORE200E_52BYTE_AAL0_SDU |
| if (cell_header) { |
| *((u32*)skb_put(skb, 4)) = cell_header; |
| } |
| #endif |
| |
| /* reassemble segments */ |
| for (i = 0; i < rpd->nseg; i++) { |
| |
| /* rebuild rx buffer address from rsd handle */ |
| buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
| |
| /* Make device DMA transfer visible to CPU. */ |
| fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
| |
| memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length); |
| |
| /* Now let the device get at it again. */ |
| fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
| } |
| |
| DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); |
| |
| if (pdu_len < fore200e_vcc->rx_min_pdu) |
| fore200e_vcc->rx_min_pdu = pdu_len; |
| if (pdu_len > fore200e_vcc->rx_max_pdu) |
| fore200e_vcc->rx_max_pdu = pdu_len; |
| fore200e_vcc->rx_pdu++; |
| |
| /* push PDU */ |
| if (atm_charge(vcc, skb->truesize) == 0) { |
| |
| DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", |
| vcc->itf, vcc->vpi, vcc->vci); |
| |
| dev_kfree_skb_any(skb); |
| |
| atomic_inc(&vcc->stats->rx_drop); |
| return -ENOMEM; |
| } |
| |
| ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| |
| vcc->push(vcc, skb); |
| atomic_inc(&vcc->stats->rx); |
| |
| ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| |
| return 0; |
| } |
| |
| |
| static void |
| fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) |
| { |
| struct host_bsq* bsq; |
| struct buffer* buffer; |
| int i; |
| |
| for (i = 0; i < rpd->nseg; i++) { |
| |
| /* rebuild rx buffer address from rsd handle */ |
| buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
| |
| bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; |
| |
| #ifdef FORE200E_BSQ_DEBUG |
| bsq_audit(2, bsq, buffer->scheme, buffer->magn); |
| |
| if (buffer->supplied == 0) |
| printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", |
| buffer->scheme, buffer->magn, buffer->index); |
| buffer->supplied = 0; |
| #endif |
| |
| /* re-insert the buffer into the free buffer list */ |
| buffer->next = bsq->freebuf; |
| bsq->freebuf = buffer; |
| |
| /* then increment the number of free rx buffers */ |
| bsq->freebuf_count++; |
| } |
| } |
| |
| |
| static void |
| fore200e_rx_irq(struct fore200e* fore200e) |
| { |
| struct host_rxq* rxq = &fore200e->host_rxq; |
| struct host_rxq_entry* entry; |
| struct atm_vcc* vcc; |
| struct fore200e_vc_map* vc_map; |
| |
| for (;;) { |
| |
| entry = &rxq->host_entry[ rxq->head ]; |
| |
| /* no more received PDUs */ |
| if ((*entry->status & STATUS_COMPLETE) == 0) |
| break; |
| |
| vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| |
| if ((vc_map->vcc == NULL) || |
| (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
| |
| DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", |
| fore200e->atm_dev->number, |
| entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| } |
| else { |
| vcc = vc_map->vcc; |
| ASSERT(vcc); |
| |
| if ((*entry->status & STATUS_ERROR) == 0) { |
| |
| fore200e_push_rpd(fore200e, vcc, entry->rpd); |
| } |
| else { |
| DPRINTK(2, "damaged PDU on %d.%d.%d\n", |
| fore200e->atm_dev->number, |
| entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| atomic_inc(&vcc->stats->rx_err); |
| } |
| } |
| |
| FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); |
| |
| fore200e_collect_rpd(fore200e, entry->rpd); |
| |
| /* rewrite the rpd address to ack the received PDU */ |
| fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); |
| *entry->status = STATUS_FREE; |
| |
| fore200e_supply(fore200e); |
| } |
| } |
| |
| |
| #ifndef FORE200E_USE_TASKLET |
| static void |
| fore200e_irq(struct fore200e* fore200e) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| fore200e_rx_irq(fore200e); |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| fore200e_tx_irq(fore200e); |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| } |
| #endif |
| |
| |
| static irqreturn_t |
| fore200e_interrupt(int irq, void* dev, struct pt_regs* regs) |
| { |
| struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); |
| |
| if (fore200e->bus->irq_check(fore200e) == 0) { |
| |
| DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); |
| return IRQ_NONE; |
| } |
| DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); |
| |
| #ifdef FORE200E_USE_TASKLET |
| tasklet_schedule(&fore200e->tx_tasklet); |
| tasklet_schedule(&fore200e->rx_tasklet); |
| #else |
| fore200e_irq(fore200e); |
| #endif |
| |
| fore200e->bus->irq_ack(fore200e); |
| return IRQ_HANDLED; |
| } |
| |
| |
| #ifdef FORE200E_USE_TASKLET |
| static void |
| fore200e_tx_tasklet(unsigned long data) |
| { |
| struct fore200e* fore200e = (struct fore200e*) data; |
| unsigned long flags; |
| |
| DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| fore200e_tx_irq(fore200e); |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| } |
| |
| |
| static void |
| fore200e_rx_tasklet(unsigned long data) |
| { |
| struct fore200e* fore200e = (struct fore200e*) data; |
| unsigned long flags; |
| |
| DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| fore200e_rx_irq((struct fore200e*) data); |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| } |
| #endif |
| |
| |
| static int |
| fore200e_select_scheme(struct atm_vcc* vcc) |
| { |
| /* fairly balance the VCs over (identical) buffer schemes */ |
| int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; |
| |
| DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", |
| vcc->itf, vcc->vpi, vcc->vci, scheme); |
| |
| return scheme; |
| } |
| |
| |
| static int |
| fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| struct activate_opcode activ_opcode; |
| struct deactivate_opcode deactiv_opcode; |
| struct vpvc vpvc; |
| int ok; |
| enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); |
| |
| FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| |
| if (activate) { |
| FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); |
| |
| activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; |
| activ_opcode.aal = aal; |
| activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; |
| activ_opcode.pad = 0; |
| } |
| else { |
| deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; |
| deactiv_opcode.pad = 0; |
| } |
| |
| vpvc.vci = vcc->vci; |
| vpvc.vpi = vcc->vpi; |
| |
| *entry->status = STATUS_PENDING; |
| |
| if (activate) { |
| |
| #ifdef FORE200E_52BYTE_AAL0_SDU |
| mtu = 48; |
| #endif |
| /* the MTU is not used by the cp, except in the case of AAL0 */ |
| fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); |
| fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); |
| fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); |
| } |
| else { |
| fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); |
| fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); |
| } |
| |
| ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| |
| *entry->status = STATUS_FREE; |
| |
| if (ok == 0) { |
| printk(FORE200E "unable to %s VC %d.%d.%d\n", |
| activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); |
| return -EIO; |
| } |
| |
| DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, |
| activate ? "open" : "clos"); |
| |
| return 0; |
| } |
| |
| |
| #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ |
| |
| static void |
| fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) |
| { |
| if (qos->txtp.max_pcr < ATM_OC3_PCR) { |
| |
| /* compute the data cells to idle cells ratio from the tx PCR */ |
| rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; |
| rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; |
| } |
| else { |
| /* disable rate control */ |
| rate->data_cells = rate->idle_cells = 0; |
| } |
| } |
| |
| |
| static int |
| fore200e_open(struct atm_vcc *vcc) |
| { |
| struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| struct fore200e_vcc* fore200e_vcc; |
| struct fore200e_vc_map* vc_map; |
| unsigned long flags; |
| int vci = vcc->vci; |
| short vpi = vcc->vpi; |
| |
| ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); |
| ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| |
| vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); |
| if (vc_map->vcc) { |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| printk(FORE200E "VC %d.%d.%d already in use\n", |
| fore200e->atm_dev->number, vpi, vci); |
| |
| return -EINVAL; |
| } |
| |
| vc_map->vcc = vcc; |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| fore200e_vcc = fore200e_kmalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); |
| if (fore200e_vcc == NULL) { |
| vc_map->vcc = NULL; |
| return -ENOMEM; |
| } |
| |
| DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
| "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", |
| vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], |
| vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, |
| fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], |
| vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); |
| |
| /* pseudo-CBR bandwidth requested? */ |
| if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| |
| down(&fore200e->rate_sf); |
| if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { |
| up(&fore200e->rate_sf); |
| |
| fore200e_kfree(fore200e_vcc); |
| vc_map->vcc = NULL; |
| return -EAGAIN; |
| } |
| |
| /* reserve bandwidth */ |
| fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; |
| up(&fore200e->rate_sf); |
| } |
| |
| vcc->itf = vcc->dev->number; |
| |
| set_bit(ATM_VF_PARTIAL,&vcc->flags); |
| set_bit(ATM_VF_ADDR, &vcc->flags); |
| |
| vcc->dev_data = fore200e_vcc; |
| |
| if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { |
| |
| vc_map->vcc = NULL; |
| |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
| |
| vcc->dev_data = NULL; |
| |
| fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| |
| fore200e_kfree(fore200e_vcc); |
| return -EINVAL; |
| } |
| |
| /* compute rate control parameters */ |
| if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| |
| fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); |
| set_bit(ATM_VF_HASQOS, &vcc->flags); |
| |
| DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", |
| vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, |
| fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); |
| } |
| |
| fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; |
| fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; |
| fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; |
| |
| /* new incarnation of the vcc */ |
| vc_map->incarn = ++fore200e->incarn_count; |
| |
| /* VC unusable before this flag is set */ |
| set_bit(ATM_VF_READY, &vcc->flags); |
| |
| return 0; |
| } |
| |
| |
| static void |
| fore200e_close(struct atm_vcc* vcc) |
| { |
| struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| struct fore200e_vcc* fore200e_vcc; |
| struct fore200e_vc_map* vc_map; |
| unsigned long flags; |
| |
| ASSERT(vcc); |
| ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); |
| ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); |
| |
| DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); |
| |
| clear_bit(ATM_VF_READY, &vcc->flags); |
| |
| fore200e_activate_vcin(fore200e, 0, vcc, 0); |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| |
| vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
| |
| /* the vc is no longer considered as "in use" by fore200e_open() */ |
| vc_map->vcc = NULL; |
| |
| vcc->itf = vcc->vci = vcc->vpi = 0; |
| |
| fore200e_vcc = FORE200E_VCC(vcc); |
| vcc->dev_data = NULL; |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| /* release reserved bandwidth, if any */ |
| if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| |
| down(&fore200e->rate_sf); |
| fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| up(&fore200e->rate_sf); |
| |
| clear_bit(ATM_VF_HASQOS, &vcc->flags); |
| } |
| |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
| |
| ASSERT(fore200e_vcc); |
| fore200e_kfree(fore200e_vcc); |
| } |
| |
| |
| static int |
| fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) |
| { |
| struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
| struct fore200e_vc_map* vc_map; |
| struct host_txq* txq = &fore200e->host_txq; |
| struct host_txq_entry* entry; |
| struct tpd* tpd; |
| struct tpd_haddr tpd_haddr; |
| int retry = CONFIG_ATM_FORE200E_TX_RETRY; |
| int tx_copy = 0; |
| int tx_len = skb->len; |
| u32* cell_header = NULL; |
| unsigned char* skb_data; |
| int skb_len; |
| unsigned char* data; |
| unsigned long flags; |
| |
| ASSERT(vcc); |
| ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| ASSERT(fore200e); |
| ASSERT(fore200e_vcc); |
| |
| if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
| DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); |
| dev_kfree_skb_any(skb); |
| return -EINVAL; |
| } |
| |
| #ifdef FORE200E_52BYTE_AAL0_SDU |
| if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { |
| cell_header = (u32*) skb->data; |
| skb_data = skb->data + 4; /* skip 4-byte cell header */ |
| skb_len = tx_len = skb->len - 4; |
| |
| DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); |
| } |
| else |
| #endif |
| { |
| skb_data = skb->data; |
| skb_len = skb->len; |
| } |
| |
| if (((unsigned long)skb_data) & 0x3) { |
| |
| DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); |
| tx_copy = 1; |
| tx_len = skb_len; |
| } |
| |
| if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { |
| |
| /* this simply NUKES the PCA board */ |
| DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); |
| tx_copy = 1; |
| tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; |
| } |
| |
| if (tx_copy) { |
| data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA); |
| if (data == NULL) { |
| if (vcc->pop) { |
| vcc->pop(vcc, skb); |
| } |
| else { |
| dev_kfree_skb_any(skb); |
| } |
| return -ENOMEM; |
| } |
| |
| memcpy(data, skb_data, skb_len); |
| if (skb_len < tx_len) |
| memset(data + skb_len, 0x00, tx_len - skb_len); |
| } |
| else { |
| data = skb_data; |
| } |
| |
| vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
| ASSERT(vc_map->vcc == vcc); |
| |
| retry_here: |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| |
| entry = &txq->host_entry[ txq->head ]; |
| |
| if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { |
| |
| /* try to free completed tx queue entries */ |
| fore200e_tx_irq(fore200e); |
| |
| if (*entry->status != STATUS_FREE) { |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| /* retry once again? */ |
| if (--retry > 0) { |
| udelay(50); |
| goto retry_here; |
| } |
| |
| atomic_inc(&vcc->stats->tx_err); |
| |
| fore200e->tx_sat++; |
| DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", |
| fore200e->name, fore200e->cp_queues->heartbeat); |
| if (vcc->pop) { |
| vcc->pop(vcc, skb); |
| } |
| else { |
| dev_kfree_skb_any(skb); |
| } |
| |
| if (tx_copy) |
| kfree(data); |
| |
| return -ENOBUFS; |
| } |
| } |
| |
| entry->incarn = vc_map->incarn; |
| entry->vc_map = vc_map; |
| entry->skb = skb; |
| entry->data = tx_copy ? data : NULL; |
| |
| tpd = entry->tpd; |
| tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE); |
| tpd->tsd[ 0 ].length = tx_len; |
| |
| FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); |
| txq->txing++; |
| |
| /* The dma_map call above implies a dma_sync so the device can use it, |
| * thus no explicit dma_sync call is necessary here. |
| */ |
| |
| DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", |
| vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| tpd->tsd[0].length, skb_len); |
| |
| if (skb_len < fore200e_vcc->tx_min_pdu) |
| fore200e_vcc->tx_min_pdu = skb_len; |
| if (skb_len > fore200e_vcc->tx_max_pdu) |
| fore200e_vcc->tx_max_pdu = skb_len; |
| fore200e_vcc->tx_pdu++; |
| |
| /* set tx rate control information */ |
| tpd->rate.data_cells = fore200e_vcc->rate.data_cells; |
| tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; |
| |
| if (cell_header) { |
| tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); |
| tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; |
| tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; |
| tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; |
| tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; |
| } |
| else { |
| /* set the ATM header, common to all cells conveying the PDU */ |
| tpd->atm_header.clp = 0; |
| tpd->atm_header.plt = 0; |
| tpd->atm_header.vci = vcc->vci; |
| tpd->atm_header.vpi = vcc->vpi; |
| tpd->atm_header.gfc = 0; |
| } |
| |
| tpd->spec.length = tx_len; |
| tpd->spec.nseg = 1; |
| tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); |
| tpd->spec.intr = 1; |
| |
| tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ |
| tpd_haddr.pad = 0; |
| tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ |
| |
| *entry->status = STATUS_PENDING; |
| fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_getstats(struct fore200e* fore200e) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| struct stats_opcode opcode; |
| int ok; |
| u32 stats_dma_addr; |
| |
| if (fore200e->stats == NULL) { |
| fore200e->stats = fore200e_kmalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA); |
| if (fore200e->stats == NULL) |
| return -ENOMEM; |
| } |
| |
| stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats, |
| sizeof(struct stats), DMA_FROM_DEVICE); |
| |
| FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| |
| opcode.opcode = OPCODE_GET_STATS; |
| opcode.pad = 0; |
| |
| fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); |
| |
| *entry->status = STATUS_PENDING; |
| |
| fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); |
| |
| ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| |
| *entry->status = STATUS_FREE; |
| |
| fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); |
| |
| if (ok == 0) { |
| printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) |
| { |
| /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
| |
| DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
| vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
| |
| return -EINVAL; |
| } |
| |
| |
| static int |
| fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) |
| { |
| /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
| |
| DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
| vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
| |
| return -EINVAL; |
| } |
| |
| |
| #if 0 /* currently unused */ |
| static int |
| fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| struct oc3_opcode opcode; |
| int ok; |
| u32 oc3_regs_dma_addr; |
| |
| oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
| |
| FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| |
| opcode.opcode = OPCODE_GET_OC3; |
| opcode.reg = 0; |
| opcode.value = 0; |
| opcode.mask = 0; |
| |
| fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
| |
| *entry->status = STATUS_PENDING; |
| |
| fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); |
| |
| ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| |
| *entry->status = STATUS_FREE; |
| |
| fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
| |
| if (ok == 0) { |
| printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| |
| static int |
| fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| struct oc3_opcode opcode; |
| int ok; |
| |
| DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); |
| |
| FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| |
| opcode.opcode = OPCODE_SET_OC3; |
| opcode.reg = reg; |
| opcode.value = value; |
| opcode.mask = mask; |
| |
| fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
| |
| *entry->status = STATUS_PENDING; |
| |
| fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); |
| |
| ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| |
| *entry->status = STATUS_FREE; |
| |
| if (ok == 0) { |
| printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_setloop(struct fore200e* fore200e, int loop_mode) |
| { |
| u32 mct_value, mct_mask; |
| int error; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| switch (loop_mode) { |
| |
| case ATM_LM_NONE: |
| mct_value = 0; |
| mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; |
| break; |
| |
| case ATM_LM_LOC_PHY: |
| mct_value = mct_mask = SUNI_MCT_DLE; |
| break; |
| |
| case ATM_LM_RMT_PHY: |
| mct_value = mct_mask = SUNI_MCT_LLE; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); |
| if (error == 0) |
| fore200e->loop_mode = loop_mode; |
| |
| return error; |
| } |
| |
| |
| static inline unsigned int |
| fore200e_swap(unsigned int in) |
| { |
| #if defined(__LITTLE_ENDIAN) |
| return swab32(in); |
| #else |
| return in; |
| #endif |
| } |
| |
| |
| static int |
| fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) |
| { |
| struct sonet_stats tmp; |
| |
| if (fore200e_getstats(fore200e) < 0) |
| return -EIO; |
| |
| tmp.section_bip = fore200e_swap(fore200e->stats->oc3.section_bip8_errors); |
| tmp.line_bip = fore200e_swap(fore200e->stats->oc3.line_bip24_errors); |
| tmp.path_bip = fore200e_swap(fore200e->stats->oc3.path_bip8_errors); |
| tmp.line_febe = fore200e_swap(fore200e->stats->oc3.line_febe_errors); |
| tmp.path_febe = fore200e_swap(fore200e->stats->oc3.path_febe_errors); |
| tmp.corr_hcs = fore200e_swap(fore200e->stats->oc3.corr_hcs_errors); |
| tmp.uncorr_hcs = fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors); |
| tmp.tx_cells = fore200e_swap(fore200e->stats->aal0.cells_transmitted) + |
| fore200e_swap(fore200e->stats->aal34.cells_transmitted) + |
| fore200e_swap(fore200e->stats->aal5.cells_transmitted); |
| tmp.rx_cells = fore200e_swap(fore200e->stats->aal0.cells_received) + |
| fore200e_swap(fore200e->stats->aal34.cells_received) + |
| fore200e_swap(fore200e->stats->aal5.cells_received); |
| |
| if (arg) |
| return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; |
| |
| return 0; |
| } |
| |
| |
| static int |
| fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) |
| { |
| struct fore200e* fore200e = FORE200E_DEV(dev); |
| |
| DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); |
| |
| switch (cmd) { |
| |
| case SONET_GETSTAT: |
| return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); |
| |
| case SONET_GETDIAG: |
| return put_user(0, (int __user *)arg) ? -EFAULT : 0; |
| |
| case ATM_SETLOOP: |
| return fore200e_setloop(fore200e, (int)(unsigned long)arg); |
| |
| case ATM_GETLOOP: |
| return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; |
| |
| case ATM_QUERYLOOP: |
| return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; |
| } |
| |
| return -ENOSYS; /* not implemented */ |
| } |
| |
| |
| static int |
| fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) |
| { |
| struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
| struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| |
| if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
| DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); |
| return -EINVAL; |
| } |
| |
| DPRINTK(2, "change_qos %d.%d.%d, " |
| "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
| "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" |
| "available_cell_rate = %u", |
| vcc->itf, vcc->vpi, vcc->vci, |
| fore200e_traffic_class[ qos->txtp.traffic_class ], |
| qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, |
| fore200e_traffic_class[ qos->rxtp.traffic_class ], |
| qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, |
| flags, fore200e->available_cell_rate); |
| |
| if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { |
| |
| down(&fore200e->rate_sf); |
| if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { |
| up(&fore200e->rate_sf); |
| return -EAGAIN; |
| } |
| |
| fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| fore200e->available_cell_rate -= qos->txtp.max_pcr; |
| |
| up(&fore200e->rate_sf); |
| |
| memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); |
| |
| /* update rate control parameters */ |
| fore200e_rate_ctrl(qos, &fore200e_vcc->rate); |
| |
| set_bit(ATM_VF_HASQOS, &vcc->flags); |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| |
| static int __init |
| fore200e_irq_request(struct fore200e* fore200e) |
| { |
| if (request_irq(fore200e->irq, fore200e_interrupt, SA_SHIRQ, fore200e->name, fore200e->atm_dev) < 0) { |
| |
| printk(FORE200E "unable to reserve IRQ %s for device %s\n", |
| fore200e_irq_itoa(fore200e->irq), fore200e->name); |
| return -EBUSY; |
| } |
| |
| printk(FORE200E "IRQ %s reserved for device %s\n", |
| fore200e_irq_itoa(fore200e->irq), fore200e->name); |
| |
| #ifdef FORE200E_USE_TASKLET |
| tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); |
| tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); |
| #endif |
| |
| fore200e->state = FORE200E_STATE_IRQ; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_get_esi(struct fore200e* fore200e) |
| { |
| struct prom_data* prom = fore200e_kmalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA); |
| int ok, i; |
| |
| if (!prom) |
| return -ENOMEM; |
| |
| ok = fore200e->bus->prom_read(fore200e, prom); |
| if (ok < 0) { |
| fore200e_kfree(prom); |
| return -EBUSY; |
| } |
| |
| printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| fore200e->name, |
| (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ |
| prom->serial_number & 0xFFFF, |
| prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ], |
| prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]); |
| |
| for (i = 0; i < ESI_LEN; i++) { |
| fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; |
| } |
| |
| fore200e_kfree(prom); |
| |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_alloc_rx_buf(struct fore200e* fore200e) |
| { |
| int scheme, magn, nbr, size, i; |
| |
| struct host_bsq* bsq; |
| struct buffer* buffer; |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| |
| bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| |
| nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; |
| size = fore200e_rx_buf_size[ scheme ][ magn ]; |
| |
| DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); |
| |
| /* allocate the array of receive buffers */ |
| buffer = bsq->buffer = fore200e_kmalloc(nbr * sizeof(struct buffer), GFP_KERNEL); |
| |
| if (buffer == NULL) |
| return -ENOMEM; |
| |
| bsq->freebuf = NULL; |
| |
| for (i = 0; i < nbr; i++) { |
| |
| buffer[ i ].scheme = scheme; |
| buffer[ i ].magn = magn; |
| #ifdef FORE200E_BSQ_DEBUG |
| buffer[ i ].index = i; |
| buffer[ i ].supplied = 0; |
| #endif |
| |
| /* allocate the receive buffer body */ |
| if (fore200e_chunk_alloc(fore200e, |
| &buffer[ i ].data, size, fore200e->bus->buffer_alignment, |
| DMA_FROM_DEVICE) < 0) { |
| |
| while (i > 0) |
| fore200e_chunk_free(fore200e, &buffer[ --i ].data); |
| fore200e_kfree(buffer); |
| |
| return -ENOMEM; |
| } |
| |
| /* insert the buffer into the free buffer list */ |
| buffer[ i ].next = bsq->freebuf; |
| bsq->freebuf = &buffer[ i ]; |
| } |
| /* all the buffers are free, initially */ |
| bsq->freebuf_count = nbr; |
| |
| #ifdef FORE200E_BSQ_DEBUG |
| bsq_audit(3, bsq, scheme, magn); |
| #endif |
| } |
| } |
| |
| fore200e->state = FORE200E_STATE_ALLOC_BUF; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_init_bs_queue(struct fore200e* fore200e) |
| { |
| int scheme, magn, i; |
| |
| struct host_bsq* bsq; |
| struct cp_bsq_entry __iomem * cp_entry; |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| |
| DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); |
| |
| bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| |
| /* allocate and align the array of status words */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &bsq->status, |
| sizeof(enum status), |
| QUEUE_SIZE_BS, |
| fore200e->bus->status_alignment) < 0) { |
| return -ENOMEM; |
| } |
| |
| /* allocate and align the array of receive buffer descriptors */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &bsq->rbd_block, |
| sizeof(struct rbd_block), |
| QUEUE_SIZE_BS, |
| fore200e->bus->descr_alignment) < 0) { |
| |
| fore200e->bus->dma_chunk_free(fore200e, &bsq->status); |
| return -ENOMEM; |
| } |
| |
| /* get the base address of the cp resident buffer supply queue entries */ |
| cp_entry = fore200e->virt_base + |
| fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); |
| |
| /* fill the host resident and cp resident buffer supply queue entries */ |
| for (i = 0; i < QUEUE_SIZE_BS; i++) { |
| |
| bsq->host_entry[ i ].status = |
| FORE200E_INDEX(bsq->status.align_addr, enum status, i); |
| bsq->host_entry[ i ].rbd_block = |
| FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); |
| bsq->host_entry[ i ].rbd_block_dma = |
| FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); |
| bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| |
| *bsq->host_entry[ i ].status = STATUS_FREE; |
| |
| fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), |
| &cp_entry[ i ].status_haddr); |
| } |
| } |
| } |
| |
| fore200e->state = FORE200E_STATE_INIT_BSQ; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_init_rx_queue(struct fore200e* fore200e) |
| { |
| struct host_rxq* rxq = &fore200e->host_rxq; |
| struct cp_rxq_entry __iomem * cp_entry; |
| int i; |
| |
| DPRINTK(2, "receive queue is being initialized\n"); |
| |
| /* allocate and align the array of status words */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &rxq->status, |
| sizeof(enum status), |
| QUEUE_SIZE_RX, |
| fore200e->bus->status_alignment) < 0) { |
| return -ENOMEM; |
| } |
| |
| /* allocate and align the array of receive PDU descriptors */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &rxq->rpd, |
| sizeof(struct rpd), |
| QUEUE_SIZE_RX, |
| fore200e->bus->descr_alignment) < 0) { |
| |
| fore200e->bus->dma_chunk_free(fore200e, &rxq->status); |
| return -ENOMEM; |
| } |
| |
| /* get the base address of the cp resident rx queue entries */ |
| cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); |
| |
| /* fill the host resident and cp resident rx entries */ |
| for (i=0; i < QUEUE_SIZE_RX; i++) { |
| |
| rxq->host_entry[ i ].status = |
| FORE200E_INDEX(rxq->status.align_addr, enum status, i); |
| rxq->host_entry[ i ].rpd = |
| FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); |
| rxq->host_entry[ i ].rpd_dma = |
| FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); |
| rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| |
| *rxq->host_entry[ i ].status = STATUS_FREE; |
| |
| fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), |
| &cp_entry[ i ].status_haddr); |
| |
| fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), |
| &cp_entry[ i ].rpd_haddr); |
| } |
| |
| /* set the head entry of the queue */ |
| rxq->head = 0; |
| |
| fore200e->state = FORE200E_STATE_INIT_RXQ; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_init_tx_queue(struct fore200e* fore200e) |
| { |
| struct host_txq* txq = &fore200e->host_txq; |
| struct cp_txq_entry __iomem * cp_entry; |
| int i; |
| |
| DPRINTK(2, "transmit queue is being initialized\n"); |
| |
| /* allocate and align the array of status words */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &txq->status, |
| sizeof(enum status), |
| QUEUE_SIZE_TX, |
| fore200e->bus->status_alignment) < 0) { |
| return -ENOMEM; |
| } |
| |
| /* allocate and align the array of transmit PDU descriptors */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &txq->tpd, |
| sizeof(struct tpd), |
| QUEUE_SIZE_TX, |
| fore200e->bus->descr_alignment) < 0) { |
| |
| fore200e->bus->dma_chunk_free(fore200e, &txq->status); |
| return -ENOMEM; |
| } |
| |
| /* get the base address of the cp resident tx queue entries */ |
| cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); |
| |
| /* fill the host resident and cp resident tx entries */ |
| for (i=0; i < QUEUE_SIZE_TX; i++) { |
| |
| txq->host_entry[ i ].status = |
| FORE200E_INDEX(txq->status.align_addr, enum status, i); |
| txq->host_entry[ i ].tpd = |
| FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); |
| txq->host_entry[ i ].tpd_dma = |
| FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); |
| txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| |
| *txq->host_entry[ i ].status = STATUS_FREE; |
| |
| fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), |
| &cp_entry[ i ].status_haddr); |
| |
| /* although there is a one-to-one mapping of tx queue entries and tpds, |
| we do not write here the DMA (physical) base address of each tpd into |
| the related cp resident entry, because the cp relies on this write |
| operation to detect that a new pdu has been submitted for tx */ |
| } |
| |
| /* set the head and tail entries of the queue */ |
| txq->head = 0; |
| txq->tail = 0; |
| |
| fore200e->state = FORE200E_STATE_INIT_TXQ; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_init_cmd_queue(struct fore200e* fore200e) |
| { |
| struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| struct cp_cmdq_entry __iomem * cp_entry; |
| int i; |
| |
| DPRINTK(2, "command queue is being initialized\n"); |
| |
| /* allocate and align the array of status words */ |
| if (fore200e->bus->dma_chunk_alloc(fore200e, |
| &cmdq->status, |
| sizeof(enum status), |
| QUEUE_SIZE_CMD, |
| fore200e->bus->status_alignment) < 0) { |
| return -ENOMEM; |
| } |
| |
| /* get the base address of the cp resident cmd queue entries */ |
| cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); |
| |
| /* fill the host resident and cp resident cmd entries */ |
| for (i=0; i < QUEUE_SIZE_CMD; i++) { |
| |
| cmdq->host_entry[ i ].status = |
| FORE200E_INDEX(cmdq->status.align_addr, enum status, i); |
| cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| |
| *cmdq->host_entry[ i ].status = STATUS_FREE; |
| |
| fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), |
| &cp_entry[ i ].status_haddr); |
| } |
| |
| /* set the head entry of the queue */ |
| cmdq->head = 0; |
| |
| fore200e->state = FORE200E_STATE_INIT_CMDQ; |
| return 0; |
| } |
| |
| |
| static void __init |
| fore200e_param_bs_queue(struct fore200e* fore200e, |
| enum buffer_scheme scheme, enum buffer_magn magn, |
| int queue_length, int pool_size, int supply_blksize) |
| { |
| struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; |
| |
| fore200e->bus->write(queue_length, &bs_spec->queue_length); |
| fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); |
| fore200e->bus->write(pool_size, &bs_spec->pool_size); |
| fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); |
| } |
| |
| |
| static int __init |
| fore200e_initialize(struct fore200e* fore200e) |
| { |
| struct cp_queues __iomem * cpq; |
| int ok, scheme, magn; |
| |
| DPRINTK(2, "device %s being initialized\n", fore200e->name); |
| |
| init_MUTEX(&fore200e->rate_sf); |
| spin_lock_init(&fore200e->q_lock); |
| |
| cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; |
| |
| /* enable cp to host interrupts */ |
| fore200e->bus->write(1, &cpq->imask); |
| |
| if (fore200e->bus->irq_enable) |
| fore200e->bus->irq_enable(fore200e); |
| |
| fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); |
| |
| fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); |
| fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); |
| fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); |
| |
| fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); |
| fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); |
| |
| for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) |
| for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) |
| fore200e_param_bs_queue(fore200e, scheme, magn, |
| QUEUE_SIZE_BS, |
| fore200e_rx_buf_nbr[ scheme ][ magn ], |
| RBD_BLK_SIZE); |
| |
| /* issue the initialize command */ |
| fore200e->bus->write(STATUS_PENDING, &cpq->init.status); |
| fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); |
| |
| ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); |
| if (ok == 0) { |
| printk(FORE200E "device %s initialization failed\n", fore200e->name); |
| return -ENODEV; |
| } |
| |
| printk(FORE200E "device %s initialized\n", fore200e->name); |
| |
| fore200e->state = FORE200E_STATE_INITIALIZE; |
| return 0; |
| } |
| |
| |
| static void __init |
| fore200e_monitor_putc(struct fore200e* fore200e, char c) |
| { |
| struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
| |
| #if 0 |
| printk("%c", c); |
| #endif |
| fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); |
| } |
| |
| |
| static int __init |
| fore200e_monitor_getc(struct fore200e* fore200e) |
| { |
| struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
| unsigned long timeout = jiffies + msecs_to_jiffies(50); |
| int c; |
| |
| while (time_before(jiffies, timeout)) { |
| |
| c = (int) fore200e->bus->read(&monitor->soft_uart.recv); |
| |
| if (c & FORE200E_CP_MONITOR_UART_AVAIL) { |
| |
| fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); |
| #if 0 |
| printk("%c", c & 0xFF); |
| #endif |
| return c & 0xFF; |
| } |
| } |
| |
| return -1; |
| } |
| |
| |
| static void __init |
| fore200e_monitor_puts(struct fore200e* fore200e, char* str) |
| { |
| while (*str) { |
| |
| /* the i960 monitor doesn't accept any new character if it has something to say */ |
| while (fore200e_monitor_getc(fore200e) >= 0); |
| |
| fore200e_monitor_putc(fore200e, *str++); |
| } |
| |
| while (fore200e_monitor_getc(fore200e) >= 0); |
| } |
| |
| |
| static int __init |
| fore200e_start_fw(struct fore200e* fore200e) |
| { |
| int ok; |
| char cmd[ 48 ]; |
| struct fw_header* fw_header = (struct fw_header*) fore200e->bus->fw_data; |
| |
| DPRINTK(2, "device %s firmware being started\n", fore200e->name); |
| |
| #if defined(__sparc_v9__) |
| /* reported to be required by SBA cards on some sparc64 hosts */ |
| fore200e_spin(100); |
| #endif |
| |
| sprintf(cmd, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); |
| |
| fore200e_monitor_puts(fore200e, cmd); |
| |
| ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000); |
| if (ok == 0) { |
| printk(FORE200E "device %s firmware didn't start\n", fore200e->name); |
| return -ENODEV; |
| } |
| |
| printk(FORE200E "device %s firmware started\n", fore200e->name); |
| |
| fore200e->state = FORE200E_STATE_START_FW; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_load_fw(struct fore200e* fore200e) |
| { |
| u32* fw_data = (u32*) fore200e->bus->fw_data; |
| u32 fw_size = (u32) *fore200e->bus->fw_size / sizeof(u32); |
| |
| struct fw_header* fw_header = (struct fw_header*) fw_data; |
| |
| u32 __iomem *load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); |
| |
| DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", |
| fore200e->name, load_addr, fw_size); |
| |
| if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { |
| printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); |
| return -ENODEV; |
| } |
| |
| for (; fw_size--; fw_data++, load_addr++) |
| fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); |
| |
| fore200e->state = FORE200E_STATE_LOAD_FW; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_register(struct fore200e* fore200e) |
| { |
| struct atm_dev* atm_dev; |
| |
| DPRINTK(2, "device %s being registered\n", fore200e->name); |
| |
| atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1, |
| NULL); |
| if (atm_dev == NULL) { |
| printk(FORE200E "unable to register device %s\n", fore200e->name); |
| return -ENODEV; |
| } |
| |
| atm_dev->dev_data = fore200e; |
| fore200e->atm_dev = atm_dev; |
| |
| atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; |
| atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; |
| |
| fore200e->available_cell_rate = ATM_OC3_PCR; |
| |
| fore200e->state = FORE200E_STATE_REGISTER; |
| return 0; |
| } |
| |
| |
| static int __init |
| fore200e_init(struct fore200e* fore200e) |
| { |
| if (fore200e_register(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e->bus->configure(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e->bus->map(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e_reset(fore200e, 1) < 0) |
| return -ENODEV; |
| |
| if (fore200e_load_fw(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e_start_fw(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e_initialize(fore200e) < 0) |
| return -ENODEV; |
| |
| if (fore200e_init_cmd_queue(fore200e) < 0) |
| return -ENOMEM; |
| |
| if (fore200e_init_tx_queue(fore200e) < 0) |
| return -ENOMEM; |
| |
| if (fore200e_init_rx_queue(fore200e) < 0) |
| return -ENOMEM; |
| |
| if (fore200e_init_bs_queue(fore200e) < 0) |
| return -ENOMEM; |
| |
| if (fore200e_alloc_rx_buf(fore200e) < 0) |
| return -ENOMEM; |
| |
| if (fore200e_get_esi(fore200e) < 0) |
| return -EIO; |
| |
| if (fore200e_irq_request(fore200e) < 0) |
| return -EBUSY; |
| |
| fore200e_supply(fore200e); |
| |
| /* all done, board initialization is now complete */ |
| fore200e->state = FORE200E_STATE_COMPLETE; |
| return 0; |
| } |
| |
| |
| static int __devinit |
| fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
| { |
| const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data; |
| struct fore200e* fore200e; |
| int err = 0; |
| static int index = 0; |
| |
| if (pci_enable_device(pci_dev)) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL); |
| if (fore200e == NULL) { |
| err = -ENOMEM; |
| goto out_disable; |
| } |
| |
| fore200e->bus = bus; |
| fore200e->bus_dev = pci_dev; |
| fore200e->irq = pci_dev->irq; |
| fore200e->phys_base = pci_resource_start(pci_dev, 0); |
| |
| sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); |
| |
| pci_set_master(pci_dev); |
| |
| printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", |
| fore200e->bus->model_name, |
| fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); |
| |
| sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
| |
| err = fore200e_init(fore200e); |
| if (err < 0) { |
| fore200e_shutdown(fore200e); |
| goto out_free; |
| } |
| |
| ++index; |
| pci_set_drvdata(pci_dev, fore200e); |
| |
| out: |
| return err; |
| |
| out_free: |
| kfree(fore200e); |
| out_disable: |
| pci_disable_device(pci_dev); |
| goto out; |
| } |
| |
| |
| static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev) |
| { |
| struct fore200e *fore200e; |
| |
| fore200e = pci_get_drvdata(pci_dev); |
| |
| fore200e_shutdown(fore200e); |
| kfree(fore200e); |
| pci_disable_device(pci_dev); |
| } |
| |
| |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| static struct pci_device_id fore200e_pca_tbl[] = { |
| { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID, |
| 0, 0, (unsigned long) &fore200e_bus[0] }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); |
| |
| static struct pci_driver fore200e_pca_driver = { |
| .name = "fore_200e", |
| .probe = fore200e_pca_detect, |
| .remove = __devexit_p(fore200e_pca_remove_one), |
| .id_table = fore200e_pca_tbl, |
| }; |
| #endif |
| |
| |
| static int __init |
| fore200e_module_init(void) |
| { |
| const struct fore200e_bus* bus; |
| struct fore200e* fore200e; |
| int index; |
| |
| printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); |
| |
| /* for each configured bus interface */ |
| for (bus = fore200e_bus; bus->model_name; bus++) { |
| |
| /* detect all boards present on that bus */ |
| for (index = 0; bus->detect && (fore200e = bus->detect(bus, index)); index++) { |
| |
| printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", |
| fore200e->bus->model_name, |
| fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); |
| |
| sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
| |
| if (fore200e_init(fore200e) < 0) { |
| |
| fore200e_shutdown(fore200e); |
| break; |
| } |
| |
| list_add(&fore200e->entry, &fore200e_boards); |
| } |
| } |
| |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| if (!pci_register_driver(&fore200e_pca_driver)) |
| return 0; |
| #endif |
| |
| if (!list_empty(&fore200e_boards)) |
| return 0; |
| |
| return -ENODEV; |
| } |
| |
| |
| static void __exit |
| fore200e_module_cleanup(void) |
| { |
| struct fore200e *fore200e, *next; |
| |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| pci_unregister_driver(&fore200e_pca_driver); |
| #endif |
| |
| list_for_each_entry_safe(fore200e, next, &fore200e_boards, entry) { |
| fore200e_shutdown(fore200e); |
| kfree(fore200e); |
| } |
| DPRINTK(1, "module being removed\n"); |
| } |
| |
| |
| static int |
| fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) |
| { |
| struct fore200e* fore200e = FORE200E_DEV(dev); |
| struct fore200e_vcc* fore200e_vcc; |
| struct atm_vcc* vcc; |
| int i, len, left = *pos; |
| unsigned long flags; |
| |
| if (!left--) { |
| |
| if (fore200e_getstats(fore200e) < 0) |
| return -EIO; |
| |
| len = sprintf(page,"\n" |
| " device:\n" |
| " internal name:\t\t%s\n", fore200e->name); |
| |
| /* print bus-specific information */ |
| if (fore200e->bus->proc_read) |
| len += fore200e->bus->proc_read(fore200e, page + len); |
| |
| len += sprintf(page + len, |
| " interrupt line:\t\t%s\n" |
| " physical base address:\t0x%p\n" |
| " virtual base address:\t0x%p\n" |
| " factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n" |
| " board serial number:\t\t%d\n\n", |
| fore200e_irq_itoa(fore200e->irq), |
| (void*)fore200e->phys_base, |
| fore200e->virt_base, |
| fore200e->esi[0], fore200e->esi[1], fore200e->esi[2], |
| fore200e->esi[3], fore200e->esi[4], fore200e->esi[5], |
| fore200e->esi[4] * 256 + fore200e->esi[5]); |
| |
| return len; |
| } |
| |
| if (!left--) |
| return sprintf(page, |
| " free small bufs, scheme 1:\t%d\n" |
| " free large bufs, scheme 1:\t%d\n" |
| " free small bufs, scheme 2:\t%d\n" |
| " free large bufs, scheme 2:\t%d\n", |
| fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, |
| fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, |
| fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, |
| fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); |
| |
| if (!left--) { |
| u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); |
| |
| len = sprintf(page,"\n\n" |
| " cell processor:\n" |
| " heartbeat state:\t\t"); |
| |
| if (hb >> 16 != 0xDEAD) |
| len += sprintf(page + len, "0x%08x\n", hb); |
| else |
| len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); |
| |
| return len; |
| } |
| |
| if (!left--) { |
| static const char* media_name[] = { |
| "unshielded twisted pair", |
| "multimode optical fiber ST", |
| "multimode optical fiber SC", |
| "single-mode optical fiber ST", |
| "single-mode optical fiber SC", |
| "unknown" |
| }; |
| |
| static const char* oc3_mode[] = { |
| "normal operation", |
| "diagnostic loopback", |
| "line loopback", |
| "unknown" |
| }; |
| |
| u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); |
| u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); |
| u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); |
| u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); |
| u32 oc3_index; |
| |
| if ((media_index < 0) || (media_index > 4)) |
| media_index = 5; |
| |
| switch (fore200e->loop_mode) { |
| case ATM_LM_NONE: oc3_index = 0; |
| break; |
| case ATM_LM_LOC_PHY: oc3_index = 1; |
| break; |
| case ATM_LM_RMT_PHY: oc3_index = 2; |
| break; |
| default: oc3_index = 3; |
| } |
| |
| return sprintf(page, |
| " firmware release:\t\t%d.%d.%d\n" |
| " monitor release:\t\t%d.%d\n" |
| " media type:\t\t\t%s\n" |
| " OC-3 revision:\t\t0x%x\n" |
| " OC-3 mode:\t\t\t%s", |
| fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, |
| mon960_release >> 16, mon960_release << 16 >> 16, |
| media_name[ media_index ], |
| oc3_revision, |
| oc3_mode[ oc3_index ]); |
| } |
| |
| if (!left--) { |
| struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; |
| |
| return sprintf(page, |
| "\n\n" |
| " monitor:\n" |
| " version number:\t\t%d\n" |
| " boot status word:\t\t0x%08x\n", |
| fore200e->bus->read(&cp_monitor->mon_version), |
| fore200e->bus->read(&cp_monitor->bstat)); |
| } |
| |
| if (!left--) |
| return sprintf(page, |
| "\n" |
| " device statistics:\n" |
| " 4b5b:\n" |
| " crc_header_errors:\t\t%10u\n" |
| " framing_errors:\t\t%10u\n", |
| fore200e_swap(fore200e->stats->phy.crc_header_errors), |
| fore200e_swap(fore200e->stats->phy.framing_errors)); |
| |
| if (!left--) |
| return sprintf(page, "\n" |
| " OC-3:\n" |
| " section_bip8_errors:\t%10u\n" |
| " path_bip8_errors:\t\t%10u\n" |
| " line_bip24_errors:\t\t%10u\n" |
| " line_febe_errors:\t\t%10u\n" |
| " path_febe_errors:\t\t%10u\n" |
| " corr_hcs_errors:\t\t%10u\n" |
| " ucorr_hcs_errors:\t\t%10u\n", |
| fore200e_swap(fore200e->stats->oc3.section_bip8_errors), |
| fore200e_swap(fore200e->stats->oc3.path_bip8_errors), |
| fore200e_swap(fore200e->stats->oc3.line_bip24_errors), |
| fore200e_swap(fore200e->stats->oc3.line_febe_errors), |
| fore200e_swap(fore200e->stats->oc3.path_febe_errors), |
| fore200e_swap(fore200e->stats->oc3.corr_hcs_errors), |
| fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors)); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " ATM:\t\t\t\t cells\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " vpi out of range:\t\t%10u\n" |
| " vpi no conn:\t\t%10u\n" |
| " vci out of range:\t\t%10u\n" |
| " vci no conn:\t\t%10u\n", |
| fore200e_swap(fore200e->stats->atm.cells_transmitted), |
| fore200e_swap(fore200e->stats->atm.cells_received), |
| fore200e_swap(fore200e->stats->atm.vpi_bad_range), |
| fore200e_swap(fore200e->stats->atm.vpi_no_conn), |
| fore200e_swap(fore200e->stats->atm.vci_bad_range), |
| fore200e_swap(fore200e->stats->atm.vci_no_conn)); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " AAL0:\t\t\t cells\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " dropped:\t\t\t%10u\n", |
| fore200e_swap(fore200e->stats->aal0.cells_transmitted), |
| fore200e_swap(fore200e->stats->aal0.cells_received), |
| fore200e_swap(fore200e->stats->aal0.cells_dropped)); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " AAL3/4:\n" |
| " SAR sublayer:\t\t cells\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " dropped:\t\t\t%10u\n" |
| " CRC errors:\t\t%10u\n" |
| " protocol errors:\t\t%10u\n\n" |
| " CS sublayer:\t\t PDUs\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " dropped:\t\t\t%10u\n" |
| " protocol errors:\t\t%10u\n", |
| fore200e_swap(fore200e->stats->aal34.cells_transmitted), |
| fore200e_swap(fore200e->stats->aal34.cells_received), |
| fore200e_swap(fore200e->stats->aal34.cells_dropped), |
| fore200e_swap(fore200e->stats->aal34.cells_crc_errors), |
| fore200e_swap(fore200e->stats->aal34.cells_protocol_errors), |
| fore200e_swap(fore200e->stats->aal34.cspdus_transmitted), |
| fore200e_swap(fore200e->stats->aal34.cspdus_received), |
| fore200e_swap(fore200e->stats->aal34.cspdus_dropped), |
| fore200e_swap(fore200e->stats->aal34.cspdus_protocol_errors)); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " AAL5:\n" |
| " SAR sublayer:\t\t cells\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " dropped:\t\t\t%10u\n" |
| " congestions:\t\t%10u\n\n" |
| " CS sublayer:\t\t PDUs\n" |
| " TX:\t\t\t%10u\n" |
| " RX:\t\t\t%10u\n" |
| " dropped:\t\t\t%10u\n" |
| " CRC errors:\t\t%10u\n" |
| " protocol errors:\t\t%10u\n", |
| fore200e_swap(fore200e->stats->aal5.cells_transmitted), |
| fore200e_swap(fore200e->stats->aal5.cells_received), |
| fore200e_swap(fore200e->stats->aal5.cells_dropped), |
| fore200e_swap(fore200e->stats->aal5.congestion_experienced), |
| fore200e_swap(fore200e->stats->aal5.cspdus_transmitted), |
| fore200e_swap(fore200e->stats->aal5.cspdus_received), |
| fore200e_swap(fore200e->stats->aal5.cspdus_dropped), |
| fore200e_swap(fore200e->stats->aal5.cspdus_crc_errors), |
| fore200e_swap(fore200e->stats->aal5.cspdus_protocol_errors)); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " AUX:\t\t allocation failures\n" |
| " small b1:\t\t\t%10u\n" |
| " large b1:\t\t\t%10u\n" |
| " small b2:\t\t\t%10u\n" |
| " large b2:\t\t\t%10u\n" |
| " RX PDUs:\t\t\t%10u\n" |
| " TX PDUs:\t\t\t%10lu\n", |
| fore200e_swap(fore200e->stats->aux.small_b1_failed), |
| fore200e_swap(fore200e->stats->aux.large_b1_failed), |
| fore200e_swap(fore200e->stats->aux.small_b2_failed), |
| fore200e_swap(fore200e->stats->aux.large_b2_failed), |
| fore200e_swap(fore200e->stats->aux.rpd_alloc_failed), |
| fore200e->tx_sat); |
| |
| if (!left--) |
| return sprintf(page,"\n" |
| " receive carrier:\t\t\t%s\n", |
| fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); |
| |
| if (!left--) { |
| return sprintf(page,"\n" |
| " VCCs:\n address VPI VCI AAL " |
| "TX PDUs TX min/max size RX PDUs RX min/max size\n"); |
| } |
| |
| for (i = 0; i < NBR_CONNECT; i++) { |
| |
| vcc = fore200e->vc_map[i].vcc; |
| |
| if (vcc == NULL) |
| continue; |
| |
| spin_lock_irqsave(&fore200e->q_lock, flags); |
| |
| if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { |
| |
| fore200e_vcc = FORE200E_VCC(vcc); |
| ASSERT(fore200e_vcc); |
| |
| len = sprintf(page, |
| " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", |
| (u32)(unsigned long)vcc, |
| vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| fore200e_vcc->tx_pdu, |
| fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, |
| fore200e_vcc->tx_max_pdu, |
| fore200e_vcc->rx_pdu, |
| fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, |
| fore200e_vcc->rx_max_pdu); |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| return len; |
| } |
| |
| spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| } |
| |
| return 0; |
| } |
| |
| module_init(fore200e_module_init); |
| module_exit(fore200e_module_cleanup); |
| |
| |
| static const struct atmdev_ops fore200e_ops = |
| { |
| .open = fore200e_open, |
| .close = fore200e_close, |
| .ioctl = fore200e_ioctl, |
| .getsockopt = fore200e_getsockopt, |
| .setsockopt = fore200e_setsockopt, |
| .send = fore200e_send, |
| .change_qos = fore200e_change_qos, |
| .proc_read = fore200e_proc_read, |
| .owner = THIS_MODULE |
| }; |
| |
| |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| extern const unsigned char _fore200e_pca_fw_data[]; |
| extern const unsigned int _fore200e_pca_fw_size; |
| #endif |
| #ifdef CONFIG_ATM_FORE200E_SBA |
| extern const unsigned char _fore200e_sba_fw_data[]; |
| extern const unsigned int _fore200e_sba_fw_size; |
| #endif |
| |
| static const struct fore200e_bus fore200e_bus[] = { |
| #ifdef CONFIG_ATM_FORE200E_PCA |
| { "PCA-200E", "pca200e", 32, 4, 32, |
| _fore200e_pca_fw_data, &_fore200e_pca_fw_size, |
| fore200e_pca_read, |
| fore200e_pca_write, |
| fore200e_pca_dma_map, |
| fore200e_pca_dma_unmap, |
| fore200e_pca_dma_sync_for_cpu, |
| fore200e_pca_dma_sync_for_device, |
| fore200e_pca_dma_chunk_alloc, |
| fore200e_pca_dma_chunk_free, |
| NULL, |
| fore200e_pca_configure, |
| fore200e_pca_map, |
| fore200e_pca_reset, |
| fore200e_pca_prom_read, |
| fore200e_pca_unmap, |
| NULL, |
| fore200e_pca_irq_check, |
| fore200e_pca_irq_ack, |
| fore200e_pca_proc_read, |
| }, |
| #endif |
| #ifdef CONFIG_ATM_FORE200E_SBA |
| { "SBA-200E", "sba200e", 32, 64, 32, |
| _fore200e_sba_fw_data, &_fore200e_sba_fw_size, |
| fore200e_sba_read, |
| fore200e_sba_write, |
| fore200e_sba_dma_map, |
| fore200e_sba_dma_unmap, |
| fore200e_sba_dma_sync_for_cpu, |
| fore200e_sba_dma_sync_for_device, |
| fore200e_sba_dma_chunk_alloc, |
| fore200e_sba_dma_chunk_free, |
| fore200e_sba_detect, |
| fore200e_sba_configure, |
| fore200e_sba_map, |
| fore200e_sba_reset, |
| fore200e_sba_prom_read, |
| fore200e_sba_unmap, |
| fore200e_sba_irq_enable, |
| fore200e_sba_irq_check, |
| fore200e_sba_irq_ack, |
| fore200e_sba_proc_read, |
| }, |
| #endif |
| {} |
| }; |
| |
| #ifdef MODULE_LICENSE |
| MODULE_LICENSE("GPL"); |
| #endif |