| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Common interrupt code for 32 and 64 bit |
| */ |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/of.h> |
| #include <linux/seq_file.h> |
| #include <linux/smp.h> |
| #include <linux/ftrace.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/irq.h> |
| |
| #include <asm/irq_stack.h> |
| #include <asm/apic.h> |
| #include <asm/io_apic.h> |
| #include <asm/irq.h> |
| #include <asm/mce.h> |
| #include <asm/hw_irq.h> |
| #include <asm/desc.h> |
| #include <asm/traps.h> |
| #include <asm/thermal.h> |
| #include <asm/posted_intr.h> |
| #include <asm/irq_remapping.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <asm/trace/irq_vectors.h> |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); |
| EXPORT_PER_CPU_SYMBOL(irq_stat); |
| |
| atomic_t irq_err_count; |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(unsigned int irq) |
| { |
| if (printk_ratelimit()) |
| pr_err("unexpected IRQ trap at vector %02x\n", irq); |
| |
| /* |
| * Currently unexpected vectors happen only on SMP and APIC. |
| * We _must_ ack these because every local APIC has only N |
| * irq slots per priority level, and a 'hanging, unacked' IRQ |
| * holds up an irq slot - in excessive cases (when multiple |
| * unexpected vectors occur) that might lock up the APIC |
| * completely. |
| * But only ack when the APIC is enabled -AK |
| */ |
| apic_eoi(); |
| } |
| |
| #define irq_stats(x) (&per_cpu(irq_stat, x)) |
| /* |
| * /proc/interrupts printing for arch specific interrupts |
| */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| int j; |
| |
| seq_printf(p, "%*s: ", prec, "NMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); |
| seq_puts(p, " Non-maskable interrupts\n"); |
| #ifdef CONFIG_X86_LOCAL_APIC |
| seq_printf(p, "%*s: ", prec, "LOC"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); |
| seq_puts(p, " Local timer interrupts\n"); |
| |
| seq_printf(p, "%*s: ", prec, "SPU"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); |
| seq_puts(p, " Spurious interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "PMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); |
| seq_puts(p, " Performance monitoring interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "IWI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); |
| seq_puts(p, " IRQ work interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "RTR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); |
| seq_puts(p, " APIC ICR read retries\n"); |
| if (x86_platform_ipi_callback) { |
| seq_printf(p, "%*s: ", prec, "PLT"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); |
| seq_puts(p, " Platform interrupts\n"); |
| } |
| #endif |
| #ifdef CONFIG_SMP |
| seq_printf(p, "%*s: ", prec, "RES"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); |
| seq_puts(p, " Rescheduling interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "CAL"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); |
| seq_puts(p, " Function call interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "TLB"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); |
| seq_puts(p, " TLB shootdowns\n"); |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| seq_printf(p, "%*s: ", prec, "TRM"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); |
| seq_puts(p, " Thermal event interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| seq_printf(p, "%*s: ", prec, "THR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); |
| seq_puts(p, " Threshold APIC interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE_AMD |
| seq_printf(p, "%*s: ", prec, "DFR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); |
| seq_puts(p, " Deferred Error APIC interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE |
| seq_printf(p, "%*s: ", prec, "MCE"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); |
| seq_puts(p, " Machine check exceptions\n"); |
| seq_printf(p, "%*s: ", prec, "MCP"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); |
| seq_puts(p, " Machine check polls\n"); |
| #endif |
| #ifdef CONFIG_X86_HV_CALLBACK_VECTOR |
| if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) { |
| seq_printf(p, "%*s: ", prec, "HYP"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->irq_hv_callback_count); |
| seq_puts(p, " Hypervisor callback interrupts\n"); |
| } |
| #endif |
| #if IS_ENABLED(CONFIG_HYPERV) |
| if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) { |
| seq_printf(p, "%*s: ", prec, "HRE"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->irq_hv_reenlightenment_count); |
| seq_puts(p, " Hyper-V reenlightenment interrupts\n"); |
| } |
| if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) { |
| seq_printf(p, "%*s: ", prec, "HVS"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->hyperv_stimer0_count); |
| seq_puts(p, " Hyper-V stimer0 interrupts\n"); |
| } |
| #endif |
| seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); |
| #if defined(CONFIG_X86_IO_APIC) |
| seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); |
| #endif |
| #if IS_ENABLED(CONFIG_KVM) |
| seq_printf(p, "%*s: ", prec, "PIN"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); |
| seq_puts(p, " Posted-interrupt notification event\n"); |
| |
| seq_printf(p, "%*s: ", prec, "NPI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->kvm_posted_intr_nested_ipis); |
| seq_puts(p, " Nested posted-interrupt event\n"); |
| |
| seq_printf(p, "%*s: ", prec, "PIW"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->kvm_posted_intr_wakeup_ipis); |
| seq_puts(p, " Posted-interrupt wakeup event\n"); |
| #endif |
| #ifdef CONFIG_X86_POSTED_MSI |
| seq_printf(p, "%*s: ", prec, "PMN"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->posted_msi_notification_count); |
| seq_puts(p, " Posted MSI notification event\n"); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * /proc/stat helpers |
| */ |
| u64 arch_irq_stat_cpu(unsigned int cpu) |
| { |
| u64 sum = irq_stats(cpu)->__nmi_count; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| sum += irq_stats(cpu)->apic_timer_irqs; |
| sum += irq_stats(cpu)->irq_spurious_count; |
| sum += irq_stats(cpu)->apic_perf_irqs; |
| sum += irq_stats(cpu)->apic_irq_work_irqs; |
| sum += irq_stats(cpu)->icr_read_retry_count; |
| if (x86_platform_ipi_callback) |
| sum += irq_stats(cpu)->x86_platform_ipis; |
| #endif |
| #ifdef CONFIG_SMP |
| sum += irq_stats(cpu)->irq_resched_count; |
| sum += irq_stats(cpu)->irq_call_count; |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| sum += irq_stats(cpu)->irq_thermal_count; |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| sum += irq_stats(cpu)->irq_threshold_count; |
| #endif |
| #ifdef CONFIG_X86_HV_CALLBACK_VECTOR |
| sum += irq_stats(cpu)->irq_hv_callback_count; |
| #endif |
| #if IS_ENABLED(CONFIG_HYPERV) |
| sum += irq_stats(cpu)->irq_hv_reenlightenment_count; |
| sum += irq_stats(cpu)->hyperv_stimer0_count; |
| #endif |
| #ifdef CONFIG_X86_MCE |
| sum += per_cpu(mce_exception_count, cpu); |
| sum += per_cpu(mce_poll_count, cpu); |
| #endif |
| return sum; |
| } |
| |
| u64 arch_irq_stat(void) |
| { |
| u64 sum = atomic_read(&irq_err_count); |
| return sum; |
| } |
| |
| static __always_inline void handle_irq(struct irq_desc *desc, |
| struct pt_regs *regs) |
| { |
| if (IS_ENABLED(CONFIG_X86_64)) |
| generic_handle_irq_desc(desc); |
| else |
| __handle_irq(desc, regs); |
| } |
| |
| static __always_inline int call_irq_handler(int vector, struct pt_regs *regs) |
| { |
| struct irq_desc *desc; |
| int ret = 0; |
| |
| desc = __this_cpu_read(vector_irq[vector]); |
| if (likely(!IS_ERR_OR_NULL(desc))) { |
| handle_irq(desc, regs); |
| } else { |
| ret = -EINVAL; |
| if (desc == VECTOR_UNUSED) { |
| pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n", |
| __func__, smp_processor_id(), |
| vector); |
| } else { |
| __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * common_interrupt() handles all normal device IRQ's (the special SMP |
| * cross-CPU interrupts have their own entry points). |
| */ |
| DEFINE_IDTENTRY_IRQ(common_interrupt) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| /* entry code tells RCU that we're not quiescent. Check it. */ |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); |
| |
| if (unlikely(call_irq_handler(vector, regs))) |
| apic_eoi(); |
| |
| set_irq_regs(old_regs); |
| } |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* Function pointer for generic interrupt vector handling */ |
| void (*x86_platform_ipi_callback)(void) = NULL; |
| /* |
| * Handler for X86_PLATFORM_IPI_VECTOR. |
| */ |
| DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| apic_eoi(); |
| trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); |
| inc_irq_stat(x86_platform_ipis); |
| if (x86_platform_ipi_callback) |
| x86_platform_ipi_callback(); |
| trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); |
| set_irq_regs(old_regs); |
| } |
| #endif |
| |
| #if IS_ENABLED(CONFIG_KVM) |
| static void dummy_handler(void) {} |
| static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; |
| |
| void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) |
| { |
| if (handler) |
| kvm_posted_intr_wakeup_handler = handler; |
| else { |
| kvm_posted_intr_wakeup_handler = dummy_handler; |
| synchronize_rcu(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); |
| |
| /* |
| * Handler for POSTED_INTERRUPT_VECTOR. |
| */ |
| DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi) |
| { |
| apic_eoi(); |
| inc_irq_stat(kvm_posted_intr_ipis); |
| } |
| |
| /* |
| * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. |
| */ |
| DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi) |
| { |
| apic_eoi(); |
| inc_irq_stat(kvm_posted_intr_wakeup_ipis); |
| kvm_posted_intr_wakeup_handler(); |
| } |
| |
| /* |
| * Handler for POSTED_INTERRUPT_NESTED_VECTOR. |
| */ |
| DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi) |
| { |
| apic_eoi(); |
| inc_irq_stat(kvm_posted_intr_nested_ipis); |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_POSTED_MSI |
| |
| /* Posted Interrupt Descriptors for coalesced MSIs to be posted */ |
| DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc); |
| |
| void intel_posted_msi_init(void) |
| { |
| u32 destination; |
| u32 apic_id; |
| |
| this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR); |
| |
| /* |
| * APIC destination ID is stored in bit 8:15 while in XAPIC mode. |
| * VT-d spec. CH 9.11 |
| */ |
| apic_id = this_cpu_read(x86_cpu_to_apicid); |
| destination = x2apic_enabled() ? apic_id : apic_id << 8; |
| this_cpu_write(posted_msi_pi_desc.ndst, destination); |
| } |
| |
| /* |
| * De-multiplexing posted interrupts is on the performance path, the code |
| * below is written to optimize the cache performance based on the following |
| * considerations: |
| * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently |
| * accessed by both CPU and IOMMU. |
| * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg |
| * for checking and clearing posted interrupt request (PIR), a 256 bit field |
| * within the PID. |
| * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache |
| * line when posting interrupts and setting control bits. |
| * 4.The CPU can access the cache line a magnitude faster than the IOMMU. |
| * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID |
| * cache line. The cache line states after each operation are as follows: |
| * CPU IOMMU PID Cache line state |
| * --------------------------------------------------------------- |
| *...read64 exclusive |
| *...lock xchg64 modified |
| *... post/atomic swap invalid |
| *...------------------------------------------------------------- |
| * |
| * To reduce L1 data cache miss, it is important to avoid contention with |
| * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used |
| * to dispatch interrupt handlers. |
| * |
| * In addition, the code is trying to keep the cache line state consistent |
| * as much as possible. e.g. when making a copy and clearing the PIR |
| * (assuming non-zero PIR bits are present in the entire PIR), it does: |
| * read, read, read, read, xchg, xchg, xchg, xchg |
| * instead of: |
| * read, xchg, read, xchg, read, xchg, read, xchg |
| */ |
| static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs) |
| { |
| int i, vec = FIRST_EXTERNAL_VECTOR; |
| unsigned long pir_copy[4]; |
| bool handled = false; |
| |
| for (i = 0; i < 4; i++) |
| pir_copy[i] = pir[i]; |
| |
| for (i = 0; i < 4; i++) { |
| if (!pir_copy[i]) |
| continue; |
| |
| pir_copy[i] = arch_xchg(&pir[i], 0); |
| handled = true; |
| } |
| |
| if (handled) { |
| for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR) |
| call_irq_handler(vec, regs); |
| } |
| |
| return handled; |
| } |
| |
| /* |
| * Performance data shows that 3 is good enough to harvest 90+% of the benefit |
| * on high IRQ rate workload. |
| */ |
| #define MAX_POSTED_MSI_COALESCING_LOOP 3 |
| |
| /* |
| * For MSIs that are delivered as posted interrupts, the CPU notifications |
| * can be coalesced if the MSIs arrive in high frequency bursts. |
| */ |
| DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| struct pi_desc *pid; |
| int i = 0; |
| |
| pid = this_cpu_ptr(&posted_msi_pi_desc); |
| |
| inc_irq_stat(posted_msi_notification_count); |
| irq_enter(); |
| |
| /* |
| * Max coalescing count includes the extra round of handle_pending_pir |
| * after clearing the outstanding notification bit. Hence, at most |
| * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here. |
| */ |
| while (++i < MAX_POSTED_MSI_COALESCING_LOOP) { |
| if (!handle_pending_pir(pid->pir64, regs)) |
| break; |
| } |
| |
| /* |
| * Clear outstanding notification bit to allow new IRQ notifications, |
| * do this last to maximize the window of interrupt coalescing. |
| */ |
| pi_clear_on(pid); |
| |
| /* |
| * There could be a race of PI notification and the clearing of ON bit, |
| * process PIR bits one last time such that handling the new interrupts |
| * are not delayed until the next IRQ. |
| */ |
| handle_pending_pir(pid->pir64, regs); |
| |
| apic_eoi(); |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| #endif /* X86_POSTED_MSI */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ |
| void fixup_irqs(void) |
| { |
| unsigned int vector; |
| struct irq_desc *desc; |
| struct irq_data *data; |
| struct irq_chip *chip; |
| |
| irq_migrate_all_off_this_cpu(); |
| |
| /* |
| * We can remove mdelay() and then send spurious interrupts to |
| * new cpu targets for all the irqs that were handled previously by |
| * this cpu. While it works, I have seen spurious interrupt messages |
| * (nothing wrong but still...). |
| * |
| * So for now, retain mdelay(1) and check the IRR and then send those |
| * interrupts to new targets as this cpu is already offlined... |
| */ |
| mdelay(1); |
| |
| /* |
| * We can walk the vector array of this cpu without holding |
| * vector_lock because the cpu is already marked !online, so |
| * nothing else will touch it. |
| */ |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { |
| if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) |
| continue; |
| |
| if (is_vector_pending(vector)) { |
| desc = __this_cpu_read(vector_irq[vector]); |
| |
| raw_spin_lock(&desc->lock); |
| data = irq_desc_get_irq_data(desc); |
| chip = irq_data_get_irq_chip(data); |
| if (chip->irq_retrigger) { |
| chip->irq_retrigger(data); |
| __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); |
| } |
| raw_spin_unlock(&desc->lock); |
| } |
| if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) |
| __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| static void smp_thermal_vector(void) |
| { |
| if (x86_thermal_enabled()) |
| intel_thermal_interrupt(); |
| else |
| pr_err("CPU%d: Unexpected LVT thermal interrupt!\n", |
| smp_processor_id()); |
| } |
| |
| DEFINE_IDTENTRY_SYSVEC(sysvec_thermal) |
| { |
| trace_thermal_apic_entry(THERMAL_APIC_VECTOR); |
| inc_irq_stat(irq_thermal_count); |
| smp_thermal_vector(); |
| trace_thermal_apic_exit(THERMAL_APIC_VECTOR); |
| apic_eoi(); |
| } |
| #endif |