| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * Copyright (C) 2011 Don Zickus Red Hat, Inc. |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| #include <linux/sched/debug.h> |
| #include <linux/nmi.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/hardirq.h> |
| #include <linux/ratelimit.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/atomic.h> |
| #include <linux/sched/clock.h> |
| |
| #include <asm/cpu_entry_area.h> |
| #include <asm/traps.h> |
| #include <asm/mach_traps.h> |
| #include <asm/nmi.h> |
| #include <asm/x86_init.h> |
| #include <asm/reboot.h> |
| #include <asm/cache.h> |
| #include <asm/nospec-branch.h> |
| #include <asm/microcode.h> |
| #include <asm/sev.h> |
| #include <asm/fred.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/nmi.h> |
| |
| struct nmi_desc { |
| raw_spinlock_t lock; |
| struct list_head head; |
| }; |
| |
| static struct nmi_desc nmi_desc[NMI_MAX] = |
| { |
| { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), |
| .head = LIST_HEAD_INIT(nmi_desc[0].head), |
| }, |
| { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), |
| .head = LIST_HEAD_INIT(nmi_desc[1].head), |
| }, |
| { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), |
| .head = LIST_HEAD_INIT(nmi_desc[2].head), |
| }, |
| { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), |
| .head = LIST_HEAD_INIT(nmi_desc[3].head), |
| }, |
| |
| }; |
| |
| struct nmi_stats { |
| unsigned int normal; |
| unsigned int unknown; |
| unsigned int external; |
| unsigned int swallow; |
| unsigned long recv_jiffies; |
| unsigned long idt_seq; |
| unsigned long idt_nmi_seq; |
| unsigned long idt_ignored; |
| atomic_long_t idt_calls; |
| unsigned long idt_seq_snap; |
| unsigned long idt_nmi_seq_snap; |
| unsigned long idt_ignored_snap; |
| long idt_calls_snap; |
| }; |
| |
| static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); |
| |
| static int ignore_nmis __read_mostly; |
| |
| int unknown_nmi_panic; |
| /* |
| * Prevent NMI reason port (0x61) being accessed simultaneously, can |
| * only be used in NMI handler. |
| */ |
| static DEFINE_RAW_SPINLOCK(nmi_reason_lock); |
| |
| static int __init setup_unknown_nmi_panic(char *str) |
| { |
| unknown_nmi_panic = 1; |
| return 1; |
| } |
| __setup("unknown_nmi_panic", setup_unknown_nmi_panic); |
| |
| #define nmi_to_desc(type) (&nmi_desc[type]) |
| |
| static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; |
| |
| static int __init nmi_warning_debugfs(void) |
| { |
| debugfs_create_u64("nmi_longest_ns", 0644, |
| arch_debugfs_dir, &nmi_longest_ns); |
| return 0; |
| } |
| fs_initcall(nmi_warning_debugfs); |
| |
| static void nmi_check_duration(struct nmiaction *action, u64 duration) |
| { |
| int remainder_ns, decimal_msecs; |
| |
| if (duration < nmi_longest_ns || duration < action->max_duration) |
| return; |
| |
| action->max_duration = duration; |
| |
| remainder_ns = do_div(duration, (1000 * 1000)); |
| decimal_msecs = remainder_ns / 1000; |
| |
| printk_ratelimited(KERN_INFO |
| "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", |
| action->handler, duration, decimal_msecs); |
| } |
| |
| static int nmi_handle(unsigned int type, struct pt_regs *regs) |
| { |
| struct nmi_desc *desc = nmi_to_desc(type); |
| struct nmiaction *a; |
| int handled=0; |
| |
| rcu_read_lock(); |
| |
| /* |
| * NMIs are edge-triggered, which means if you have enough |
| * of them concurrently, you can lose some because only one |
| * can be latched at any given time. Walk the whole list |
| * to handle those situations. |
| */ |
| list_for_each_entry_rcu(a, &desc->head, list) { |
| int thishandled; |
| u64 delta; |
| |
| delta = sched_clock(); |
| thishandled = a->handler(type, regs); |
| handled += thishandled; |
| delta = sched_clock() - delta; |
| trace_nmi_handler(a->handler, (int)delta, thishandled); |
| |
| nmi_check_duration(a, delta); |
| } |
| |
| rcu_read_unlock(); |
| |
| /* return total number of NMI events handled */ |
| return handled; |
| } |
| NOKPROBE_SYMBOL(nmi_handle); |
| |
| int __register_nmi_handler(unsigned int type, struct nmiaction *action) |
| { |
| struct nmi_desc *desc = nmi_to_desc(type); |
| unsigned long flags; |
| |
| if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list))) |
| return -EINVAL; |
| |
| raw_spin_lock_irqsave(&desc->lock, flags); |
| |
| /* |
| * Indicate if there are multiple registrations on the |
| * internal NMI handler call chains (SERR and IO_CHECK). |
| */ |
| WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); |
| WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); |
| |
| /* |
| * some handlers need to be executed first otherwise a fake |
| * event confuses some handlers (kdump uses this flag) |
| */ |
| if (action->flags & NMI_FLAG_FIRST) |
| list_add_rcu(&action->list, &desc->head); |
| else |
| list_add_tail_rcu(&action->list, &desc->head); |
| |
| raw_spin_unlock_irqrestore(&desc->lock, flags); |
| return 0; |
| } |
| EXPORT_SYMBOL(__register_nmi_handler); |
| |
| void unregister_nmi_handler(unsigned int type, const char *name) |
| { |
| struct nmi_desc *desc = nmi_to_desc(type); |
| struct nmiaction *n, *found = NULL; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&desc->lock, flags); |
| |
| list_for_each_entry_rcu(n, &desc->head, list) { |
| /* |
| * the name passed in to describe the nmi handler |
| * is used as the lookup key |
| */ |
| if (!strcmp(n->name, name)) { |
| WARN(in_nmi(), |
| "Trying to free NMI (%s) from NMI context!\n", n->name); |
| list_del_rcu(&n->list); |
| found = n; |
| break; |
| } |
| } |
| |
| raw_spin_unlock_irqrestore(&desc->lock, flags); |
| if (found) { |
| synchronize_rcu(); |
| INIT_LIST_HEAD(&found->list); |
| } |
| } |
| EXPORT_SYMBOL_GPL(unregister_nmi_handler); |
| |
| static void |
| pci_serr_error(unsigned char reason, struct pt_regs *regs) |
| { |
| /* check to see if anyone registered against these types of errors */ |
| if (nmi_handle(NMI_SERR, regs)) |
| return; |
| |
| pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| |
| if (panic_on_unrecovered_nmi) |
| nmi_panic(regs, "NMI: Not continuing"); |
| |
| pr_emerg("Dazed and confused, but trying to continue\n"); |
| |
| /* Clear and disable the PCI SERR error line. */ |
| reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; |
| outb(reason, NMI_REASON_PORT); |
| } |
| NOKPROBE_SYMBOL(pci_serr_error); |
| |
| static void |
| io_check_error(unsigned char reason, struct pt_regs *regs) |
| { |
| unsigned long i; |
| |
| /* check to see if anyone registered against these types of errors */ |
| if (nmi_handle(NMI_IO_CHECK, regs)) |
| return; |
| |
| pr_emerg( |
| "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| show_regs(regs); |
| |
| if (panic_on_io_nmi) { |
| nmi_panic(regs, "NMI IOCK error: Not continuing"); |
| |
| /* |
| * If we end up here, it means we have received an NMI while |
| * processing panic(). Simply return without delaying and |
| * re-enabling NMIs. |
| */ |
| return; |
| } |
| |
| /* Re-enable the IOCK line, wait for a few seconds */ |
| reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; |
| outb(reason, NMI_REASON_PORT); |
| |
| i = 20000; |
| while (--i) { |
| touch_nmi_watchdog(); |
| udelay(100); |
| } |
| |
| reason &= ~NMI_REASON_CLEAR_IOCHK; |
| outb(reason, NMI_REASON_PORT); |
| } |
| NOKPROBE_SYMBOL(io_check_error); |
| |
| static void |
| unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
| { |
| int handled; |
| |
| /* |
| * Use 'false' as back-to-back NMIs are dealt with one level up. |
| * Of course this makes having multiple 'unknown' handlers useless |
| * as only the first one is ever run (unless it can actually determine |
| * if it caused the NMI) |
| */ |
| handled = nmi_handle(NMI_UNKNOWN, regs); |
| if (handled) { |
| __this_cpu_add(nmi_stats.unknown, handled); |
| return; |
| } |
| |
| __this_cpu_add(nmi_stats.unknown, 1); |
| |
| pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", |
| reason, smp_processor_id()); |
| |
| if (unknown_nmi_panic || panic_on_unrecovered_nmi) |
| nmi_panic(regs, "NMI: Not continuing"); |
| |
| pr_emerg_ratelimited("Dazed and confused, but trying to continue\n"); |
| } |
| NOKPROBE_SYMBOL(unknown_nmi_error); |
| |
| static DEFINE_PER_CPU(bool, swallow_nmi); |
| static DEFINE_PER_CPU(unsigned long, last_nmi_rip); |
| |
| static noinstr void default_do_nmi(struct pt_regs *regs) |
| { |
| unsigned char reason = 0; |
| int handled; |
| bool b2b = false; |
| |
| /* |
| * CPU-specific NMI must be processed before non-CPU-specific |
| * NMI, otherwise we may lose it, because the CPU-specific |
| * NMI can not be detected/processed on other CPUs. |
| */ |
| |
| /* |
| * Back-to-back NMIs are interesting because they can either |
| * be two NMI or more than two NMIs (any thing over two is dropped |
| * due to NMI being edge-triggered). If this is the second half |
| * of the back-to-back NMI, assume we dropped things and process |
| * more handlers. Otherwise reset the 'swallow' NMI behaviour |
| */ |
| if (regs->ip == __this_cpu_read(last_nmi_rip)) |
| b2b = true; |
| else |
| __this_cpu_write(swallow_nmi, false); |
| |
| __this_cpu_write(last_nmi_rip, regs->ip); |
| |
| instrumentation_begin(); |
| |
| if (microcode_nmi_handler_enabled() && microcode_nmi_handler()) |
| goto out; |
| |
| handled = nmi_handle(NMI_LOCAL, regs); |
| __this_cpu_add(nmi_stats.normal, handled); |
| if (handled) { |
| /* |
| * There are cases when a NMI handler handles multiple |
| * events in the current NMI. One of these events may |
| * be queued for in the next NMI. Because the event is |
| * already handled, the next NMI will result in an unknown |
| * NMI. Instead lets flag this for a potential NMI to |
| * swallow. |
| */ |
| if (handled > 1) |
| __this_cpu_write(swallow_nmi, true); |
| goto out; |
| } |
| |
| /* |
| * Non-CPU-specific NMI: NMI sources can be processed on any CPU. |
| * |
| * Another CPU may be processing panic routines while holding |
| * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, |
| * and if so, call its callback directly. If there is no CPU preparing |
| * crash dump, we simply loop here. |
| */ |
| while (!raw_spin_trylock(&nmi_reason_lock)) { |
| run_crash_ipi_callback(regs); |
| cpu_relax(); |
| } |
| |
| reason = x86_platform.get_nmi_reason(); |
| |
| if (reason & NMI_REASON_MASK) { |
| if (reason & NMI_REASON_SERR) |
| pci_serr_error(reason, regs); |
| else if (reason & NMI_REASON_IOCHK) |
| io_check_error(reason, regs); |
| #ifdef CONFIG_X86_32 |
| /* |
| * Reassert NMI in case it became active |
| * meanwhile as it's edge-triggered: |
| */ |
| reassert_nmi(); |
| #endif |
| __this_cpu_add(nmi_stats.external, 1); |
| raw_spin_unlock(&nmi_reason_lock); |
| goto out; |
| } |
| raw_spin_unlock(&nmi_reason_lock); |
| |
| /* |
| * Only one NMI can be latched at a time. To handle |
| * this we may process multiple nmi handlers at once to |
| * cover the case where an NMI is dropped. The downside |
| * to this approach is we may process an NMI prematurely, |
| * while its real NMI is sitting latched. This will cause |
| * an unknown NMI on the next run of the NMI processing. |
| * |
| * We tried to flag that condition above, by setting the |
| * swallow_nmi flag when we process more than one event. |
| * This condition is also only present on the second half |
| * of a back-to-back NMI, so we flag that condition too. |
| * |
| * If both are true, we assume we already processed this |
| * NMI previously and we swallow it. Otherwise we reset |
| * the logic. |
| * |
| * There are scenarios where we may accidentally swallow |
| * a 'real' unknown NMI. For example, while processing |
| * a perf NMI another perf NMI comes in along with a |
| * 'real' unknown NMI. These two NMIs get combined into |
| * one (as described above). When the next NMI gets |
| * processed, it will be flagged by perf as handled, but |
| * no one will know that there was a 'real' unknown NMI sent |
| * also. As a result it gets swallowed. Or if the first |
| * perf NMI returns two events handled then the second |
| * NMI will get eaten by the logic below, again losing a |
| * 'real' unknown NMI. But this is the best we can do |
| * for now. |
| */ |
| if (b2b && __this_cpu_read(swallow_nmi)) |
| __this_cpu_add(nmi_stats.swallow, 1); |
| else |
| unknown_nmi_error(reason, regs); |
| |
| out: |
| instrumentation_end(); |
| } |
| |
| /* |
| * NMIs can page fault or hit breakpoints which will cause it to lose |
| * its NMI context with the CPU when the breakpoint or page fault does an IRET. |
| * |
| * As a result, NMIs can nest if NMIs get unmasked due an IRET during |
| * NMI processing. On x86_64, the asm glue protects us from nested NMIs |
| * if the outer NMI came from kernel mode, but we can still nest if the |
| * outer NMI came from user mode. |
| * |
| * To handle these nested NMIs, we have three states: |
| * |
| * 1) not running |
| * 2) executing |
| * 3) latched |
| * |
| * When no NMI is in progress, it is in the "not running" state. |
| * When an NMI comes in, it goes into the "executing" state. |
| * Normally, if another NMI is triggered, it does not interrupt |
| * the running NMI and the HW will simply latch it so that when |
| * the first NMI finishes, it will restart the second NMI. |
| * (Note, the latch is binary, thus multiple NMIs triggering, |
| * when one is running, are ignored. Only one NMI is restarted.) |
| * |
| * If an NMI executes an iret, another NMI can preempt it. We do not |
| * want to allow this new NMI to run, but we want to execute it when the |
| * first one finishes. We set the state to "latched", and the exit of |
| * the first NMI will perform a dec_return, if the result is zero |
| * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the |
| * dec_return would have set the state to NMI_EXECUTING (what we want it |
| * to be when we are running). In this case, we simply jump back to |
| * rerun the NMI handler again, and restart the 'latched' NMI. |
| * |
| * No trap (breakpoint or page fault) should be hit before nmi_restart, |
| * thus there is no race between the first check of state for NOT_RUNNING |
| * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs |
| * at this point. |
| * |
| * In case the NMI takes a page fault, we need to save off the CR2 |
| * because the NMI could have preempted another page fault and corrupt |
| * the CR2 that is about to be read. As nested NMIs must be restarted |
| * and they can not take breakpoints or page faults, the update of the |
| * CR2 must be done before converting the nmi state back to NOT_RUNNING. |
| * Otherwise, there would be a race of another nested NMI coming in |
| * after setting state to NOT_RUNNING but before updating the nmi_cr2. |
| */ |
| enum nmi_states { |
| NMI_NOT_RUNNING = 0, |
| NMI_EXECUTING, |
| NMI_LATCHED, |
| }; |
| static DEFINE_PER_CPU(enum nmi_states, nmi_state); |
| static DEFINE_PER_CPU(unsigned long, nmi_cr2); |
| static DEFINE_PER_CPU(unsigned long, nmi_dr7); |
| |
| DEFINE_IDTENTRY_RAW(exc_nmi) |
| { |
| irqentry_state_t irq_state; |
| struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats); |
| |
| /* |
| * Re-enable NMIs right here when running as an SEV-ES guest. This might |
| * cause nested NMIs, but those can be handled safely. |
| */ |
| sev_es_nmi_complete(); |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) |
| raw_atomic_long_inc(&nsp->idt_calls); |
| |
| if (arch_cpu_is_offline(smp_processor_id())) { |
| if (microcode_nmi_handler_enabled()) |
| microcode_offline_nmi_handler(); |
| return; |
| } |
| |
| if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { |
| this_cpu_write(nmi_state, NMI_LATCHED); |
| return; |
| } |
| this_cpu_write(nmi_state, NMI_EXECUTING); |
| this_cpu_write(nmi_cr2, read_cr2()); |
| |
| nmi_restart: |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); |
| WARN_ON_ONCE(!(nsp->idt_seq & 0x1)); |
| WRITE_ONCE(nsp->recv_jiffies, jiffies); |
| } |
| |
| /* |
| * Needs to happen before DR7 is accessed, because the hypervisor can |
| * intercept DR7 reads/writes, turning those into #VC exceptions. |
| */ |
| sev_es_ist_enter(regs); |
| |
| this_cpu_write(nmi_dr7, local_db_save()); |
| |
| irq_state = irqentry_nmi_enter(regs); |
| |
| inc_irq_stat(__nmi_count); |
| |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) { |
| WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1); |
| } else if (!ignore_nmis) { |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); |
| WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1)); |
| } |
| default_do_nmi(regs); |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); |
| WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1); |
| } |
| } |
| |
| irqentry_nmi_exit(regs, irq_state); |
| |
| local_db_restore(this_cpu_read(nmi_dr7)); |
| |
| sev_es_ist_exit(); |
| |
| if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) |
| write_cr2(this_cpu_read(nmi_cr2)); |
| if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); |
| WARN_ON_ONCE(nsp->idt_seq & 0x1); |
| WRITE_ONCE(nsp->recv_jiffies, jiffies); |
| } |
| if (this_cpu_dec_return(nmi_state)) |
| goto nmi_restart; |
| } |
| |
| #if IS_ENABLED(CONFIG_KVM_INTEL) |
| DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx) |
| { |
| exc_nmi(regs); |
| } |
| #if IS_MODULE(CONFIG_KVM_INTEL) |
| EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx); |
| #endif |
| #endif |
| |
| #ifdef CONFIG_NMI_CHECK_CPU |
| |
| static char *nmi_check_stall_msg[] = { |
| /* */ |
| /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler. */ |
| /* | +------ cpu_is_offline(cpu) */ |
| /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */ |
| /* | | | NMI handler has been invoked. */ |
| /* | | | */ |
| /* V V V */ |
| /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler", |
| /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs", |
| /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler", |
| /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs", |
| /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler", |
| /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs", |
| /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler", |
| /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs", |
| }; |
| |
| void nmi_backtrace_stall_snap(const struct cpumask *btp) |
| { |
| int cpu; |
| struct nmi_stats *nsp; |
| |
| for_each_cpu(cpu, btp) { |
| nsp = per_cpu_ptr(&nmi_stats, cpu); |
| nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq); |
| nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq); |
| nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored); |
| nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls); |
| } |
| } |
| |
| void nmi_backtrace_stall_check(const struct cpumask *btp) |
| { |
| int cpu; |
| int idx; |
| unsigned long nmi_seq; |
| unsigned long j = jiffies; |
| char *modp; |
| char *msgp; |
| char *msghp; |
| struct nmi_stats *nsp; |
| |
| for_each_cpu(cpu, btp) { |
| nsp = per_cpu_ptr(&nmi_stats, cpu); |
| modp = ""; |
| msghp = ""; |
| nmi_seq = READ_ONCE(nsp->idt_nmi_seq); |
| if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) { |
| msgp = "CPU entered NMI handler function, but has not exited"; |
| } else if (nsp->idt_nmi_seq_snap == nmi_seq || |
| nsp->idt_nmi_seq_snap + 1 == nmi_seq) { |
| idx = ((nmi_seq & 0x1) << 2) | |
| (cpu_is_offline(cpu) << 1) | |
| (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls)); |
| msgp = nmi_check_stall_msg[idx]; |
| if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1)) |
| modp = ", but OK because ignore_nmis was set"; |
| if (nsp->idt_nmi_seq_snap + 1 == nmi_seq) |
| msghp = " (CPU exited one NMI handler function)"; |
| else if (nmi_seq & 0x1) |
| msghp = " (CPU currently in NMI handler function)"; |
| else |
| msghp = " (CPU was never in an NMI handler function)"; |
| } else { |
| msgp = "CPU is handling NMIs"; |
| } |
| pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp); |
| pr_alert("%s: last activity: %lu jiffies ago.\n", |
| __func__, j - READ_ONCE(nsp->recv_jiffies)); |
| } |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_X86_FRED |
| /* |
| * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED |
| * event delivery, i.e., there is no problem of transient states. |
| * And NMI unblocking only happens when the stack frame indicates |
| * that so should happen. |
| * |
| * Thus, the NMI entry stub for FRED is really straightforward and |
| * as simple as most exception handlers. As such, #DB is allowed |
| * during NMI handling. |
| */ |
| DEFINE_FREDENTRY_NMI(exc_nmi) |
| { |
| irqentry_state_t irq_state; |
| |
| if (arch_cpu_is_offline(smp_processor_id())) { |
| if (microcode_nmi_handler_enabled()) |
| microcode_offline_nmi_handler(); |
| return; |
| } |
| |
| /* |
| * Save CR2 for eventual restore to cover the case where the NMI |
| * hits the VMENTER/VMEXIT region where guest CR2 is life. This |
| * prevents guest state corruption in case that the NMI handler |
| * takes a page fault. |
| */ |
| this_cpu_write(nmi_cr2, read_cr2()); |
| |
| irq_state = irqentry_nmi_enter(regs); |
| |
| inc_irq_stat(__nmi_count); |
| default_do_nmi(regs); |
| |
| irqentry_nmi_exit(regs, irq_state); |
| |
| if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) |
| write_cr2(this_cpu_read(nmi_cr2)); |
| } |
| #endif |
| |
| void stop_nmi(void) |
| { |
| ignore_nmis++; |
| } |
| |
| void restart_nmi(void) |
| { |
| ignore_nmis--; |
| } |
| |
| /* reset the back-to-back NMI logic */ |
| void local_touch_nmi(void) |
| { |
| __this_cpu_write(last_nmi_rip, 0); |
| } |
| EXPORT_SYMBOL_GPL(local_touch_nmi); |