| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/context_tracking.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kmsan.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/ptrace.h> |
| #include <linux/uprobes.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/io.h> |
| #include <linux/hardirq.h> |
| #include <linux/atomic.h> |
| #include <linux/iommu.h> |
| #include <linux/ubsan.h> |
| |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <asm/realmode.h> |
| #include <asm/text-patching.h> |
| #include <asm/ftrace.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/fred.h> |
| #include <asm/fpu/api.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu_entry_area.h> |
| #include <asm/mce.h> |
| #include <asm/fixmap.h> |
| #include <asm/mach_traps.h> |
| #include <asm/alternative.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/vm86.h> |
| #include <asm/umip.h> |
| #include <asm/insn.h> |
| #include <asm/insn-eval.h> |
| #include <asm/vdso.h> |
| #include <asm/tdx.h> |
| #include <asm/cfi.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/x86_init.h> |
| #else |
| #include <asm/processor-flags.h> |
| #include <asm/setup.h> |
| #endif |
| |
| #include <asm/proto.h> |
| |
| DECLARE_BITMAP(system_vectors, NR_VECTORS); |
| |
| __always_inline int is_valid_bugaddr(unsigned long addr) |
| { |
| if (addr < TASK_SIZE_MAX) |
| return 0; |
| |
| /* |
| * We got #UD, if the text isn't readable we'd have gotten |
| * a different exception. |
| */ |
| return *(unsigned short *)addr == INSN_UD2; |
| } |
| |
| /* |
| * Check for UD1 or UD2, accounting for Address Size Override Prefixes. |
| * If it's a UD1, get the ModRM byte to pass along to UBSan. |
| */ |
| __always_inline int decode_bug(unsigned long addr, u32 *imm) |
| { |
| u8 v; |
| |
| if (addr < TASK_SIZE_MAX) |
| return BUG_NONE; |
| |
| v = *(u8 *)(addr++); |
| if (v == INSN_ASOP) |
| v = *(u8 *)(addr++); |
| if (v != OPCODE_ESCAPE) |
| return BUG_NONE; |
| |
| v = *(u8 *)(addr++); |
| if (v == SECOND_BYTE_OPCODE_UD2) |
| return BUG_UD2; |
| |
| if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1) |
| return BUG_NONE; |
| |
| /* Retrieve the immediate (type value) for the UBSAN UD1 */ |
| v = *(u8 *)(addr++); |
| if (X86_MODRM_RM(v) == 4) |
| addr++; |
| |
| *imm = 0; |
| if (X86_MODRM_MOD(v) == 1) |
| *imm = *(u8 *)addr; |
| else if (X86_MODRM_MOD(v) == 2) |
| *imm = *(u32 *)addr; |
| else |
| WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v)); |
| |
| return BUG_UD1; |
| } |
| |
| |
| static nokprobe_inline int |
| do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, |
| struct pt_regs *regs, long error_code) |
| { |
| if (v8086_mode(regs)) { |
| /* |
| * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| * On nmi (interrupt 2), do_trap should not be called. |
| */ |
| if (trapnr < X86_TRAP_UD) { |
| if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, trapnr)) |
| return 0; |
| } |
| } else if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr, error_code, 0)) |
| return 0; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| die(str, regs, error_code); |
| } else { |
| if (fixup_vdso_exception(regs, trapnr, error_code, 0)) |
| return 0; |
| } |
| |
| /* |
| * We want error_code and trap_nr set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also exc_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| |
| return -1; |
| } |
| |
| static void show_signal(struct task_struct *tsk, int signr, |
| const char *type, const char *desc, |
| struct pt_regs *regs, long error_code) |
| { |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", |
| tsk->comm, task_pid_nr(tsk), type, desc, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(KERN_CONT " in ", regs->ip); |
| pr_cont("\n"); |
| } |
| } |
| |
| static void |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, int sicode, void __user *addr) |
| { |
| struct task_struct *tsk = current; |
| |
| if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| return; |
| |
| show_signal(tsk, signr, "trap ", str, regs, error_code); |
| |
| if (!sicode) |
| force_sig(signr); |
| else |
| force_sig_fault(signr, sicode, addr); |
| } |
| NOKPROBE_SYMBOL(do_trap); |
| |
| static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| unsigned long trapnr, int signr, int sicode, void __user *addr) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
| NOTIFY_STOP) { |
| cond_local_irq_enable(regs); |
| do_trap(trapnr, signr, str, regs, error_code, sicode, addr); |
| cond_local_irq_disable(regs); |
| } |
| } |
| |
| /* |
| * Posix requires to provide the address of the faulting instruction for |
| * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. |
| * |
| * This address is usually regs->ip, but when an uprobe moved the code out |
| * of line then regs->ip points to the XOL code which would confuse |
| * anything which analyzes the fault address vs. the unmodified binary. If |
| * a trap happened in XOL code then uprobe maps regs->ip back to the |
| * original instruction address. |
| */ |
| static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) |
| { |
| return (void __user *)uprobe_get_trap_addr(regs); |
| } |
| |
| DEFINE_IDTENTRY(exc_divide_error) |
| { |
| do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, |
| FPE_INTDIV, error_get_trap_addr(regs)); |
| } |
| |
| DEFINE_IDTENTRY(exc_overflow) |
| { |
| do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); |
| } |
| |
| #ifdef CONFIG_X86_F00F_BUG |
| void handle_invalid_op(struct pt_regs *regs) |
| #else |
| static inline void handle_invalid_op(struct pt_regs *regs) |
| #endif |
| { |
| do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, |
| ILL_ILLOPN, error_get_trap_addr(regs)); |
| } |
| |
| static noinstr bool handle_bug(struct pt_regs *regs) |
| { |
| bool handled = false; |
| int ud_type; |
| u32 imm; |
| |
| /* |
| * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() |
| * is a rare case that uses @regs without passing them to |
| * irqentry_enter(). |
| */ |
| kmsan_unpoison_entry_regs(regs); |
| ud_type = decode_bug(regs->ip, &imm); |
| if (ud_type == BUG_NONE) |
| return handled; |
| |
| /* |
| * All lies, just get the WARN/BUG out. |
| */ |
| instrumentation_begin(); |
| /* |
| * Since we're emulating a CALL with exceptions, restore the interrupt |
| * state to what it was at the exception site. |
| */ |
| if (regs->flags & X86_EFLAGS_IF) |
| raw_local_irq_enable(); |
| if (ud_type == BUG_UD2) { |
| if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN || |
| handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { |
| regs->ip += LEN_UD2; |
| handled = true; |
| } |
| } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { |
| pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip); |
| } |
| if (regs->flags & X86_EFLAGS_IF) |
| raw_local_irq_disable(); |
| instrumentation_end(); |
| |
| return handled; |
| } |
| |
| DEFINE_IDTENTRY_RAW(exc_invalid_op) |
| { |
| irqentry_state_t state; |
| |
| /* |
| * We use UD2 as a short encoding for 'CALL __WARN', as such |
| * handle it before exception entry to avoid recursive WARN |
| * in case exception entry is the one triggering WARNs. |
| */ |
| if (!user_mode(regs) && handle_bug(regs)) |
| return; |
| |
| state = irqentry_enter(regs); |
| instrumentation_begin(); |
| handle_invalid_op(regs); |
| instrumentation_end(); |
| irqentry_exit(regs, state); |
| } |
| |
| DEFINE_IDTENTRY(exc_coproc_segment_overrun) |
| { |
| do_error_trap(regs, 0, "coprocessor segment overrun", |
| X86_TRAP_OLD_MF, SIGFPE, 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) |
| { |
| do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, |
| 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) |
| { |
| do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, |
| SIGBUS, 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) |
| { |
| do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, |
| 0, NULL); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) |
| { |
| char *str = "alignment check"; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) |
| return; |
| |
| if (!user_mode(regs)) |
| die("Split lock detected\n", regs, error_code); |
| |
| local_irq_enable(); |
| |
| if (handle_user_split_lock(regs, error_code)) |
| goto out; |
| |
| do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, |
| error_code, BUS_ADRALN, NULL); |
| |
| out: |
| local_irq_disable(); |
| } |
| |
| #ifdef CONFIG_VMAP_STACK |
| __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, |
| unsigned long fault_address, |
| struct stack_info *info) |
| { |
| const char *name = stack_type_name(info->type); |
| |
| printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", |
| name, (void *)fault_address, info->begin, info->end); |
| |
| die("stack guard page", regs, 0); |
| |
| /* Be absolutely certain we don't return. */ |
| panic("%s stack guard hit", name); |
| } |
| #endif |
| |
| /* |
| * Runs on an IST stack for x86_64 and on a special task stack for x86_32. |
| * |
| * On x86_64, this is more or less a normal kernel entry. Notwithstanding the |
| * SDM's warnings about double faults being unrecoverable, returning works as |
| * expected. Presumably what the SDM actually means is that the CPU may get |
| * the register state wrong on entry, so returning could be a bad idea. |
| * |
| * Various CPU engineers have promised that double faults due to an IRET fault |
| * while the stack is read-only are, in fact, recoverable. |
| * |
| * On x86_32, this is entered through a task gate, and regs are synthesized |
| * from the TSS. Returning is, in principle, okay, but changes to regs will |
| * be lost. If, for some reason, we need to return to a context with modified |
| * regs, the shim code could be adjusted to synchronize the registers. |
| * |
| * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs |
| * to be read before doing anything else. |
| */ |
| DEFINE_IDTENTRY_DF(exc_double_fault) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| #ifdef CONFIG_VMAP_STACK |
| unsigned long address = read_cr2(); |
| struct stack_info info; |
| #endif |
| |
| #ifdef CONFIG_X86_ESPFIX64 |
| extern unsigned char native_irq_return_iret[]; |
| |
| /* |
| * If IRET takes a non-IST fault on the espfix64 stack, then we |
| * end up promoting it to a doublefault. In that case, take |
| * advantage of the fact that we're not using the normal (TSS.sp0) |
| * stack right now. We can write a fake #GP(0) frame at TSS.sp0 |
| * and then modify our own IRET frame so that, when we return, |
| * we land directly at the #GP(0) vector with the stack already |
| * set up according to its expectations. |
| * |
| * The net result is that our #GP handler will think that we |
| * entered from usermode with the bad user context. |
| * |
| * No need for nmi_enter() here because we don't use RCU. |
| */ |
| if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
| regs->cs == __KERNEL_CS && |
| regs->ip == (unsigned long)native_irq_return_iret) |
| { |
| struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| unsigned long *p = (unsigned long *)regs->sp; |
| |
| /* |
| * regs->sp points to the failing IRET frame on the |
| * ESPFIX64 stack. Copy it to the entry stack. This fills |
| * in gpregs->ss through gpregs->ip. |
| * |
| */ |
| gpregs->ip = p[0]; |
| gpregs->cs = p[1]; |
| gpregs->flags = p[2]; |
| gpregs->sp = p[3]; |
| gpregs->ss = p[4]; |
| gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| |
| /* |
| * Adjust our frame so that we return straight to the #GP |
| * vector with the expected RSP value. This is safe because |
| * we won't enable interrupts or schedule before we invoke |
| * general_protection, so nothing will clobber the stack |
| * frame we just set up. |
| * |
| * We will enter general_protection with kernel GSBASE, |
| * which is what the stub expects, given that the faulting |
| * RIP will be the IRET instruction. |
| */ |
| regs->ip = (unsigned long)asm_exc_general_protection; |
| regs->sp = (unsigned long)&gpregs->orig_ax; |
| |
| return; |
| } |
| #endif |
| |
| irqentry_nmi_enter(regs); |
| instrumentation_begin(); |
| notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_DF; |
| |
| #ifdef CONFIG_VMAP_STACK |
| /* |
| * If we overflow the stack into a guard page, the CPU will fail |
| * to deliver #PF and will send #DF instead. Similarly, if we |
| * take any non-IST exception while too close to the bottom of |
| * the stack, the processor will get a page fault while |
| * delivering the exception and will generate a double fault. |
| * |
| * According to the SDM (footnote in 6.15 under "Interrupt 14 - |
| * Page-Fault Exception (#PF): |
| * |
| * Processors update CR2 whenever a page fault is detected. If a |
| * second page fault occurs while an earlier page fault is being |
| * delivered, the faulting linear address of the second fault will |
| * overwrite the contents of CR2 (replacing the previous |
| * address). These updates to CR2 occur even if the page fault |
| * results in a double fault or occurs during the delivery of a |
| * double fault. |
| * |
| * The logic below has a small possibility of incorrectly diagnosing |
| * some errors as stack overflows. For example, if the IDT or GDT |
| * gets corrupted such that #GP delivery fails due to a bad descriptor |
| * causing #GP and we hit this condition while CR2 coincidentally |
| * points to the stack guard page, we'll think we overflowed the |
| * stack. Given that we're going to panic one way or another |
| * if this happens, this isn't necessarily worth fixing. |
| * |
| * If necessary, we could improve the test by only diagnosing |
| * a stack overflow if the saved RSP points within 47 bytes of |
| * the bottom of the stack: if RSP == tsk_stack + 48 and we |
| * take an exception, the stack is already aligned and there |
| * will be enough room SS, RSP, RFLAGS, CS, RIP, and a |
| * possible error code, so a stack overflow would *not* double |
| * fault. With any less space left, exception delivery could |
| * fail, and, as a practical matter, we've overflowed the |
| * stack even if the actual trigger for the double fault was |
| * something else. |
| */ |
| if (get_stack_guard_info((void *)address, &info)) |
| handle_stack_overflow(regs, address, &info); |
| #endif |
| |
| pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); |
| die("double fault", regs, error_code); |
| panic("Machine halted."); |
| instrumentation_end(); |
| } |
| |
| DEFINE_IDTENTRY(exc_bounds) |
| { |
| if (notify_die(DIE_TRAP, "bounds", regs, 0, |
| X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| return; |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) |
| die("bounds", regs, 0); |
| |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); |
| |
| cond_local_irq_disable(regs); |
| } |
| |
| enum kernel_gp_hint { |
| GP_NO_HINT, |
| GP_NON_CANONICAL, |
| GP_CANONICAL |
| }; |
| |
| /* |
| * When an uncaught #GP occurs, try to determine the memory address accessed by |
| * the instruction and return that address to the caller. Also, try to figure |
| * out whether any part of the access to that address was non-canonical. |
| */ |
| static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, |
| unsigned long *addr) |
| { |
| u8 insn_buf[MAX_INSN_SIZE]; |
| struct insn insn; |
| int ret; |
| |
| if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, |
| MAX_INSN_SIZE)) |
| return GP_NO_HINT; |
| |
| ret = insn_decode_kernel(&insn, insn_buf); |
| if (ret < 0) |
| return GP_NO_HINT; |
| |
| *addr = (unsigned long)insn_get_addr_ref(&insn, regs); |
| if (*addr == -1UL) |
| return GP_NO_HINT; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Check that: |
| * - the operand is not in the kernel half |
| * - the last byte of the operand is not in the user canonical half |
| */ |
| if (*addr < ~__VIRTUAL_MASK && |
| *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) |
| return GP_NON_CANONICAL; |
| #endif |
| |
| return GP_CANONICAL; |
| } |
| |
| #define GPFSTR "general protection fault" |
| |
| static bool fixup_iopl_exception(struct pt_regs *regs) |
| { |
| struct thread_struct *t = ¤t->thread; |
| unsigned char byte; |
| unsigned long ip; |
| |
| if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) |
| return false; |
| |
| if (insn_get_effective_ip(regs, &ip)) |
| return false; |
| |
| if (get_user(byte, (const char __user *)ip)) |
| return false; |
| |
| if (byte != 0xfa && byte != 0xfb) |
| return false; |
| |
| if (!t->iopl_warn && printk_ratelimit()) { |
| pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", |
| current->comm, task_pid_nr(current), ip); |
| print_vma_addr(KERN_CONT " in ", ip); |
| pr_cont("\n"); |
| t->iopl_warn = 1; |
| } |
| |
| regs->ip += 1; |
| return true; |
| } |
| |
| /* |
| * The unprivileged ENQCMD instruction generates #GPs if the |
| * IA32_PASID MSR has not been populated. If possible, populate |
| * the MSR from a PASID previously allocated to the mm. |
| */ |
| static bool try_fixup_enqcmd_gp(void) |
| { |
| #ifdef CONFIG_ARCH_HAS_CPU_PASID |
| u32 pasid; |
| |
| /* |
| * MSR_IA32_PASID is managed using XSAVE. Directly |
| * writing to the MSR is only possible when fpregs |
| * are valid and the fpstate is not. This is |
| * guaranteed when handling a userspace exception |
| * in *before* interrupts are re-enabled. |
| */ |
| lockdep_assert_irqs_disabled(); |
| |
| /* |
| * Hardware without ENQCMD will not generate |
| * #GPs that can be fixed up here. |
| */ |
| if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) |
| return false; |
| |
| /* |
| * If the mm has not been allocated a |
| * PASID, the #GP can not be fixed up. |
| */ |
| if (!mm_valid_pasid(current->mm)) |
| return false; |
| |
| pasid = mm_get_enqcmd_pasid(current->mm); |
| |
| /* |
| * Did this thread already have its PASID activated? |
| * If so, the #GP must be from something else. |
| */ |
| if (current->pasid_activated) |
| return false; |
| |
| wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); |
| current->pasid_activated = 1; |
| |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, |
| unsigned long error_code, const char *str, |
| unsigned long address) |
| { |
| if (fixup_exception(regs, trapnr, error_code, address)) |
| return true; |
| |
| current->thread.error_code = error_code; |
| current->thread.trap_nr = trapnr; |
| |
| /* |
| * To be potentially processing a kprobe fault and to trust the result |
| * from kprobe_running(), we have to be non-preemptible. |
| */ |
| if (!preemptible() && kprobe_running() && |
| kprobe_fault_handler(regs, trapnr)) |
| return true; |
| |
| return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; |
| } |
| |
| static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, |
| unsigned long error_code, const char *str) |
| { |
| current->thread.error_code = error_code; |
| current->thread.trap_nr = trapnr; |
| show_signal(current, SIGSEGV, "", str, regs, error_code); |
| force_sig(SIGSEGV); |
| } |
| |
| DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) |
| { |
| char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; |
| enum kernel_gp_hint hint = GP_NO_HINT; |
| unsigned long gp_addr; |
| |
| if (user_mode(regs) && try_fixup_enqcmd_gp()) |
| return; |
| |
| cond_local_irq_enable(regs); |
| |
| if (static_cpu_has(X86_FEATURE_UMIP)) { |
| if (user_mode(regs) && fixup_umip_exception(regs)) |
| goto exit; |
| } |
| |
| if (v8086_mode(regs)) { |
| local_irq_enable(); |
| handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| local_irq_disable(); |
| return; |
| } |
| |
| if (user_mode(regs)) { |
| if (fixup_iopl_exception(regs)) |
| goto exit; |
| |
| if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) |
| goto exit; |
| |
| gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); |
| goto exit; |
| } |
| |
| if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) |
| goto exit; |
| |
| if (error_code) |
| snprintf(desc, sizeof(desc), "segment-related " GPFSTR); |
| else |
| hint = get_kernel_gp_address(regs, &gp_addr); |
| |
| if (hint != GP_NO_HINT) |
| snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", |
| (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" |
| : "maybe for address", |
| gp_addr); |
| |
| /* |
| * KASAN is interested only in the non-canonical case, clear it |
| * otherwise. |
| */ |
| if (hint != GP_NON_CANONICAL) |
| gp_addr = 0; |
| |
| die_addr(desc, regs, error_code, gp_addr); |
| |
| exit: |
| cond_local_irq_disable(regs); |
| } |
| |
| static bool do_int3(struct pt_regs *regs) |
| { |
| int res; |
| |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| return true; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_int3_handler(regs)) |
| return true; |
| #endif |
| res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); |
| |
| return res == NOTIFY_STOP; |
| } |
| NOKPROBE_SYMBOL(do_int3); |
| |
| static void do_int3_user(struct pt_regs *regs) |
| { |
| if (do_int3(regs)) |
| return; |
| |
| cond_local_irq_enable(regs); |
| do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); |
| cond_local_irq_disable(regs); |
| } |
| |
| DEFINE_IDTENTRY_RAW(exc_int3) |
| { |
| /* |
| * poke_int3_handler() is completely self contained code; it does (and |
| * must) *NOT* call out to anything, lest it hits upon yet another |
| * INT3. |
| */ |
| if (poke_int3_handler(regs)) |
| return; |
| |
| /* |
| * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() |
| * and therefore can trigger INT3, hence poke_int3_handler() must |
| * be done before. If the entry came from kernel mode, then use |
| * nmi_enter() because the INT3 could have been hit in any context |
| * including NMI. |
| */ |
| if (user_mode(regs)) { |
| irqentry_enter_from_user_mode(regs); |
| instrumentation_begin(); |
| do_int3_user(regs); |
| instrumentation_end(); |
| irqentry_exit_to_user_mode(regs); |
| } else { |
| irqentry_state_t irq_state = irqentry_nmi_enter(regs); |
| |
| instrumentation_begin(); |
| if (!do_int3(regs)) |
| die("int3", regs, 0); |
| instrumentation_end(); |
| irqentry_nmi_exit(regs, irq_state); |
| } |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Help handler running on a per-cpu (IST or entry trampoline) stack |
| * to switch to the normal thread stack if the interrupted code was in |
| * user mode. The actual stack switch is done in entry_64.S |
| */ |
| asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1; |
| if (regs != eregs) |
| *regs = *eregs; |
| return regs; |
| } |
| |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) |
| { |
| unsigned long sp, *stack; |
| struct stack_info info; |
| struct pt_regs *regs_ret; |
| |
| /* |
| * In the SYSCALL entry path the RSP value comes from user-space - don't |
| * trust it and switch to the current kernel stack |
| */ |
| if (ip_within_syscall_gap(regs)) { |
| sp = current_top_of_stack(); |
| goto sync; |
| } |
| |
| /* |
| * From here on the RSP value is trusted. Now check whether entry |
| * happened from a safe stack. Not safe are the entry or unknown stacks, |
| * use the fall-back stack instead in this case. |
| */ |
| sp = regs->sp; |
| stack = (unsigned long *)sp; |
| |
| if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || |
| info.type > STACK_TYPE_EXCEPTION_LAST) |
| sp = __this_cpu_ist_top_va(VC2); |
| |
| sync: |
| /* |
| * Found a safe stack - switch to it as if the entry didn't happen via |
| * IST stack. The code below only copies pt_regs, the real switch happens |
| * in assembly code. |
| */ |
| sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); |
| |
| regs_ret = (struct pt_regs *)sp; |
| *regs_ret = *regs; |
| |
| return regs_ret; |
| } |
| #endif |
| |
| asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) |
| { |
| struct pt_regs tmp, *new_stack; |
| |
| /* |
| * This is called from entry_64.S early in handling a fault |
| * caused by a bad iret to user mode. To handle the fault |
| * correctly, we want to move our stack frame to where it would |
| * be had we entered directly on the entry stack (rather than |
| * just below the IRET frame) and we want to pretend that the |
| * exception came from the IRET target. |
| */ |
| new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| |
| /* Copy the IRET target to the temporary storage. */ |
| __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); |
| |
| /* Copy the remainder of the stack from the current stack. */ |
| __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); |
| |
| /* Update the entry stack */ |
| __memcpy(new_stack, &tmp, sizeof(tmp)); |
| |
| BUG_ON(!user_mode(new_stack)); |
| return new_stack; |
| } |
| #endif |
| |
| static bool is_sysenter_singlestep(struct pt_regs *regs) |
| { |
| /* |
| * We don't try for precision here. If we're anywhere in the region of |
| * code that can be single-stepped in the SYSENTER entry path, then |
| * assume that this is a useless single-step trap due to SYSENTER |
| * being invoked with TF set. (We don't know in advance exactly |
| * which instructions will be hit because BTF could plausibly |
| * be set.) |
| */ |
| #ifdef CONFIG_X86_32 |
| return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < |
| (unsigned long)__end_SYSENTER_singlestep_region - |
| (unsigned long)__begin_SYSENTER_singlestep_region; |
| #elif defined(CONFIG_IA32_EMULATION) |
| return (regs->ip - (unsigned long)entry_SYSENTER_compat) < |
| (unsigned long)__end_entry_SYSENTER_compat - |
| (unsigned long)entry_SYSENTER_compat; |
| #else |
| return false; |
| #endif |
| } |
| |
| static __always_inline unsigned long debug_read_clear_dr6(void) |
| { |
| unsigned long dr6; |
| |
| /* |
| * The Intel SDM says: |
| * |
| * Certain debug exceptions may clear bits 0-3. The remaining |
| * contents of the DR6 register are never cleared by the |
| * processor. To avoid confusion in identifying debug |
| * exceptions, debug handlers should clear the register before |
| * returning to the interrupted task. |
| * |
| * Keep it simple: clear DR6 immediately. |
| */ |
| get_debugreg(dr6, 6); |
| set_debugreg(DR6_RESERVED, 6); |
| dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ |
| |
| return dr6; |
| } |
| |
| /* |
| * Our handling of the processor debug registers is non-trivial. |
| * We do not clear them on entry and exit from the kernel. Therefore |
| * it is possible to get a watchpoint trap here from inside the kernel. |
| * However, the code in ./ptrace.c has ensured that the user can |
| * only set watchpoints on userspace addresses. Therefore the in-kernel |
| * watchpoint trap can only occur in code which is reading/writing |
| * from user space. Such code must not hold kernel locks (since it |
| * can equally take a page fault), therefore it is safe to call |
| * force_sig_info even though that claims and releases locks. |
| * |
| * Code in ./signal.c ensures that the debug control register |
| * is restored before we deliver any signal, and therefore that |
| * user code runs with the correct debug control register even though |
| * we clear it here. |
| * |
| * Being careful here means that we don't have to be as careful in a |
| * lot of more complicated places (task switching can be a bit lazy |
| * about restoring all the debug state, and ptrace doesn't have to |
| * find every occurrence of the TF bit that could be saved away even |
| * by user code) |
| * |
| * May run on IST stack. |
| */ |
| |
| static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) |
| { |
| /* |
| * Notifiers will clear bits in @dr6 to indicate the event has been |
| * consumed - hw_breakpoint_handler(), single_stop_cont(). |
| * |
| * Notifiers will set bits in @virtual_dr6 to indicate the desire |
| * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). |
| */ |
| if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) |
| return true; |
| |
| return false; |
| } |
| |
| static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) |
| { |
| /* |
| * Disable breakpoints during exception handling; recursive exceptions |
| * are exceedingly 'fun'. |
| * |
| * Since this function is NOKPROBE, and that also applies to |
| * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a |
| * HW_BREAKPOINT_W on our stack) |
| * |
| * Entry text is excluded for HW_BP_X and cpu_entry_area, which |
| * includes the entry stack is excluded for everything. |
| * |
| * For FRED, nested #DB should just work fine. But when a watchpoint or |
| * breakpoint is set in the code path which is executed by #DB handler, |
| * it results in an endless recursion and stack overflow. Thus we stay |
| * with the IDT approach, i.e., save DR7 and disable #DB. |
| */ |
| unsigned long dr7 = local_db_save(); |
| irqentry_state_t irq_state = irqentry_nmi_enter(regs); |
| instrumentation_begin(); |
| |
| /* |
| * If something gets miswired and we end up here for a user mode |
| * #DB, we will malfunction. |
| */ |
| WARN_ON_ONCE(user_mode(regs)); |
| |
| if (test_thread_flag(TIF_BLOCKSTEP)) { |
| /* |
| * The SDM says "The processor clears the BTF flag when it |
| * generates a debug exception." but PTRACE_BLOCKSTEP requested |
| * it for userspace, but we just took a kernel #DB, so re-set |
| * BTF. |
| */ |
| unsigned long debugctl; |
| |
| rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| debugctl |= DEBUGCTLMSR_BTF; |
| wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| } |
| |
| /* |
| * Catch SYSENTER with TF set and clear DR_STEP. If this hit a |
| * watchpoint at the same time then that will still be handled. |
| */ |
| if (!cpu_feature_enabled(X86_FEATURE_FRED) && |
| (dr6 & DR_STEP) && is_sysenter_singlestep(regs)) |
| dr6 &= ~DR_STEP; |
| |
| /* |
| * The kernel doesn't use INT1 |
| */ |
| if (!dr6) |
| goto out; |
| |
| if (notify_debug(regs, &dr6)) |
| goto out; |
| |
| /* |
| * The kernel doesn't use TF single-step outside of: |
| * |
| * - Kprobes, consumed through kprobe_debug_handler() |
| * - KGDB, consumed through notify_debug() |
| * |
| * So if we get here with DR_STEP set, something is wonky. |
| * |
| * A known way to trigger this is through QEMU's GDB stub, |
| * which leaks #DB into the guest and causes IST recursion. |
| */ |
| if (WARN_ON_ONCE(dr6 & DR_STEP)) |
| regs->flags &= ~X86_EFLAGS_TF; |
| out: |
| instrumentation_end(); |
| irqentry_nmi_exit(regs, irq_state); |
| |
| local_db_restore(dr7); |
| } |
| |
| static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) |
| { |
| bool icebp; |
| |
| /* |
| * If something gets miswired and we end up here for a kernel mode |
| * #DB, we will malfunction. |
| */ |
| WARN_ON_ONCE(!user_mode(regs)); |
| |
| /* |
| * NB: We can't easily clear DR7 here because |
| * irqentry_exit_to_usermode() can invoke ptrace, schedule, access |
| * user memory, etc. This means that a recursive #DB is possible. If |
| * this happens, that #DB will hit exc_debug_kernel() and clear DR7. |
| * Since we're not on the IST stack right now, everything will be |
| * fine. |
| */ |
| |
| irqentry_enter_from_user_mode(regs); |
| instrumentation_begin(); |
| |
| /* |
| * Start the virtual/ptrace DR6 value with just the DR_STEP mask |
| * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. |
| * |
| * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) |
| * even if it is not the result of PTRACE_SINGLESTEP. |
| */ |
| current->thread.virtual_dr6 = (dr6 & DR_STEP); |
| |
| /* |
| * The SDM says "The processor clears the BTF flag when it |
| * generates a debug exception." Clear TIF_BLOCKSTEP to keep |
| * TIF_BLOCKSTEP in sync with the hardware BTF flag. |
| */ |
| clear_thread_flag(TIF_BLOCKSTEP); |
| |
| /* |
| * If dr6 has no reason to give us about the origin of this trap, |
| * then it's very likely the result of an icebp/int01 trap. |
| * User wants a sigtrap for that. |
| */ |
| icebp = !dr6; |
| |
| if (notify_debug(regs, &dr6)) |
| goto out; |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| local_irq_enable(); |
| |
| if (v8086_mode(regs)) { |
| handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); |
| goto out_irq; |
| } |
| |
| /* #DB for bus lock can only be triggered from userspace. */ |
| if (dr6 & DR_BUS_LOCK) |
| handle_bus_lock(regs); |
| |
| /* Add the virtual_dr6 bits for signals. */ |
| dr6 |= current->thread.virtual_dr6; |
| if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) |
| send_sigtrap(regs, 0, get_si_code(dr6)); |
| |
| out_irq: |
| local_irq_disable(); |
| out: |
| instrumentation_end(); |
| irqentry_exit_to_user_mode(regs); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* IST stack entry */ |
| DEFINE_IDTENTRY_DEBUG(exc_debug) |
| { |
| exc_debug_kernel(regs, debug_read_clear_dr6()); |
| } |
| |
| /* User entry, runs on regular task stack */ |
| DEFINE_IDTENTRY_DEBUG_USER(exc_debug) |
| { |
| exc_debug_user(regs, debug_read_clear_dr6()); |
| } |
| |
| #ifdef CONFIG_X86_FRED |
| /* |
| * When occurred on different ring level, i.e., from user or kernel |
| * context, #DB needs to be handled on different stack: User #DB on |
| * current task stack, while kernel #DB on a dedicated stack. |
| * |
| * This is exactly how FRED event delivery invokes an exception |
| * handler: ring 3 event on level 0 stack, i.e., current task stack; |
| * ring 0 event on the #DB dedicated stack specified in the |
| * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception |
| * entry stub doesn't do stack switch. |
| */ |
| DEFINE_FREDENTRY_DEBUG(exc_debug) |
| { |
| /* |
| * FRED #DB stores DR6 on the stack in the format which |
| * debug_read_clear_dr6() returns for the IDT entry points. |
| */ |
| unsigned long dr6 = fred_event_data(regs); |
| |
| if (user_mode(regs)) |
| exc_debug_user(regs, dr6); |
| else |
| exc_debug_kernel(regs, dr6); |
| } |
| #endif /* CONFIG_X86_FRED */ |
| |
| #else |
| /* 32 bit does not have separate entry points. */ |
| DEFINE_IDTENTRY_RAW(exc_debug) |
| { |
| unsigned long dr6 = debug_read_clear_dr6(); |
| |
| if (user_mode(regs)) |
| exc_debug_user(regs, dr6); |
| else |
| exc_debug_kernel(regs, dr6); |
| } |
| #endif |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| static void math_error(struct pt_regs *regs, int trapnr) |
| { |
| struct task_struct *task = current; |
| struct fpu *fpu = &task->thread.fpu; |
| int si_code; |
| char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| "simd exception"; |
| |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr, 0, 0)) |
| goto exit; |
| |
| task->thread.error_code = 0; |
| task->thread.trap_nr = trapnr; |
| |
| if (notify_die(DIE_TRAP, str, regs, 0, trapnr, |
| SIGFPE) != NOTIFY_STOP) |
| die(str, regs, 0); |
| goto exit; |
| } |
| |
| /* |
| * Synchronize the FPU register state to the memory register state |
| * if necessary. This allows the exception handler to inspect it. |
| */ |
| fpu_sync_fpstate(fpu); |
| |
| task->thread.trap_nr = trapnr; |
| task->thread.error_code = 0; |
| |
| si_code = fpu__exception_code(fpu, trapnr); |
| /* Retry when we get spurious exceptions: */ |
| if (!si_code) |
| goto exit; |
| |
| if (fixup_vdso_exception(regs, trapnr, 0, 0)) |
| goto exit; |
| |
| force_sig_fault(SIGFPE, si_code, |
| (void __user *)uprobe_get_trap_addr(regs)); |
| exit: |
| cond_local_irq_disable(regs); |
| } |
| |
| DEFINE_IDTENTRY(exc_coprocessor_error) |
| { |
| math_error(regs, X86_TRAP_MF); |
| } |
| |
| DEFINE_IDTENTRY(exc_simd_coprocessor_error) |
| { |
| if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { |
| /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ |
| if (!static_cpu_has(X86_FEATURE_XMM)) { |
| __exc_general_protection(regs, 0); |
| return; |
| } |
| } |
| math_error(regs, X86_TRAP_XF); |
| } |
| |
| DEFINE_IDTENTRY(exc_spurious_interrupt_bug) |
| { |
| /* |
| * This addresses a Pentium Pro Erratum: |
| * |
| * PROBLEM: If the APIC subsystem is configured in mixed mode with |
| * Virtual Wire mode implemented through the local APIC, an |
| * interrupt vector of 0Fh (Intel reserved encoding) may be |
| * generated by the local APIC (Int 15). This vector may be |
| * generated upon receipt of a spurious interrupt (an interrupt |
| * which is removed before the system receives the INTA sequence) |
| * instead of the programmed 8259 spurious interrupt vector. |
| * |
| * IMPLICATION: The spurious interrupt vector programmed in the |
| * 8259 is normally handled by an operating system's spurious |
| * interrupt handler. However, a vector of 0Fh is unknown to some |
| * operating systems, which would crash if this erratum occurred. |
| * |
| * In theory this could be limited to 32bit, but the handler is not |
| * hurting and who knows which other CPUs suffer from this. |
| */ |
| } |
| |
| static bool handle_xfd_event(struct pt_regs *regs) |
| { |
| u64 xfd_err; |
| int err; |
| |
| if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) |
| return false; |
| |
| rdmsrl(MSR_IA32_XFD_ERR, xfd_err); |
| if (!xfd_err) |
| return false; |
| |
| wrmsrl(MSR_IA32_XFD_ERR, 0); |
| |
| /* Die if that happens in kernel space */ |
| if (WARN_ON(!user_mode(regs))) |
| return false; |
| |
| local_irq_enable(); |
| |
| err = xfd_enable_feature(xfd_err); |
| |
| switch (err) { |
| case -EPERM: |
| force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); |
| break; |
| case -EFAULT: |
| force_sig(SIGSEGV); |
| break; |
| } |
| |
| local_irq_disable(); |
| return true; |
| } |
| |
| DEFINE_IDTENTRY(exc_device_not_available) |
| { |
| unsigned long cr0 = read_cr0(); |
| |
| if (handle_xfd_event(regs)) |
| return; |
| |
| #ifdef CONFIG_MATH_EMULATION |
| if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { |
| struct math_emu_info info = { }; |
| |
| cond_local_irq_enable(regs); |
| |
| info.regs = regs; |
| math_emulate(&info); |
| |
| cond_local_irq_disable(regs); |
| return; |
| } |
| #endif |
| |
| /* This should not happen. */ |
| if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { |
| /* Try to fix it up and carry on. */ |
| write_cr0(cr0 & ~X86_CR0_TS); |
| } else { |
| /* |
| * Something terrible happened, and we're better off trying |
| * to kill the task than getting stuck in a never-ending |
| * loop of #NM faults. |
| */ |
| die("unexpected #NM exception", regs, 0); |
| } |
| } |
| |
| #ifdef CONFIG_INTEL_TDX_GUEST |
| |
| #define VE_FAULT_STR "VE fault" |
| |
| static void ve_raise_fault(struct pt_regs *regs, long error_code, |
| unsigned long address) |
| { |
| if (user_mode(regs)) { |
| gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); |
| return; |
| } |
| |
| if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, |
| VE_FAULT_STR, address)) { |
| return; |
| } |
| |
| die_addr(VE_FAULT_STR, regs, error_code, address); |
| } |
| |
| /* |
| * Virtualization Exceptions (#VE) are delivered to TDX guests due to |
| * specific guest actions which may happen in either user space or the |
| * kernel: |
| * |
| * * Specific instructions (WBINVD, for example) |
| * * Specific MSR accesses |
| * * Specific CPUID leaf accesses |
| * * Access to specific guest physical addresses |
| * |
| * In the settings that Linux will run in, virtualization exceptions are |
| * never generated on accesses to normal, TD-private memory that has been |
| * accepted (by BIOS or with tdx_enc_status_changed()). |
| * |
| * Syscall entry code has a critical window where the kernel stack is not |
| * yet set up. Any exception in this window leads to hard to debug issues |
| * and can be exploited for privilege escalation. Exceptions in the NMI |
| * entry code also cause issues. Returning from the exception handler with |
| * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. |
| * |
| * For these reasons, the kernel avoids #VEs during the syscall gap and |
| * the NMI entry code. Entry code paths do not access TD-shared memory, |
| * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves |
| * that might generate #VE. VMM can remove memory from TD at any point, |
| * but access to unaccepted (or missing) private memory leads to VM |
| * termination, not to #VE. |
| * |
| * Similarly to page faults and breakpoints, #VEs are allowed in NMI |
| * handlers once the kernel is ready to deal with nested NMIs. |
| * |
| * During #VE delivery, all interrupts, including NMIs, are blocked until |
| * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads |
| * the VE info. |
| * |
| * If a guest kernel action which would normally cause a #VE occurs in |
| * the interrupt-disabled region before TDGETVEINFO, a #DF (fault |
| * exception) is delivered to the guest which will result in an oops. |
| * |
| * The entry code has been audited carefully for following these expectations. |
| * Changes in the entry code have to be audited for correctness vs. this |
| * aspect. Similarly to #PF, #VE in these places will expose kernel to |
| * privilege escalation or may lead to random crashes. |
| */ |
| DEFINE_IDTENTRY(exc_virtualization_exception) |
| { |
| struct ve_info ve; |
| |
| /* |
| * NMIs/Machine-checks/Interrupts will be in a disabled state |
| * till TDGETVEINFO TDCALL is executed. This ensures that VE |
| * info cannot be overwritten by a nested #VE. |
| */ |
| tdx_get_ve_info(&ve); |
| |
| cond_local_irq_enable(regs); |
| |
| /* |
| * If tdx_handle_virt_exception() could not process |
| * it successfully, treat it as #GP(0) and handle it. |
| */ |
| if (!tdx_handle_virt_exception(regs, &ve)) |
| ve_raise_fault(regs, 0, ve.gla); |
| |
| cond_local_irq_disable(regs); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_X86_32 |
| DEFINE_IDTENTRY_SW(iret_error) |
| { |
| local_irq_enable(); |
| if (notify_die(DIE_TRAP, "iret exception", regs, 0, |
| X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, |
| ILL_BADSTK, (void __user *)NULL); |
| } |
| local_irq_disable(); |
| } |
| #endif |
| |
| void __init trap_init(void) |
| { |
| /* Init cpu_entry_area before IST entries are set up */ |
| setup_cpu_entry_areas(); |
| |
| /* Init GHCB memory pages when running as an SEV-ES guest */ |
| sev_es_init_vc_handling(); |
| |
| /* Initialize TSS before setting up traps so ISTs work */ |
| cpu_init_exception_handling(true); |
| |
| /* Setup traps as cpu_init() might #GP */ |
| if (!cpu_feature_enabled(X86_FEATURE_FRED)) |
| idt_setup_traps(); |
| |
| cpu_init(); |
| } |