| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * STM32 DMA3 controller driver |
| * |
| * Copyright (C) STMicroelectronics 2024 |
| * Author(s): Amelie Delaunay <amelie.delaunay@foss.st.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/init.h> |
| #include <linux/iopoll.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| |
| #include "../virt-dma.h" |
| |
| #define STM32_DMA3_SECCFGR 0x00 |
| #define STM32_DMA3_PRIVCFGR 0x04 |
| #define STM32_DMA3_RCFGLOCKR 0x08 |
| #define STM32_DMA3_MISR 0x0c |
| #define STM32_DMA3_SMISR 0x10 |
| |
| #define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x)) |
| #define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x)) |
| #define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x)) |
| #define STM32_DMA3_CFCR(x) (0x5c + 0x80 * (x)) |
| #define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x)) |
| #define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x)) |
| #define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x)) |
| #define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x)) |
| #define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x)) |
| #define STM32_DMA3_CSAR(x) (0x9c + 0x80 * (x)) |
| #define STM32_DMA3_CDAR(x) (0xa0 + 0x80 * (x)) |
| #define STM32_DMA3_CLLR(x) (0xcc + 0x80 * (x)) |
| |
| #define STM32_DMA3_HWCFGR13 0xfc0 /* G_PER_CTRL(X) x=8..15 */ |
| #define STM32_DMA3_HWCFGR12 0xfc4 /* G_PER_CTRL(X) x=0..7 */ |
| #define STM32_DMA3_HWCFGR4 0xfe4 /* G_FIFO_SIZE(X) x=8..15 */ |
| #define STM32_DMA3_HWCFGR3 0xfe8 /* G_FIFO_SIZE(X) x=0..7 */ |
| #define STM32_DMA3_HWCFGR2 0xfec /* G_MAX_REQ_ID */ |
| #define STM32_DMA3_HWCFGR1 0xff0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */ |
| #define STM32_DMA3_VERR 0xff4 |
| |
| /* SECCFGR DMA secure configuration register */ |
| #define SECCFGR_SEC(x) BIT(x) |
| |
| /* MISR DMA non-secure/secure masked interrupt status register */ |
| #define MISR_MIS(x) BIT(x) |
| |
| /* CxLBAR DMA channel x linked_list base address register */ |
| #define CLBAR_LBA GENMASK(31, 16) |
| |
| /* CxCIDCFGR DMA channel x CID register */ |
| #define CCIDCFGR_CFEN BIT(0) |
| #define CCIDCFGR_SEM_EN BIT(1) |
| #define CCIDCFGR_SCID GENMASK(5, 4) |
| #define CCIDCFGR_SEM_WLIST_CID0 BIT(16) |
| #define CCIDCFGR_SEM_WLIST_CID1 BIT(17) |
| #define CCIDCFGR_SEM_WLIST_CID2 BIT(18) |
| |
| enum ccidcfgr_cid { |
| CCIDCFGR_CID0, |
| CCIDCFGR_CID1, |
| CCIDCFGR_CID2, |
| }; |
| |
| /* CxSEMCR DMA channel x semaphore control register */ |
| #define CSEMCR_SEM_MUTEX BIT(0) |
| #define CSEMCR_SEM_CCID GENMASK(5, 4) |
| |
| /* CxFCR DMA channel x flag clear register */ |
| #define CFCR_TCF BIT(8) |
| #define CFCR_HTF BIT(9) |
| #define CFCR_DTEF BIT(10) |
| #define CFCR_ULEF BIT(11) |
| #define CFCR_USEF BIT(12) |
| #define CFCR_SUSPF BIT(13) |
| |
| /* CxSR DMA channel x status register */ |
| #define CSR_IDLEF BIT(0) |
| #define CSR_TCF BIT(8) |
| #define CSR_HTF BIT(9) |
| #define CSR_DTEF BIT(10) |
| #define CSR_ULEF BIT(11) |
| #define CSR_USEF BIT(12) |
| #define CSR_SUSPF BIT(13) |
| #define CSR_ALL_F GENMASK(13, 8) |
| #define CSR_FIFOL GENMASK(24, 16) |
| |
| /* CxCR DMA channel x control register */ |
| #define CCR_EN BIT(0) |
| #define CCR_RESET BIT(1) |
| #define CCR_SUSP BIT(2) |
| #define CCR_TCIE BIT(8) |
| #define CCR_HTIE BIT(9) |
| #define CCR_DTEIE BIT(10) |
| #define CCR_ULEIE BIT(11) |
| #define CCR_USEIE BIT(12) |
| #define CCR_SUSPIE BIT(13) |
| #define CCR_ALLIE GENMASK(13, 8) |
| #define CCR_LSM BIT(16) |
| #define CCR_LAP BIT(17) |
| #define CCR_PRIO GENMASK(23, 22) |
| |
| enum ccr_prio { |
| CCR_PRIO_LOW, |
| CCR_PRIO_MID, |
| CCR_PRIO_HIGH, |
| CCR_PRIO_VERY_HIGH, |
| }; |
| |
| /* CxTR1 DMA channel x transfer register 1 */ |
| #define CTR1_SINC BIT(3) |
| #define CTR1_SBL_1 GENMASK(9, 4) |
| #define CTR1_DINC BIT(19) |
| #define CTR1_DBL_1 GENMASK(25, 20) |
| #define CTR1_SDW_LOG2 GENMASK(1, 0) |
| #define CTR1_PAM GENMASK(12, 11) |
| #define CTR1_SAP BIT(14) |
| #define CTR1_DDW_LOG2 GENMASK(17, 16) |
| #define CTR1_DAP BIT(30) |
| |
| enum ctr1_dw { |
| CTR1_DW_BYTE, |
| CTR1_DW_HWORD, |
| CTR1_DW_WORD, |
| CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */ |
| }; |
| |
| enum ctr1_pam { |
| CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */ |
| CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */ |
| CTR1_PAM_PACK_UNPACK, /* FIFO queued */ |
| }; |
| |
| /* CxTR2 DMA channel x transfer register 2 */ |
| #define CTR2_REQSEL GENMASK(7, 0) |
| #define CTR2_SWREQ BIT(9) |
| #define CTR2_DREQ BIT(10) |
| #define CTR2_BREQ BIT(11) |
| #define CTR2_PFREQ BIT(12) |
| #define CTR2_TCEM GENMASK(31, 30) |
| |
| enum ctr2_tcem { |
| CTR2_TCEM_BLOCK, |
| CTR2_TCEM_REPEAT_BLOCK, |
| CTR2_TCEM_LLI, |
| CTR2_TCEM_CHANNEL, |
| }; |
| |
| /* CxBR1 DMA channel x block register 1 */ |
| #define CBR1_BNDT GENMASK(15, 0) |
| |
| /* CxLLR DMA channel x linked-list address register */ |
| #define CLLR_LA GENMASK(15, 2) |
| #define CLLR_ULL BIT(16) |
| #define CLLR_UDA BIT(27) |
| #define CLLR_USA BIT(28) |
| #define CLLR_UB1 BIT(29) |
| #define CLLR_UT2 BIT(30) |
| #define CLLR_UT1 BIT(31) |
| |
| /* HWCFGR13 DMA hardware configuration register 13 x=8..15 */ |
| /* HWCFGR12 DMA hardware configuration register 12 x=0..7 */ |
| #define G_PER_CTRL(x) (ULL(0x1) << (4 * (x))) |
| |
| /* HWCFGR4 DMA hardware configuration register 4 x=8..15 */ |
| /* HWCFGR3 DMA hardware configuration register 3 x=0..7 */ |
| #define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x))) |
| |
| #define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x))) |
| |
| /* HWCFGR2 DMA hardware configuration register 2 */ |
| #define G_MAX_REQ_ID GENMASK(7, 0) |
| |
| /* HWCFGR1 DMA hardware configuration register 1 */ |
| #define G_MASTER_PORTS GENMASK(2, 0) |
| #define G_NUM_CHANNELS GENMASK(12, 8) |
| #define G_M0_DATA_WIDTH_ENC GENMASK(25, 24) |
| #define G_M1_DATA_WIDTH_ENC GENMASK(29, 28) |
| |
| enum stm32_dma3_master_ports { |
| AXI64, /* 1x AXI: 64-bit port 0 */ |
| AHB32, /* 1x AHB: 32-bit port 0 */ |
| AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */ |
| AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */ |
| AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */ |
| AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */ |
| }; |
| |
| enum stm32_dma3_port_data_width { |
| DW_32, /* 32-bit, for AHB */ |
| DW_64, /* 64-bit, for AXI */ |
| DW_128, /* 128-bit, for AXI */ |
| DW_INVALID, |
| }; |
| |
| /* VERR DMA version register */ |
| #define VERR_MINREV GENMASK(3, 0) |
| #define VERR_MAJREV GENMASK(7, 4) |
| |
| /* Device tree */ |
| /* struct stm32_dma3_dt_conf */ |
| /* .ch_conf */ |
| #define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */ |
| #define STM32_DMA3_DT_FIFO GENMASK(7, 4) |
| /* .tr_conf */ |
| #define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */ |
| #define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */ |
| #define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */ |
| #define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */ |
| #define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */ |
| #define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */ |
| #define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */ |
| |
| /* struct stm32_dma3_chan .config_set bitfield */ |
| #define STM32_DMA3_CFG_SET_DT BIT(0) |
| #define STM32_DMA3_CFG_SET_DMA BIT(1) |
| #define STM32_DMA3_CFG_SET_BOTH (STM32_DMA3_CFG_SET_DT | STM32_DMA3_CFG_SET_DMA) |
| |
| #define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64) |
| #define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ |
| ((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); }) |
| #define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ |
| ((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); }) |
| #define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \ |
| (maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \ |
| DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES) |
| |
| /* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */ |
| struct stm32_dma3_hwdesc { |
| u32 ctr1; |
| u32 ctr2; |
| u32 cbr1; |
| u32 csar; |
| u32 cdar; |
| u32 cllr; |
| } __packed __aligned(32); |
| |
| /* |
| * CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed |
| * by the pointer to the next linked-list data structure. The __aligned forces the 32-byte |
| * alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents |
| * the sg size limitation. |
| */ |
| #define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE) |
| |
| /* |
| * Linked-list items |
| */ |
| struct stm32_dma3_lli { |
| struct stm32_dma3_hwdesc *hwdesc; |
| dma_addr_t hwdesc_addr; |
| }; |
| |
| struct stm32_dma3_swdesc { |
| struct virt_dma_desc vdesc; |
| u32 ccr; |
| bool cyclic; |
| u32 lli_size; |
| struct stm32_dma3_lli lli[] __counted_by(lli_size); |
| }; |
| |
| struct stm32_dma3_dt_conf { |
| u32 ch_id; |
| u32 req_line; |
| u32 ch_conf; |
| u32 tr_conf; |
| }; |
| |
| struct stm32_dma3_chan { |
| struct virt_dma_chan vchan; |
| u32 id; |
| int irq; |
| u32 fifo_size; |
| u32 max_burst; |
| bool semaphore_mode; |
| struct stm32_dma3_dt_conf dt_config; |
| struct dma_slave_config dma_config; |
| u8 config_set; |
| struct dma_pool *lli_pool; |
| struct stm32_dma3_swdesc *swdesc; |
| enum ctr2_tcem tcem; |
| u32 dma_status; |
| }; |
| |
| struct stm32_dma3_ddata { |
| struct dma_device dma_dev; |
| void __iomem *base; |
| struct clk *clk; |
| struct stm32_dma3_chan *chans; |
| u32 dma_channels; |
| u32 dma_requests; |
| enum stm32_dma3_port_data_width ports_max_dw[2]; |
| }; |
| |
| static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan) |
| { |
| return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev); |
| } |
| |
| static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c) |
| { |
| return container_of(c, struct stm32_dma3_chan, vchan.chan); |
| } |
| |
| static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc) |
| { |
| return container_of(vdesc, struct stm32_dma3_swdesc, vdesc); |
| } |
| |
| static struct device *chan2dev(struct stm32_dma3_chan *chan) |
| { |
| return &chan->vchan.chan.dev->device; |
| } |
| |
| static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct device *dev = chan2dev(chan); |
| u32 id = chan->id, offset; |
| |
| offset = STM32_DMA3_SECCFGR; |
| dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_PRIVCFGR; |
| dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CCIDCFGR(id); |
| dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CSEMCR(id); |
| dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CSR(id); |
| dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CCR(id); |
| dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CTR1(id); |
| dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CTR2(id); |
| dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CBR1(id); |
| dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CSAR(id); |
| dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CDAR(id); |
| dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CLLR(id); |
| dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| offset = STM32_DMA3_CLBAR(id); |
| dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); |
| } |
| |
| static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan, |
| struct stm32_dma3_swdesc *swdesc) |
| { |
| struct stm32_dma3_hwdesc *hwdesc; |
| int i; |
| |
| for (i = 0; i < swdesc->lli_size; i++) { |
| hwdesc = swdesc->lli[i].hwdesc; |
| if (i) |
| dev_dbg(chan2dev(chan), "V\n"); |
| dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr); |
| dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1); |
| dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2); |
| dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1); |
| dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar); |
| dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar); |
| dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr); |
| } |
| |
| if (swdesc->cyclic) { |
| dev_dbg(chan2dev(chan), "|\n"); |
| dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr); |
| } else { |
| dev_dbg(chan2dev(chan), "X\n"); |
| } |
| } |
| |
| static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct stm32_dma3_swdesc *swdesc; |
| int i; |
| |
| /* |
| * If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes |
| * aligned) is greater than the maximum address of CLLR_LA, then the last items can't be |
| * addressed, so abort the allocation. |
| */ |
| if ((count * 32) > CLLR_LA) { |
| dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE); |
| return NULL; |
| } |
| |
| swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT); |
| if (!swdesc) |
| return NULL; |
| swdesc->lli_size = count; |
| |
| for (i = 0; i < count; i++) { |
| swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT, |
| &swdesc->lli[i].hwdesc_addr); |
| if (!swdesc->lli[i].hwdesc) |
| goto err_pool_free; |
| } |
| swdesc->ccr = 0; |
| |
| /* Set LL base address */ |
| writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA, |
| ddata->base + STM32_DMA3_CLBAR(chan->id)); |
| |
| /* Set LL allocated port */ |
| swdesc->ccr &= ~CCR_LAP; |
| |
| return swdesc; |
| |
| err_pool_free: |
| dev_err(chan2dev(chan), "Failed to alloc descriptors\n"); |
| while (--i >= 0) |
| dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); |
| kfree(swdesc); |
| |
| return NULL; |
| } |
| |
| static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan, |
| struct stm32_dma3_swdesc *swdesc) |
| { |
| int i; |
| |
| for (i = 0; i < swdesc->lli_size; i++) |
| dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); |
| |
| kfree(swdesc); |
| } |
| |
| static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc) |
| { |
| struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc); |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan); |
| |
| stm32_dma3_chan_desc_free(chan, swdesc); |
| } |
| |
| static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct device *dev = chan2dev(chan); |
| u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id)); |
| u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id)); |
| u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id)); |
| u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id)); |
| u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id)); |
| u32 bndt = FIELD_GET(CBR1_BNDT, cbr1); |
| u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1); |
| u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1); |
| u32 sap = FIELD_GET(CTR1_SAP, ctr1); |
| u32 dap = FIELD_GET(CTR1_DAP, ctr1); |
| |
| if (!bndt && !FIELD_GET(CLLR_UB1, cllr)) |
| dev_err(dev, "null source block size and no update of this value\n"); |
| if (bndt % sdw) |
| dev_err(dev, "source block size not multiple of src data width\n"); |
| if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw) |
| dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n"); |
| if (csar % sdw) |
| dev_err(dev, "unaligned source address not multiple of src data width\n"); |
| if (cdar % ddw) |
| dev_err(dev, "unaligned destination address not multiple of dst data width\n"); |
| if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap])) |
| dev_err(dev, "double-word source data width not supported on port %u\n", sap); |
| if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap])) |
| dev_err(dev, "double-word destination data width not supported on port %u\n", dap); |
| } |
| |
| static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan, |
| struct stm32_dma3_swdesc *swdesc, |
| u32 curr, dma_addr_t src, dma_addr_t dst, u32 len, |
| u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic) |
| { |
| struct stm32_dma3_hwdesc *hwdesc; |
| dma_addr_t next_lli; |
| u32 next = curr + 1; |
| |
| hwdesc = swdesc->lli[curr].hwdesc; |
| hwdesc->ctr1 = ctr1; |
| hwdesc->ctr2 = ctr2; |
| hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len); |
| hwdesc->csar = src; |
| hwdesc->cdar = dst; |
| |
| if (is_last) { |
| if (is_cyclic) |
| next_lli = swdesc->lli[0].hwdesc_addr; |
| else |
| next_lli = 0; |
| } else { |
| next_lli = swdesc->lli[next].hwdesc_addr; |
| } |
| |
| hwdesc->cllr = 0; |
| if (next_lli) { |
| hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1; |
| hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL; |
| hwdesc->cllr |= (next_lli & CLLR_LA); |
| } |
| |
| /* |
| * Make sure to flush the CPU's write buffers so that the descriptors are ready to be read |
| * by DMA3. By explicitly using a write memory barrier here, instead of doing it with writel |
| * to enable the channel, we avoid an unnecessary barrier in the case where the descriptors |
| * are reused (DMA_CTRL_REUSE). |
| */ |
| if (is_last) |
| dma_wmb(); |
| } |
| |
| static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst, |
| enum stm32_dma3_port_data_width port_max_dw, |
| u32 len, dma_addr_t addr) |
| { |
| enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst); |
| |
| /* len and addr must be a multiple of dw */ |
| return 1 << __ffs(len | addr | max_dw); |
| } |
| |
| static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst) |
| { |
| u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1; |
| |
| /* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */ |
| if (len < chan_max_burst) |
| max_burst = len / dw; |
| |
| /* |
| * HW doesn't modify the burst if burst size <= half of the fifo size. |
| * If len is not a multiple of burst size, last burst is shortened by HW. |
| */ |
| return max_burst; |
| } |
| |
| static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir, |
| u32 *ccr, u32 *ctr1, u32 *ctr2, |
| dma_addr_t src_addr, dma_addr_t dst_addr, u32 len) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct dma_device dma_device = ddata->dma_dev; |
| u32 sdw, ddw, sbl_max, dbl_max, tcem, init_dw, init_bl_max; |
| u32 _ctr1 = 0, _ctr2 = 0; |
| u32 ch_conf = chan->dt_config.ch_conf; |
| u32 tr_conf = chan->dt_config.tr_conf; |
| u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw; |
| u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw; |
| |
| dev_dbg(chan2dev(chan), "%s from %pad to %pad\n", |
| dmaengine_get_direction_text(dir), &src_addr, &dst_addr); |
| |
| sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst); |
| ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst); |
| sbl_max = chan->dma_config.src_maxburst ? : 1; |
| dbl_max = chan->dma_config.dst_maxburst ? : 1; |
| |
| /* Following conditions would raise User Setting Error interrupt */ |
| if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) { |
| dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw); |
| return -EINVAL; |
| } |
| |
| if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) { |
| dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n"); |
| return -EINVAL; |
| } |
| |
| sap_max_dw = ddata->ports_max_dw[sap]; |
| dap_max_dw = ddata->ports_max_dw[dap]; |
| if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) || |
| (port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) { |
| dev_err(chan2dev(chan), |
| "8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n", |
| sdw, ddw, sap, dap); |
| return -EINVAL; |
| } |
| |
| if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf)) |
| _ctr1 |= CTR1_SINC; |
| if (sap) |
| _ctr1 |= CTR1_SAP; |
| if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf)) |
| _ctr1 |= CTR1_DINC; |
| if (dap) |
| _ctr1 |= CTR1_DAP; |
| |
| _ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ; |
| if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf)) |
| _ctr2 |= CTR2_BREQ; |
| if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf)) |
| _ctr2 |= CTR2_PFREQ; |
| tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf); |
| _ctr2 |= FIELD_PREP(CTR2_TCEM, tcem); |
| |
| /* Store TCEM to know on which event TC flag occurred */ |
| chan->tcem = tcem; |
| /* Store direction for residue computation */ |
| chan->dma_config.direction = dir; |
| |
| switch (dir) { |
| case DMA_MEM_TO_DEV: |
| /* Set destination (device) data width and burst */ |
| ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, |
| len, dst_addr)); |
| dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst)); |
| |
| /* Set source (memory) data width and burst */ |
| sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr); |
| sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst); |
| |
| _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); |
| _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); |
| _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); |
| _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); |
| |
| if (ddw != sdw) { |
| _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); |
| /* Should never reach this case as ddw is clamped down */ |
| if (len & (ddw - 1)) { |
| dev_err(chan2dev(chan), |
| "Packing mode is enabled and len is not multiple of ddw"); |
| return -EINVAL; |
| } |
| } |
| |
| /* dst = dev */ |
| _ctr2 |= CTR2_DREQ; |
| |
| break; |
| |
| case DMA_DEV_TO_MEM: |
| /* Set source (device) data width and burst */ |
| sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, |
| len, src_addr)); |
| sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst)); |
| |
| /* Set destination (memory) data width and burst */ |
| ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr); |
| dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst); |
| |
| _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); |
| _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); |
| _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); |
| _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); |
| |
| if (ddw != sdw) { |
| _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); |
| /* Should never reach this case as ddw is clamped down */ |
| if (len & (ddw - 1)) { |
| dev_err(chan2dev(chan), |
| "Packing mode is enabled and len is not multiple of ddw\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* dst = mem */ |
| _ctr2 &= ~CTR2_DREQ; |
| |
| break; |
| |
| case DMA_MEM_TO_MEM: |
| /* Set source (memory) data width and burst */ |
| init_dw = sdw; |
| init_bl_max = sbl_max; |
| sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr); |
| sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst); |
| if (chan->config_set & STM32_DMA3_CFG_SET_DMA) { |
| sdw = min_t(u32, init_dw, sdw); |
| sbl_max = min_t(u32, init_bl_max, |
| stm32_dma3_get_max_burst(len, sdw, chan->max_burst)); |
| } |
| |
| /* Set destination (memory) data width and burst */ |
| init_dw = ddw; |
| init_bl_max = dbl_max; |
| ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr); |
| dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst); |
| if (chan->config_set & STM32_DMA3_CFG_SET_DMA) { |
| ddw = min_t(u32, init_dw, ddw); |
| dbl_max = min_t(u32, init_bl_max, |
| stm32_dma3_get_max_burst(len, ddw, chan->max_burst)); |
| } |
| |
| _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); |
| _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); |
| _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); |
| _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); |
| |
| if (ddw != sdw) { |
| _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); |
| /* Should never reach this case as ddw is clamped down */ |
| if (len & (ddw - 1)) { |
| dev_err(chan2dev(chan), |
| "Packing mode is enabled and len is not multiple of ddw"); |
| return -EINVAL; |
| } |
| } |
| |
| /* CTR2_REQSEL/DREQ/BREQ/PFREQ are ignored with CTR2_SWREQ=1 */ |
| _ctr2 |= CTR2_SWREQ; |
| |
| break; |
| |
| default: |
| dev_err(chan2dev(chan), "Direction %s not supported\n", |
| dmaengine_get_direction_text(dir)); |
| return -EINVAL; |
| } |
| |
| *ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf)); |
| *ctr1 = _ctr1; |
| *ctr2 = _ctr2; |
| |
| dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n", |
| __func__, sdw, sbl_max, ddw, dbl_max); |
| |
| return 0; |
| } |
| |
| static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct virt_dma_desc *vdesc; |
| struct stm32_dma3_hwdesc *hwdesc; |
| u32 id = chan->id; |
| u32 csr, ccr; |
| |
| vdesc = vchan_next_desc(&chan->vchan); |
| if (!vdesc) { |
| chan->swdesc = NULL; |
| return; |
| } |
| list_del(&vdesc->node); |
| |
| chan->swdesc = to_stm32_dma3_swdesc(vdesc); |
| hwdesc = chan->swdesc->lli[0].hwdesc; |
| |
| stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc); |
| |
| writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id)); |
| writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id)); |
| writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id)); |
| writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id)); |
| writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id)); |
| writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id)); |
| writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id)); |
| |
| /* Clear any pending interrupts */ |
| csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id)); |
| if (csr & CSR_ALL_F) |
| writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id)); |
| |
| stm32_dma3_chan_dump_reg(chan); |
| |
| ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id)); |
| writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id)); |
| |
| chan->dma_status = DMA_IN_PROGRESS; |
| |
| dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); |
| } |
| |
| static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; |
| int ret = 0; |
| |
| if (susp) |
| ccr |= CCR_SUSP; |
| else |
| ccr &= ~CCR_SUSP; |
| |
| writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id)); |
| |
| if (susp) { |
| ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr, |
| csr & CSR_SUSPF, 1, 10); |
| if (!ret) |
| writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); |
| |
| stm32_dma3_chan_dump_reg(chan); |
| } |
| |
| return ret; |
| } |
| |
| static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; |
| |
| writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id)); |
| } |
| |
| static int stm32_dma3_chan_get_curr_hwdesc(struct stm32_dma3_swdesc *swdesc, u32 cllr, u32 *residue) |
| { |
| u32 i, lli_offset, next_lli_offset = cllr & CLLR_LA; |
| |
| /* If cllr is null, it means it is either the last or single item */ |
| if (!cllr) |
| return swdesc->lli_size - 1; |
| |
| /* In cyclic mode, go fast and first check we are not on the last item */ |
| if (swdesc->cyclic && next_lli_offset == (swdesc->lli[0].hwdesc_addr & CLLR_LA)) |
| return swdesc->lli_size - 1; |
| |
| /* As transfer is in progress, look backward from the last item */ |
| for (i = swdesc->lli_size - 1; i > 0; i--) { |
| *residue += FIELD_GET(CBR1_BNDT, swdesc->lli[i].hwdesc->cbr1); |
| lli_offset = swdesc->lli[i].hwdesc_addr & CLLR_LA; |
| if (lli_offset == next_lli_offset) |
| return i - 1; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void stm32_dma3_chan_set_residue(struct stm32_dma3_chan *chan, |
| struct stm32_dma3_swdesc *swdesc, |
| struct dma_tx_state *txstate) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct device *dev = chan2dev(chan); |
| struct stm32_dma3_hwdesc *hwdesc; |
| u32 residue, curr_lli, csr, cdar, cbr1, cllr, bndt, fifol; |
| bool pack_unpack; |
| int ret; |
| |
| csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id)); |
| if (!(csr & CSR_IDLEF) && chan->dma_status != DMA_PAUSED) { |
| /* Suspend current transfer to read registers for a snapshot */ |
| writel_relaxed(swdesc->ccr | CCR_SUSP, ddata->base + STM32_DMA3_CCR(chan->id)); |
| ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr, |
| csr & (CSR_SUSPF | CSR_IDLEF), 1, 10); |
| |
| if (ret || ((csr & CSR_TCF) && (csr & CSR_IDLEF))) { |
| writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); |
| writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id)); |
| if (ret) |
| dev_err(dev, "Channel suspension timeout, csr=%08x\n", csr); |
| } |
| } |
| |
| /* If channel is still active (CSR_IDLEF is not set), can't get a reliable residue */ |
| if (!(csr & CSR_IDLEF)) |
| dev_warn(dev, "Can't get residue: channel still active, csr=%08x\n", csr); |
| |
| /* |
| * If channel is not suspended, but Idle and Transfer Complete are set, |
| * linked-list is over, no residue |
| */ |
| if (!(csr & CSR_SUSPF) && (csr & CSR_TCF) && (csr & CSR_IDLEF)) |
| return; |
| |
| /* Read registers to have a snapshot */ |
| cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id)); |
| cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id)); |
| cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id)); |
| |
| /* Resume current transfer */ |
| if (csr & CSR_SUSPF) { |
| writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); |
| writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id)); |
| } |
| |
| /* Add current BNDT */ |
| bndt = FIELD_GET(CBR1_BNDT, cbr1); |
| residue = bndt; |
| |
| /* Get current hwdesc and cumulate residue of pending hwdesc BNDT */ |
| ret = stm32_dma3_chan_get_curr_hwdesc(swdesc, cllr, &residue); |
| if (ret < 0) { |
| dev_err(chan2dev(chan), "Can't get residue: current hwdesc not found\n"); |
| return; |
| } |
| curr_lli = ret; |
| |
| /* Read current FIFO level - in units of programmed destination data width */ |
| hwdesc = swdesc->lli[curr_lli].hwdesc; |
| fifol = FIELD_GET(CSR_FIFOL, csr) * (1 << FIELD_GET(CTR1_DDW_LOG2, hwdesc->ctr1)); |
| /* If the FIFO contains as many bytes as its size, it can't contain more */ |
| if (fifol == (1 << (chan->fifo_size + 1))) |
| goto skip_fifol_update; |
| |
| /* |
| * In case of PACKING (Destination burst length > Source burst length) or UNPACKING |
| * (Source burst length > Destination burst length), bytes could be pending in the FIFO |
| * (to be packed up to Destination burst length or unpacked into Destination burst length |
| * chunks). |
| * BNDT is not reliable, as it reflects the number of bytes read from the source but not the |
| * number of bytes written to the destination. |
| * FIFOL is also not sufficient, because it reflects the number of available write beats in |
| * units of Destination data width but not the bytes not yet packed or unpacked. |
| * In case of Destination increment DINC, it is possible to compute the number of bytes in |
| * the FIFO: |
| * fifol_in_bytes = bytes_read - bytes_written. |
| */ |
| pack_unpack = !!(FIELD_GET(CTR1_PAM, hwdesc->ctr1) == CTR1_PAM_PACK_UNPACK); |
| if (pack_unpack && (hwdesc->ctr1 & CTR1_DINC)) { |
| int bytes_read = FIELD_GET(CBR1_BNDT, hwdesc->cbr1) - bndt; |
| int bytes_written = cdar - hwdesc->cdar; |
| |
| if (bytes_read > 0) |
| fifol = bytes_read - bytes_written; |
| } |
| |
| skip_fifol_update: |
| if (fifol) { |
| dev_dbg(chan2dev(chan), "%u byte(s) in the FIFO\n", fifol); |
| dma_set_in_flight_bytes(txstate, fifol); |
| /* |
| * Residue is already accurate for DMA_MEM_TO_DEV as BNDT reflects data read from |
| * the source memory buffer, so just need to add fifol to residue in case of |
| * DMA_DEV_TO_MEM transfer because these bytes are not yet written in destination |
| * memory buffer. |
| */ |
| if (chan->dma_config.direction == DMA_DEV_TO_MEM) |
| residue += fifol; |
| } |
| dma_set_residue(txstate, residue); |
| } |
| |
| static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 ccr; |
| int ret = 0; |
| |
| chan->dma_status = DMA_COMPLETE; |
| |
| /* Disable interrupts */ |
| ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)); |
| writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id)); |
| |
| if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) { |
| /* Suspend the channel */ |
| ret = stm32_dma3_chan_suspend(chan, true); |
| if (ret) |
| dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__); |
| } |
| |
| /* |
| * Reset the channel: this causes the reset of the FIFO and the reset of the channel |
| * internal state, the reset of CCR_EN and CCR_SUSP bits. |
| */ |
| stm32_dma3_chan_reset(chan); |
| |
| return ret; |
| } |
| |
| static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan) |
| { |
| if (!chan->swdesc) |
| return; |
| |
| vchan_cookie_complete(&chan->swdesc->vdesc); |
| chan->swdesc = NULL; |
| stm32_dma3_chan_start(chan); |
| } |
| |
| static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid) |
| { |
| struct stm32_dma3_chan *chan = devid; |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 misr, csr, ccr; |
| |
| spin_lock(&chan->vchan.lock); |
| |
| misr = readl_relaxed(ddata->base + STM32_DMA3_MISR); |
| if (!(misr & MISR_MIS(chan->id))) { |
| spin_unlock(&chan->vchan.lock); |
| return IRQ_NONE; |
| } |
| |
| csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id)); |
| ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE; |
| |
| if (csr & CSR_TCF && ccr & CCR_TCIE) { |
| if (chan->swdesc->cyclic) |
| vchan_cyclic_callback(&chan->swdesc->vdesc); |
| else |
| stm32_dma3_chan_complete(chan); |
| } |
| |
| if (csr & CSR_USEF && ccr & CCR_USEIE) { |
| dev_err(chan2dev(chan), "User setting error\n"); |
| chan->dma_status = DMA_ERROR; |
| /* CCR.EN automatically cleared by HW */ |
| stm32_dma3_check_user_setting(chan); |
| stm32_dma3_chan_reset(chan); |
| } |
| |
| if (csr & CSR_ULEF && ccr & CCR_ULEIE) { |
| dev_err(chan2dev(chan), "Update link transfer error\n"); |
| chan->dma_status = DMA_ERROR; |
| /* CCR.EN automatically cleared by HW */ |
| stm32_dma3_chan_reset(chan); |
| } |
| |
| if (csr & CSR_DTEF && ccr & CCR_DTEIE) { |
| dev_err(chan2dev(chan), "Data transfer error\n"); |
| chan->dma_status = DMA_ERROR; |
| /* CCR.EN automatically cleared by HW */ |
| stm32_dma3_chan_reset(chan); |
| } |
| |
| /* |
| * Half Transfer Interrupt may be disabled but Half Transfer Flag can be set, |
| * ensure HTF flag to be cleared, with other flags. |
| */ |
| csr &= (ccr | CCR_HTIE); |
| |
| if (csr) |
| writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id)); |
| |
| spin_unlock(&chan->vchan.lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int stm32_dma3_alloc_chan_resources(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 id = chan->id, csemcr, ccid; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); |
| if (ret < 0) |
| return ret; |
| |
| /* Ensure the channel is free */ |
| if (chan->semaphore_mode && |
| readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) { |
| ret = -EBUSY; |
| goto err_put_sync; |
| } |
| |
| chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev, |
| sizeof(struct stm32_dma3_hwdesc), |
| __alignof__(struct stm32_dma3_hwdesc), SZ_64K); |
| if (!chan->lli_pool) { |
| dev_err(chan2dev(chan), "Failed to create LLI pool\n"); |
| ret = -ENOMEM; |
| goto err_put_sync; |
| } |
| |
| /* Take the channel semaphore */ |
| if (chan->semaphore_mode) { |
| writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id)); |
| csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id)); |
| ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr); |
| /* Check that the channel is well taken */ |
| if (ccid != CCIDCFGR_CID1) { |
| dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid); |
| ret = -EPERM; |
| goto err_pool_destroy; |
| } |
| dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr); |
| } |
| |
| return 0; |
| |
| err_pool_destroy: |
| dmam_pool_destroy(chan->lli_pool); |
| chan->lli_pool = NULL; |
| |
| err_put_sync: |
| pm_runtime_put_sync(ddata->dma_dev.dev); |
| |
| return ret; |
| } |
| |
| static void stm32_dma3_free_chan_resources(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| unsigned long flags; |
| |
| /* Ensure channel is in idle state */ |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| stm32_dma3_chan_stop(chan); |
| chan->swdesc = NULL; |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| |
| vchan_free_chan_resources(to_virt_chan(c)); |
| |
| dmam_pool_destroy(chan->lli_pool); |
| chan->lli_pool = NULL; |
| |
| /* Release the channel semaphore */ |
| if (chan->semaphore_mode) |
| writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id)); |
| |
| pm_runtime_put_sync(ddata->dma_dev.dev); |
| |
| /* Reset configuration */ |
| memset(&chan->dt_config, 0, sizeof(chan->dt_config)); |
| memset(&chan->dma_config, 0, sizeof(chan->dma_config)); |
| chan->config_set = 0; |
| } |
| |
| static void stm32_dma3_init_chan_config_for_memcpy(struct stm32_dma3_chan *chan, |
| dma_addr_t dst, dma_addr_t src) |
| { |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| u32 dw = get_chan_max_dw(ddata->ports_max_dw[0], chan->max_burst); /* port 0 by default */ |
| u32 burst = chan->max_burst / dw; |
| |
| /* Initialize dt_config if channel not pre-configured through DT */ |
| if (!(chan->config_set & STM32_DMA3_CFG_SET_DT)) { |
| chan->dt_config.ch_conf = FIELD_PREP(STM32_DMA3_DT_PRIO, CCR_PRIO_VERY_HIGH); |
| chan->dt_config.ch_conf |= FIELD_PREP(STM32_DMA3_DT_FIFO, chan->fifo_size); |
| chan->dt_config.tr_conf = STM32_DMA3_DT_SINC | STM32_DMA3_DT_DINC; |
| chan->dt_config.tr_conf |= FIELD_PREP(STM32_DMA3_DT_TCEM, CTR2_TCEM_CHANNEL); |
| } |
| |
| /* Initialize dma_config if dmaengine_slave_config() not used */ |
| if (!(chan->config_set & STM32_DMA3_CFG_SET_DMA)) { |
| chan->dma_config.src_addr_width = dw; |
| chan->dma_config.dst_addr_width = dw; |
| chan->dma_config.src_maxburst = burst; |
| chan->dma_config.dst_maxburst = burst; |
| chan->dma_config.src_addr = src; |
| chan->dma_config.dst_addr = dst; |
| } |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_memcpy(struct dma_chan *c, |
| dma_addr_t dst, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_swdesc *swdesc; |
| size_t next_size, offset; |
| u32 count, i, ctr1, ctr2; |
| |
| count = DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE); |
| |
| swdesc = stm32_dma3_chan_desc_alloc(chan, count); |
| if (!swdesc) |
| return NULL; |
| |
| if (chan->config_set != STM32_DMA3_CFG_SET_BOTH) |
| stm32_dma3_init_chan_config_for_memcpy(chan, dst, src); |
| |
| for (i = 0, offset = 0; offset < len; i++, offset += next_size) { |
| size_t remaining; |
| int ret; |
| |
| remaining = len - offset; |
| next_size = min_t(size_t, remaining, STM32_DMA3_MAX_BLOCK_SIZE); |
| |
| ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_MEM, &swdesc->ccr, &ctr1, &ctr2, |
| src + offset, dst + offset, next_size); |
| if (ret) |
| goto err_desc_free; |
| |
| stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src + offset, dst + offset, next_size, |
| ctr1, ctr2, next_size == remaining, false); |
| } |
| |
| /* Enable Errors interrupts */ |
| swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; |
| /* Enable Transfer state interrupts */ |
| swdesc->ccr |= CCR_TCIE; |
| |
| swdesc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); |
| |
| err_desc_free: |
| stm32_dma3_chan_desc_free(chan, swdesc); |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c, |
| struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_transfer_direction dir, |
| unsigned long flags, void *context) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_swdesc *swdesc; |
| struct scatterlist *sg; |
| size_t len; |
| dma_addr_t sg_addr, dev_addr, src, dst; |
| u32 i, j, count, ctr1, ctr2; |
| int ret; |
| |
| count = sg_len; |
| for_each_sg(sgl, sg, sg_len, i) { |
| len = sg_dma_len(sg); |
| if (len > STM32_DMA3_MAX_BLOCK_SIZE) |
| count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1; |
| } |
| |
| swdesc = stm32_dma3_chan_desc_alloc(chan, count); |
| if (!swdesc) |
| return NULL; |
| |
| /* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */ |
| j = 0; |
| for_each_sg(sgl, sg, sg_len, i) { |
| sg_addr = sg_dma_address(sg); |
| dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr : |
| chan->dma_config.src_addr; |
| len = sg_dma_len(sg); |
| |
| do { |
| size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE); |
| |
| if (dir == DMA_MEM_TO_DEV) { |
| src = sg_addr; |
| dst = dev_addr; |
| |
| ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, |
| src, dst, chunk); |
| |
| if (FIELD_GET(CTR1_DINC, ctr1)) |
| dev_addr += chunk; |
| } else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */ |
| src = dev_addr; |
| dst = sg_addr; |
| |
| ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, |
| src, dst, chunk); |
| |
| if (FIELD_GET(CTR1_SINC, ctr1)) |
| dev_addr += chunk; |
| } |
| |
| if (ret) |
| goto err_desc_free; |
| |
| stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk, |
| ctr1, ctr2, j == (count - 1), false); |
| |
| sg_addr += chunk; |
| len -= chunk; |
| j++; |
| } while (len); |
| } |
| |
| /* Enable Error interrupts */ |
| swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; |
| /* Enable Transfer state interrupts */ |
| swdesc->ccr |= CCR_TCIE; |
| |
| swdesc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); |
| |
| err_desc_free: |
| stm32_dma3_chan_desc_free(chan, swdesc); |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_cyclic(struct dma_chan *c, |
| dma_addr_t buf_addr, |
| size_t buf_len, size_t period_len, |
| enum dma_transfer_direction dir, |
| unsigned long flags) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_swdesc *swdesc; |
| dma_addr_t src, dst; |
| u32 count, i, ctr1, ctr2; |
| int ret; |
| |
| if (!buf_len || !period_len || period_len > STM32_DMA3_MAX_BLOCK_SIZE) { |
| dev_err(chan2dev(chan), "Invalid buffer/period length\n"); |
| return NULL; |
| } |
| |
| if (buf_len % period_len) { |
| dev_err(chan2dev(chan), "Buffer length not multiple of period length\n"); |
| return NULL; |
| } |
| |
| count = buf_len / period_len; |
| swdesc = stm32_dma3_chan_desc_alloc(chan, count); |
| if (!swdesc) |
| return NULL; |
| |
| if (dir == DMA_MEM_TO_DEV) { |
| src = buf_addr; |
| dst = chan->dma_config.dst_addr; |
| |
| ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_DEV, &swdesc->ccr, &ctr1, &ctr2, |
| src, dst, period_len); |
| } else if (dir == DMA_DEV_TO_MEM) { |
| src = chan->dma_config.src_addr; |
| dst = buf_addr; |
| |
| ret = stm32_dma3_chan_prep_hw(chan, DMA_DEV_TO_MEM, &swdesc->ccr, &ctr1, &ctr2, |
| src, dst, period_len); |
| } else { |
| dev_err(chan2dev(chan), "Invalid direction\n"); |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| goto err_desc_free; |
| |
| for (i = 0; i < count; i++) { |
| if (dir == DMA_MEM_TO_DEV) { |
| src = buf_addr + i * period_len; |
| dst = chan->dma_config.dst_addr; |
| } else { /* (dir == DMA_DEV_TO_MEM) */ |
| src = chan->dma_config.src_addr; |
| dst = buf_addr + i * period_len; |
| } |
| |
| stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src, dst, period_len, |
| ctr1, ctr2, i == (count - 1), true); |
| } |
| |
| /* Enable Error interrupts */ |
| swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; |
| /* Enable Transfer state interrupts */ |
| swdesc->ccr |= CCR_TCIE; |
| |
| swdesc->cyclic = true; |
| |
| return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); |
| |
| err_desc_free: |
| stm32_dma3_chan_desc_free(chan, swdesc); |
| |
| return NULL; |
| } |
| |
| static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| |
| if (!chan->fifo_size) { |
| caps->max_burst = 0; |
| caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| } else { |
| /* Burst transfer should not exceed half of the fifo size */ |
| caps->max_burst = chan->max_burst; |
| if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) { |
| caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| } |
| } |
| } |
| |
| static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| |
| memcpy(&chan->dma_config, config, sizeof(*config)); |
| chan->config_set |= STM32_DMA3_CFG_SET_DMA; |
| |
| return 0; |
| } |
| |
| static int stm32_dma3_pause(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| int ret; |
| |
| ret = stm32_dma3_chan_suspend(chan, true); |
| if (ret) |
| return ret; |
| |
| chan->dma_status = DMA_PAUSED; |
| |
| dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan); |
| |
| return 0; |
| } |
| |
| static int stm32_dma3_resume(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| |
| stm32_dma3_chan_suspend(chan, false); |
| |
| chan->dma_status = DMA_IN_PROGRESS; |
| |
| dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan); |
| |
| return 0; |
| } |
| |
| static int stm32_dma3_terminate_all(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| |
| if (chan->swdesc) { |
| vchan_terminate_vdesc(&chan->swdesc->vdesc); |
| chan->swdesc = NULL; |
| } |
| |
| stm32_dma3_chan_stop(chan); |
| |
| vchan_get_all_descriptors(&chan->vchan, &head); |
| |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&chan->vchan, &head); |
| |
| dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan); |
| |
| return 0; |
| } |
| |
| static void stm32_dma3_synchronize(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| |
| vchan_synchronize(&chan->vchan); |
| } |
| |
| static enum dma_status stm32_dma3_tx_status(struct dma_chan *c, dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_swdesc *swdesc = NULL; |
| enum dma_status status; |
| unsigned long flags; |
| struct virt_dma_desc *vd; |
| |
| status = dma_cookie_status(c, cookie, txstate); |
| if (status == DMA_COMPLETE) |
| return status; |
| |
| if (!txstate) |
| return chan->dma_status; |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| |
| vd = vchan_find_desc(&chan->vchan, cookie); |
| if (vd) |
| swdesc = to_stm32_dma3_swdesc(vd); |
| else if (chan->swdesc && chan->swdesc->vdesc.tx.cookie == cookie) |
| swdesc = chan->swdesc; |
| |
| /* Get residue/in_flight_bytes only if a transfer is currently running (swdesc != NULL) */ |
| if (swdesc) |
| stm32_dma3_chan_set_residue(chan, swdesc, txstate); |
| |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| |
| return chan->dma_status; |
| } |
| |
| static void stm32_dma3_issue_pending(struct dma_chan *c) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| |
| if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) { |
| dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); |
| stm32_dma3_chan_start(chan); |
| } |
| |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| } |
| |
| static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param) |
| { |
| struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); |
| struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); |
| struct stm32_dma3_dt_conf *conf = fn_param; |
| u32 mask, semcr; |
| int ret; |
| |
| dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n", |
| __func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf); |
| |
| if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask)) |
| if (!(mask & BIT(chan->id))) |
| return false; |
| |
| ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); |
| if (ret < 0) |
| return false; |
| semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)); |
| pm_runtime_put_sync(ddata->dma_dev.dev); |
| |
| /* Check if chan is free */ |
| if (semcr & CSEMCR_SEM_MUTEX) |
| return false; |
| |
| /* Check if chan fifo fits well */ |
| if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size) |
| return false; |
| |
| return true; |
| } |
| |
| static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) |
| { |
| struct stm32_dma3_ddata *ddata = ofdma->of_dma_data; |
| dma_cap_mask_t mask = ddata->dma_dev.cap_mask; |
| struct stm32_dma3_dt_conf conf; |
| struct stm32_dma3_chan *chan; |
| struct dma_chan *c; |
| |
| if (dma_spec->args_count < 3) { |
| dev_err(ddata->dma_dev.dev, "Invalid args count\n"); |
| return NULL; |
| } |
| |
| conf.req_line = dma_spec->args[0]; |
| conf.ch_conf = dma_spec->args[1]; |
| conf.tr_conf = dma_spec->args[2]; |
| |
| if (conf.req_line >= ddata->dma_requests) { |
| dev_err(ddata->dma_dev.dev, "Invalid request line\n"); |
| return NULL; |
| } |
| |
| /* Request dma channel among the generic dma controller list */ |
| c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf); |
| if (!c) { |
| dev_err(ddata->dma_dev.dev, "No suitable channel found\n"); |
| return NULL; |
| } |
| |
| chan = to_stm32_dma3_chan(c); |
| chan->dt_config = conf; |
| chan->config_set |= STM32_DMA3_CFG_SET_DT; |
| |
| return c; |
| } |
| |
| static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata) |
| { |
| u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0; |
| |
| /* Reserve Secure channels */ |
| chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR); |
| |
| /* |
| * CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of |
| * the processor which is configuring and using the given channel. |
| * In case CID filtering is not configured, dma-channel-mask property can be used to |
| * specify available DMA channels to the kernel. |
| */ |
| of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask); |
| |
| /* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */ |
| for (i = 0; i < ddata->dma_channels; i++) { |
| ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i)); |
| |
| if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */ |
| invalid_cid |= BIT(i); |
| if (!(mask & BIT(i))) /* Not in dma-channel-mask */ |
| chan_reserved |= BIT(i); |
| } else { /* CID-filtered */ |
| if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */ |
| if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1) |
| chan_reserved |= BIT(i); |
| } else { /* Semaphore mode */ |
| if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr)) |
| chan_reserved |= BIT(i); |
| ddata->chans[i].semaphore_mode = true; |
| } |
| } |
| dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i, |
| !(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" : |
| ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID", |
| (chan_reserved & BIT(i)) ? "denied" : |
| mask & BIT(i) ? "force allowed" : "allowed"); |
| } |
| |
| if (invalid_cid) |
| dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n", |
| ddata->dma_channels, &invalid_cid); |
| |
| return chan_reserved; |
| } |
| |
| static const struct of_device_id stm32_dma3_of_match[] = { |
| { .compatible = "st,stm32mp25-dma3", }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_dma3_of_match); |
| |
| static int stm32_dma3_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct stm32_dma3_ddata *ddata; |
| struct reset_control *reset; |
| struct stm32_dma3_chan *chan; |
| struct dma_device *dma_dev; |
| u32 master_ports, chan_reserved, i, verr; |
| u64 hwcfgr; |
| int ret; |
| |
| ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL); |
| if (!ddata) |
| return -ENOMEM; |
| platform_set_drvdata(pdev, ddata); |
| |
| dma_dev = &ddata->dma_dev; |
| |
| ddata->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(ddata->base)) |
| return PTR_ERR(ddata->base); |
| |
| ddata->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(ddata->clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n"); |
| |
| reset = devm_reset_control_get_optional(&pdev->dev, NULL); |
| if (IS_ERR(reset)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n"); |
| |
| ret = clk_prepare_enable(ddata->clk); |
| if (ret) |
| return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n"); |
| |
| reset_control_reset(reset); |
| |
| INIT_LIST_HEAD(&dma_dev->channels); |
| |
| dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); |
| dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); |
| dma_dev->dev = &pdev->dev; |
| /* |
| * This controller supports up to 8-byte buswidth depending on the port used and the |
| * channel, and can only access address at even boundaries, multiple of the buswidth. |
| */ |
| dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES; |
| dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); |
| dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM); |
| |
| dma_dev->descriptor_reuse = true; |
| dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE; |
| dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources; |
| dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources; |
| dma_dev->device_prep_dma_memcpy = stm32_dma3_prep_dma_memcpy; |
| dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg; |
| dma_dev->device_prep_dma_cyclic = stm32_dma3_prep_dma_cyclic; |
| dma_dev->device_caps = stm32_dma3_caps; |
| dma_dev->device_config = stm32_dma3_config; |
| dma_dev->device_pause = stm32_dma3_pause; |
| dma_dev->device_resume = stm32_dma3_resume; |
| dma_dev->device_terminate_all = stm32_dma3_terminate_all; |
| dma_dev->device_synchronize = stm32_dma3_synchronize; |
| dma_dev->device_tx_status = stm32_dma3_tx_status; |
| dma_dev->device_issue_pending = stm32_dma3_issue_pending; |
| |
| /* if dma_channels is not modified, get it from hwcfgr1 */ |
| if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) { |
| hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); |
| ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr); |
| } |
| |
| /* if dma_requests is not modified, get it from hwcfgr2 */ |
| if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) { |
| hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2); |
| ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1; |
| } |
| |
| /* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */ |
| hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); |
| master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr); |
| |
| ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr); |
| if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */ |
| ddata->ports_max_dw[1] = DW_INVALID; |
| else /* Dual master ports */ |
| ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr); |
| |
| ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans), |
| GFP_KERNEL); |
| if (!ddata->chans) { |
| ret = -ENOMEM; |
| goto err_clk_disable; |
| } |
| |
| chan_reserved = stm32_dma3_check_rif(ddata); |
| |
| if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) { |
| ret = -ENODEV; |
| dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n"); |
| goto err_clk_disable; |
| } |
| |
| /* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */ |
| hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3); |
| hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32; |
| |
| for (i = 0; i < ddata->dma_channels; i++) { |
| if (chan_reserved & BIT(i)) |
| continue; |
| |
| chan = &ddata->chans[i]; |
| chan->id = i; |
| chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr); |
| /* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */ |
| chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0; |
| } |
| |
| ret = dmaenginem_async_device_register(dma_dev); |
| if (ret) |
| goto err_clk_disable; |
| |
| for (i = 0; i < ddata->dma_channels; i++) { |
| char name[12]; |
| |
| if (chan_reserved & BIT(i)) |
| continue; |
| |
| chan = &ddata->chans[i]; |
| snprintf(name, sizeof(name), "dma%dchan%d", ddata->dma_dev.dev_id, chan->id); |
| |
| chan->vchan.desc_free = stm32_dma3_chan_vdesc_free; |
| vchan_init(&chan->vchan, dma_dev); |
| |
| ret = dma_async_device_channel_register(&ddata->dma_dev, &chan->vchan.chan, name); |
| if (ret) { |
| dev_err_probe(&pdev->dev, ret, "Failed to register channel %s\n", name); |
| goto err_clk_disable; |
| } |
| |
| ret = platform_get_irq(pdev, i); |
| if (ret < 0) |
| goto err_clk_disable; |
| chan->irq = ret; |
| |
| ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0, |
| dev_name(chan2dev(chan)), chan); |
| if (ret) { |
| dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n", |
| dev_name(chan2dev(chan))); |
| goto err_clk_disable; |
| } |
| } |
| |
| ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata); |
| if (ret) { |
| dev_err_probe(&pdev->dev, ret, "Failed to register controller\n"); |
| goto err_clk_disable; |
| } |
| |
| verr = readl_relaxed(ddata->base + STM32_DMA3_VERR); |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_get_noresume(&pdev->dev); |
| pm_runtime_put(&pdev->dev); |
| |
| dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n", |
| FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr)); |
| |
| return 0; |
| |
| err_clk_disable: |
| clk_disable_unprepare(ddata->clk); |
| |
| return ret; |
| } |
| |
| static void stm32_dma3_remove(struct platform_device *pdev) |
| { |
| pm_runtime_disable(&pdev->dev); |
| } |
| |
| static int stm32_dma3_runtime_suspend(struct device *dev) |
| { |
| struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(ddata->clk); |
| |
| return 0; |
| } |
| |
| static int stm32_dma3_runtime_resume(struct device *dev) |
| { |
| struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(ddata->clk); |
| if (ret) |
| dev_err(dev, "Failed to enable clk: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static const struct dev_pm_ops stm32_dma3_pm_ops = { |
| SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) |
| RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver stm32_dma3_driver = { |
| .probe = stm32_dma3_probe, |
| .remove_new = stm32_dma3_remove, |
| .driver = { |
| .name = "stm32-dma3", |
| .of_match_table = stm32_dma3_of_match, |
| .pm = pm_ptr(&stm32_dma3_pm_ops), |
| }, |
| }; |
| |
| static int __init stm32_dma3_init(void) |
| { |
| return platform_driver_register(&stm32_dma3_driver); |
| } |
| |
| subsys_initcall(stm32_dma3_init); |
| |
| MODULE_DESCRIPTION("STM32 DMA3 controller driver"); |
| MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@foss.st.com>"); |
| MODULE_LICENSE("GPL"); |