blob: 3cd2bce59edcd70aa8dc8e059ed043e28a781525 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
/* Copyright 2023 Collabora ltd. */
#include <drm/drm_debugfs.h>
#include <drm/drm_drv.h>
#include <drm/drm_exec.h>
#include <drm/drm_gpuvm.h>
#include <drm/drm_managed.h>
#include <drm/gpu_scheduler.h>
#include <drm/panthor_drm.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/io-pgtable.h>
#include <linux/iommu.h>
#include <linux/kmemleak.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/shmem_fs.h>
#include <linux/sizes.h>
#include "panthor_device.h"
#include "panthor_gem.h"
#include "panthor_heap.h"
#include "panthor_mmu.h"
#include "panthor_regs.h"
#include "panthor_sched.h"
#define MAX_AS_SLOTS 32
struct panthor_vm;
/**
* struct panthor_as_slot - Address space slot
*/
struct panthor_as_slot {
/** @vm: VM bound to this slot. NULL is no VM is bound. */
struct panthor_vm *vm;
};
/**
* struct panthor_mmu - MMU related data
*/
struct panthor_mmu {
/** @irq: The MMU irq. */
struct panthor_irq irq;
/** @as: Address space related fields.
*
* The GPU has a limited number of address spaces (AS) slots, forcing
* us to re-assign them to re-assign slots on-demand.
*/
struct {
/** @slots_lock: Lock protecting access to all other AS fields. */
struct mutex slots_lock;
/** @alloc_mask: Bitmask encoding the allocated slots. */
unsigned long alloc_mask;
/** @faulty_mask: Bitmask encoding the faulty slots. */
unsigned long faulty_mask;
/** @slots: VMs currently bound to the AS slots. */
struct panthor_as_slot slots[MAX_AS_SLOTS];
/**
* @lru_list: List of least recently used VMs.
*
* We use this list to pick a VM to evict when all slots are
* used.
*
* There should be no more active VMs than there are AS slots,
* so this LRU is just here to keep VMs bound until there's
* a need to release a slot, thus avoid unnecessary TLB/cache
* flushes.
*/
struct list_head lru_list;
} as;
/** @vm: VMs management fields */
struct {
/** @lock: Lock protecting access to list. */
struct mutex lock;
/** @list: List containing all VMs. */
struct list_head list;
/** @reset_in_progress: True if a reset is in progress. */
bool reset_in_progress;
/** @wq: Workqueue used for the VM_BIND queues. */
struct workqueue_struct *wq;
} vm;
};
/**
* struct panthor_vm_pool - VM pool object
*/
struct panthor_vm_pool {
/** @xa: Array used for VM handle tracking. */
struct xarray xa;
};
/**
* struct panthor_vma - GPU mapping object
*
* This is used to track GEM mappings in GPU space.
*/
struct panthor_vma {
/** @base: Inherits from drm_gpuva. */
struct drm_gpuva base;
/** @node: Used to implement deferred release of VMAs. */
struct list_head node;
/**
* @flags: Combination of drm_panthor_vm_bind_op_flags.
*
* Only map related flags are accepted.
*/
u32 flags;
};
/**
* struct panthor_vm_op_ctx - VM operation context
*
* With VM operations potentially taking place in a dma-signaling path, we
* need to make sure everything that might require resource allocation is
* pre-allocated upfront. This is what this operation context is far.
*
* We also collect resources that have been freed, so we can release them
* asynchronously, and let the VM_BIND scheduler process the next VM_BIND
* request.
*/
struct panthor_vm_op_ctx {
/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
struct {
/** @count: Number of pages reserved. */
u32 count;
/** @ptr: Point to the first unused page in the @pages table. */
u32 ptr;
/**
* @page: Array of pages that can be used for an MMU page table update.
*
* After an VM operation, there might be free pages left in this array.
* They should be returned to the pt_cache as part of the op_ctx cleanup.
*/
void **pages;
} rsvd_page_tables;
/**
* @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
*
* Partial unmap requests or map requests overlapping existing mappings will
* trigger a remap call, which need to register up to three panthor_vma objects
* (one for the new mapping, and two for the previous and next mappings).
*/
struct panthor_vma *preallocated_vmas[3];
/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
u32 flags;
/** @va: Virtual range targeted by the VM operation. */
struct {
/** @addr: Start address. */
u64 addr;
/** @range: Range size. */
u64 range;
} va;
/**
* @returned_vmas: List of panthor_vma objects returned after a VM operation.
*
* For unmap operations, this will contain all VMAs that were covered by the
* specified VA range.
*
* For map operations, this will contain all VMAs that previously mapped to
* the specified VA range.
*
* Those VMAs, and the resources they point to will be released as part of
* the op_ctx cleanup operation.
*/
struct list_head returned_vmas;
/** @map: Fields specific to a map operation. */
struct {
/** @vm_bo: Buffer object to map. */
struct drm_gpuvm_bo *vm_bo;
/** @bo_offset: Offset in the buffer object. */
u64 bo_offset;
/**
* @sgt: sg-table pointing to pages backing the GEM object.
*
* This is gathered at job creation time, such that we don't have
* to allocate in ::run_job().
*/
struct sg_table *sgt;
/**
* @new_vma: The new VMA object that will be inserted to the VA tree.
*/
struct panthor_vma *new_vma;
} map;
};
/**
* struct panthor_vm - VM object
*
* A VM is an object representing a GPU (or MCU) virtual address space.
* It embeds the MMU page table for this address space, a tree containing
* all the virtual mappings of GEM objects, and other things needed to manage
* the VM.
*
* Except for the MCU VM, which is managed by the kernel, all other VMs are
* created by userspace and mostly managed by userspace, using the
* %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
*
* A portion of the virtual address space is reserved for kernel objects,
* like heap chunks, and userspace gets to decide how much of the virtual
* address space is left to the kernel (half of the virtual address space
* by default).
*/
struct panthor_vm {
/**
* @base: Inherit from drm_gpuvm.
*
* We delegate all the VA management to the common drm_gpuvm framework
* and only implement hooks to update the MMU page table.
*/
struct drm_gpuvm base;
/**
* @sched: Scheduler used for asynchronous VM_BIND request.
*
* We use a 1:1 scheduler here.
*/
struct drm_gpu_scheduler sched;
/**
* @entity: Scheduling entity representing the VM_BIND queue.
*
* There's currently one bind queue per VM. It doesn't make sense to
* allow more given the VM operations are serialized anyway.
*/
struct drm_sched_entity entity;
/** @ptdev: Device. */
struct panthor_device *ptdev;
/** @memattr: Value to program to the AS_MEMATTR register. */
u64 memattr;
/** @pgtbl_ops: Page table operations. */
struct io_pgtable_ops *pgtbl_ops;
/** @root_page_table: Stores the root page table pointer. */
void *root_page_table;
/**
* @op_lock: Lock used to serialize operations on a VM.
*
* The serialization of jobs queued to the VM_BIND queue is already
* taken care of by drm_sched, but we need to serialize synchronous
* and asynchronous VM_BIND request. This is what this lock is for.
*/
struct mutex op_lock;
/**
* @op_ctx: The context attached to the currently executing VM operation.
*
* NULL when no operation is in progress.
*/
struct panthor_vm_op_ctx *op_ctx;
/**
* @mm: Memory management object representing the auto-VA/kernel-VA.
*
* Used to auto-allocate VA space for kernel-managed objects (tiler
* heaps, ...).
*
* For the MCU VM, this is managing the VA range that's used to map
* all shared interfaces.
*
* For user VMs, the range is specified by userspace, and must not
* exceed half of the VA space addressable.
*/
struct drm_mm mm;
/** @mm_lock: Lock protecting the @mm field. */
struct mutex mm_lock;
/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
struct {
/** @start: Start of the automatic VA-range for kernel BOs. */
u64 start;
/** @size: Size of the automatic VA-range for kernel BOs. */
u64 end;
} kernel_auto_va;
/** @as: Address space related fields. */
struct {
/**
* @id: ID of the address space this VM is bound to.
*
* A value of -1 means the VM is inactive/not bound.
*/
int id;
/** @active_cnt: Number of active users of this VM. */
refcount_t active_cnt;
/**
* @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
*
* Active VMs should not be inserted in the LRU list.
*/
struct list_head lru_node;
} as;
/**
* @heaps: Tiler heap related fields.
*/
struct {
/**
* @pool: The heap pool attached to this VM.
*
* Will stay NULL until someone creates a heap context on this VM.
*/
struct panthor_heap_pool *pool;
/** @lock: Lock used to protect access to @pool. */
struct mutex lock;
} heaps;
/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
struct list_head node;
/** @for_mcu: True if this is the MCU VM. */
bool for_mcu;
/**
* @destroyed: True if the VM was destroyed.
*
* No further bind requests should be queued to a destroyed VM.
*/
bool destroyed;
/**
* @unusable: True if the VM has turned unusable because something
* bad happened during an asynchronous request.
*
* We don't try to recover from such failures, because this implies
* informing userspace about the specific operation that failed, and
* hoping the userspace driver can replay things from there. This all
* sounds very complicated for little gain.
*
* Instead, we should just flag the VM as unusable, and fail any
* further request targeting this VM.
*
* We also provide a way to query a VM state, so userspace can destroy
* it and create a new one.
*
* As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
* situation, where the logical device needs to be re-created.
*/
bool unusable;
/**
* @unhandled_fault: Unhandled fault happened.
*
* This should be reported to the scheduler, and the queue/group be
* flagged as faulty as a result.
*/
bool unhandled_fault;
};
/**
* struct panthor_vm_bind_job - VM bind job
*/
struct panthor_vm_bind_job {
/** @base: Inherit from drm_sched_job. */
struct drm_sched_job base;
/** @refcount: Reference count. */
struct kref refcount;
/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
struct work_struct cleanup_op_ctx_work;
/** @vm: VM targeted by the VM operation. */
struct panthor_vm *vm;
/** @ctx: Operation context. */
struct panthor_vm_op_ctx ctx;
};
/**
* @pt_cache: Cache used to allocate MMU page tables.
*
* The pre-allocation pattern forces us to over-allocate to plan for
* the worst case scenario, and return the pages we didn't use.
*
* Having a kmem_cache allows us to speed allocations.
*/
static struct kmem_cache *pt_cache;
/**
* alloc_pt() - Custom page table allocator
* @cookie: Cookie passed at page table allocation time.
* @size: Size of the page table. This size should be fixed,
* and determined at creation time based on the granule size.
* @gfp: GFP flags.
*
* We want a custom allocator so we can use a cache for page table
* allocations and amortize the cost of the over-reservation that's
* done to allow asynchronous VM operations.
*
* Return: non-NULL on success, NULL if the allocation failed for any
* reason.
*/
static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
{
struct panthor_vm *vm = cookie;
void *page;
/* Allocation of the root page table happening during init. */
if (unlikely(!vm->root_page_table)) {
struct page *p;
drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
gfp | __GFP_ZERO, get_order(size));
page = p ? page_address(p) : NULL;
vm->root_page_table = page;
return page;
}
/* We're not supposed to have anything bigger than 4k here, because we picked a
* 4k granule size at init time.
*/
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
return NULL;
/* We must have some op_ctx attached to the VM and it must have at least one
* free page.
*/
if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
drm_WARN_ON(&vm->ptdev->base,
vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
return NULL;
page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
memset(page, 0, SZ_4K);
/* Page table entries don't use virtual addresses, which trips out
* kmemleak. kmemleak_alloc_phys() might work, but physical addresses
* are mixed with other fields, and I fear kmemleak won't detect that
* either.
*
* Let's just ignore memory passed to the page-table driver for now.
*/
kmemleak_ignore(page);
return page;
}
/**
* @free_pt() - Custom page table free function
* @cookie: Cookie passed at page table allocation time.
* @data: Page table to free.
* @size: Size of the page table. This size should be fixed,
* and determined at creation time based on the granule size.
*/
static void free_pt(void *cookie, void *data, size_t size)
{
struct panthor_vm *vm = cookie;
if (unlikely(vm->root_page_table == data)) {
free_pages((unsigned long)data, get_order(size));
vm->root_page_table = NULL;
return;
}
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
return;
/* Return the page to the pt_cache. */
kmem_cache_free(pt_cache, data);
}
static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
{
int ret;
u32 val;
/* Wait for the MMU status to indicate there is no active command, in
* case one is pending.
*/
ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
val, !(val & AS_STATUS_AS_ACTIVE),
10, 100000);
if (ret) {
panthor_device_schedule_reset(ptdev);
drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
}
return ret;
}
static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
{
int status;
/* write AS_COMMAND when MMU is ready to accept another command */
status = wait_ready(ptdev, as_nr);
if (!status)
gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
return status;
}
static void lock_region(struct panthor_device *ptdev, u32 as_nr,
u64 region_start, u64 size)
{
u8 region_width;
u64 region;
u64 region_end = region_start + size;
if (!size)
return;
/*
* The locked region is a naturally aligned power of 2 block encoded as
* log2 minus(1).
* Calculate the desired start/end and look for the highest bit which
* differs. The smallest naturally aligned block must include this bit
* change, the desired region starts with this bit (and subsequent bits)
* zeroed and ends with the bit (and subsequent bits) set to one.
*/
region_width = max(fls64(region_start ^ (region_end - 1)),
const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
/*
* Mask off the low bits of region_start (which would be ignored by
* the hardware anyway)
*/
region_start &= GENMASK_ULL(63, region_width);
region = region_width | region_start;
/* Lock the region that needs to be updated */
gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
}
static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
u64 iova, u64 size, u32 op)
{
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
if (as_nr < 0)
return 0;
/*
* If the AS number is greater than zero, then we can be sure
* the device is up and running, so we don't need to explicitly
* power it up
*/
if (op != AS_COMMAND_UNLOCK)
lock_region(ptdev, as_nr, iova, size);
/* Run the MMU operation */
write_cmd(ptdev, as_nr, op);
/* Wait for the flush to complete */
return wait_ready(ptdev, as_nr);
}
static int mmu_hw_do_operation(struct panthor_vm *vm,
u64 iova, u64 size, u32 op)
{
struct panthor_device *ptdev = vm->ptdev;
int ret;
mutex_lock(&ptdev->mmu->as.slots_lock);
ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
mutex_unlock(&ptdev->mmu->as.slots_lock);
return ret;
}
static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
u64 transtab, u64 transcfg, u64 memattr)
{
int ret;
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
if (ret)
return ret;
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
}
static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
{
int ret;
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
if (ret)
return ret;
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
}
static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
{
/* Bits 16 to 31 mean REQ_COMPLETE. */
return value & GENMASK(15, 0);
}
static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
{
return BIT(as);
}
/**
* panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
* @vm: VM to check.
*
* Return: true if the VM has unhandled faults, false otherwise.
*/
bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
{
return vm->unhandled_fault;
}
/**
* panthor_vm_is_unusable() - Check if the VM is still usable
* @vm: VM to check.
*
* Return: true if the VM is unusable, false otherwise.
*/
bool panthor_vm_is_unusable(struct panthor_vm *vm)
{
return vm->unusable;
}
static void panthor_vm_release_as_locked(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
return;
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
refcount_set(&vm->as.active_cnt, 0);
list_del_init(&vm->as.lru_node);
vm->as.id = -1;
}
/**
* panthor_vm_active() - Flag a VM as active
* @VM: VM to flag as active.
*
* Assigns an address space to a VM so it can be used by the GPU/MCU.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_active(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
int ret = 0, as, cookie;
u64 transtab, transcfg;
if (!drm_dev_enter(&ptdev->base, &cookie))
return -ENODEV;
if (refcount_inc_not_zero(&vm->as.active_cnt))
goto out_dev_exit;
mutex_lock(&ptdev->mmu->as.slots_lock);
if (refcount_inc_not_zero(&vm->as.active_cnt))
goto out_unlock;
as = vm->as.id;
if (as >= 0) {
/* Unhandled pagefault on this AS, the MMU was disabled. We need to
* re-enable the MMU after clearing+unmasking the AS interrupts.
*/
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
goto out_enable_as;
goto out_make_active;
}
/* Check for a free AS */
if (vm->for_mcu) {
drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
as = 0;
} else {
as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
}
if (!(BIT(as) & ptdev->gpu_info.as_present)) {
struct panthor_vm *lru_vm;
lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
struct panthor_vm,
as.lru_node);
if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
ret = -EBUSY;
goto out_unlock;
}
drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
as = lru_vm->as.id;
panthor_vm_release_as_locked(lru_vm);
}
/* Assign the free or reclaimed AS to the FD */
vm->as.id = as;
set_bit(as, &ptdev->mmu->as.alloc_mask);
ptdev->mmu->as.slots[as].vm = vm;
out_enable_as:
transtab = cfg->arm_lpae_s1_cfg.ttbr;
transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
AS_TRANSCFG_PTW_RA |
AS_TRANSCFG_ADRMODE_AARCH64_4K |
AS_TRANSCFG_INA_BITS(55 - va_bits);
if (ptdev->coherent)
transcfg |= AS_TRANSCFG_PTW_SH_OS;
/* If the VM is re-activated, we clear the fault. */
vm->unhandled_fault = false;
/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
* before enabling the AS.
*/
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
}
ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
out_make_active:
if (!ret) {
refcount_set(&vm->as.active_cnt, 1);
list_del_init(&vm->as.lru_node);
}
out_unlock:
mutex_unlock(&ptdev->mmu->as.slots_lock);
out_dev_exit:
drm_dev_exit(cookie);
return ret;
}
/**
* panthor_vm_idle() - Flag a VM idle
* @VM: VM to flag as idle.
*
* When we know the GPU is done with the VM (no more jobs to process),
* we can relinquish the AS slot attached to this VM, if any.
*
* We don't release the slot immediately, but instead place the VM in
* the LRU list, so it can be evicted if another VM needs an AS slot.
* This way, VMs keep attached to the AS they were given until we run
* out of free slot, limiting the number of MMU operations (TLB flush
* and other AS updates).
*/
void panthor_vm_idle(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
return;
if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
refcount_set(&vm->as.active_cnt, 0);
mutex_unlock(&ptdev->mmu->as.slots_lock);
}
static void panthor_vm_stop(struct panthor_vm *vm)
{
drm_sched_stop(&vm->sched, NULL);
}
static void panthor_vm_start(struct panthor_vm *vm)
{
drm_sched_start(&vm->sched);
}
/**
* panthor_vm_as() - Get the AS slot attached to a VM
* @vm: VM to get the AS slot of.
*
* Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
*/
int panthor_vm_as(struct panthor_vm *vm)
{
return vm->as.id;
}
static size_t get_pgsize(u64 addr, size_t size, size_t *count)
{
/*
* io-pgtable only operates on multiple pages within a single table
* entry, so we need to split at boundaries of the table size, i.e.
* the next block size up. The distance from address A to the next
* boundary of block size B is logically B - A % B, but in unsigned
* two's complement where B is a power of two we get the equivalence
* B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
*/
size_t blk_offset = -addr % SZ_2M;
if (blk_offset || size < SZ_2M) {
*count = min_not_zero(blk_offset, size) / SZ_4K;
return SZ_4K;
}
blk_offset = -addr % SZ_1G ?: SZ_1G;
*count = min(blk_offset, size) / SZ_2M;
return SZ_2M;
}
static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
int ret = 0, cookie;
if (vm->as.id < 0)
return 0;
/* If the device is unplugged, we just silently skip the flush. */
if (!drm_dev_enter(&ptdev->base, &cookie))
return 0;
ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
drm_dev_exit(cookie);
return ret;
}
/**
* panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
* @vm: VM whose cache to flush
*
* Return: 0 on success, a negative error code if flush failed.
*/
int panthor_vm_flush_all(struct panthor_vm *vm)
{
return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
}
static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
struct io_pgtable_ops *ops = vm->pgtbl_ops;
u64 offset = 0;
drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
while (offset < size) {
size_t unmapped_sz = 0, pgcount;
size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
iova + offset + unmapped_sz,
iova + offset + pgsize * pgcount,
iova, iova + size);
panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
return -EINVAL;
}
offset += unmapped_sz;
}
return panthor_vm_flush_range(vm, iova, size);
}
static int
panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
struct sg_table *sgt, u64 offset, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
unsigned int count;
struct scatterlist *sgl;
struct io_pgtable_ops *ops = vm->pgtbl_ops;
u64 start_iova = iova;
int ret;
if (!size)
return 0;
for_each_sgtable_dma_sg(sgt, sgl, count) {
dma_addr_t paddr = sg_dma_address(sgl);
size_t len = sg_dma_len(sgl);
if (len <= offset) {
offset -= len;
continue;
}
paddr += offset;
len -= offset;
len = min_t(size_t, len, size);
size -= len;
drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
vm->as.id, iova, &paddr, len);
while (len) {
size_t pgcount, mapped = 0;
size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
GFP_KERNEL, &mapped);
iova += mapped;
paddr += mapped;
len -= mapped;
if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
ret = -ENOMEM;
if (ret) {
/* If something failed, unmap what we've already mapped before
* returning. The unmap call is not supposed to fail.
*/
drm_WARN_ON(&ptdev->base,
panthor_vm_unmap_pages(vm, start_iova,
iova - start_iova));
return ret;
}
}
if (!size)
break;
}
return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
}
static int flags_to_prot(u32 flags)
{
int prot = 0;
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
prot |= IOMMU_NOEXEC;
if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
prot |= IOMMU_CACHE;
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
prot |= IOMMU_READ;
else
prot |= IOMMU_READ | IOMMU_WRITE;
return prot;
}
/**
* panthor_vm_alloc_va() - Allocate a region in the auto-va space
* @VM: VM to allocate a region on.
* @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
* wants the VA to be automatically allocated from the auto-VA range.
* @size: size of the VA range.
* @va_node: drm_mm_node to initialize. Must be zero-initialized.
*
* Some GPU objects, like heap chunks, are fully managed by the kernel and
* need to be mapped to the userspace VM, in the region reserved for kernel
* objects.
*
* This function takes care of allocating a region in the kernel auto-VA space.
*
* Return: 0 on success, an error code otherwise.
*/
int
panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
struct drm_mm_node *va_node)
{
int ret;
if (!size || (size & ~PAGE_MASK))
return -EINVAL;
if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK))
return -EINVAL;
mutex_lock(&vm->mm_lock);
if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
va_node->start = va;
va_node->size = size;
ret = drm_mm_reserve_node(&vm->mm, va_node);
} else {
ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
size >= SZ_2M ? SZ_2M : SZ_4K,
0, vm->kernel_auto_va.start,
vm->kernel_auto_va.end,
DRM_MM_INSERT_BEST);
}
mutex_unlock(&vm->mm_lock);
return ret;
}
/**
* panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
* @VM: VM to free the region on.
* @va_node: Memory node representing the region to free.
*/
void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
{
mutex_lock(&vm->mm_lock);
drm_mm_remove_node(va_node);
mutex_unlock(&vm->mm_lock);
}
static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
{
struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
struct drm_gpuvm *vm = vm_bo->vm;
bool unpin;
/* We must retain the GEM before calling drm_gpuvm_bo_put(),
* otherwise the mutex might be destroyed while we hold it.
* Same goes for the VM, since we take the VM resv lock.
*/
drm_gem_object_get(&bo->base.base);
drm_gpuvm_get(vm);
/* We take the resv lock to protect against concurrent accesses to the
* gpuvm evicted/extobj lists that are modified in
* drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
* releases sthe last vm_bo reference.
* We take the BO GPUVA list lock to protect the vm_bo removal from the
* GEM vm_bo list.
*/
dma_resv_lock(drm_gpuvm_resv(vm), NULL);
mutex_lock(&bo->gpuva_list_lock);
unpin = drm_gpuvm_bo_put(vm_bo);
mutex_unlock(&bo->gpuva_list_lock);
dma_resv_unlock(drm_gpuvm_resv(vm));
/* If the vm_bo object was destroyed, release the pin reference that
* was hold by this object.
*/
if (unpin && !bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
drm_gpuvm_put(vm);
drm_gem_object_put(&bo->base.base);
}
static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm)
{
struct panthor_vma *vma, *tmp_vma;
u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
op_ctx->rsvd_page_tables.ptr;
if (remaining_pt_count) {
kmem_cache_free_bulk(pt_cache, remaining_pt_count,
op_ctx->rsvd_page_tables.pages +
op_ctx->rsvd_page_tables.ptr);
}
kfree(op_ctx->rsvd_page_tables.pages);
if (op_ctx->map.vm_bo)
panthor_vm_bo_put(op_ctx->map.vm_bo);
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
kfree(op_ctx->preallocated_vmas[i]);
list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
list_del(&vma->node);
panthor_vm_bo_put(vma->base.vm_bo);
kfree(vma);
}
}
static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
{
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
if (vma) {
op_ctx->preallocated_vmas[i] = NULL;
return vma;
}
}
return NULL;
}
static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
{
u32 vma_count;
switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
/* One VMA for the new mapping, and two more VMAs for the remap case
* which might contain both a prev and next VA.
*/
vma_count = 3;
break;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
/* Partial unmaps might trigger a remap with either a prev or a next VA,
* but not both.
*/
vma_count = 1;
break;
default:
return 0;
}
for (u32 i = 0; i < vma_count; i++) {
struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (!vma)
return -ENOMEM;
op_ctx->preallocated_vmas[i] = vma;
}
return 0;
}
#define PANTHOR_VM_BIND_OP_MAP_FLAGS \
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm,
struct panthor_gem_object *bo,
u64 offset,
u64 size, u64 va,
u32 flags)
{
struct drm_gpuvm_bo *preallocated_vm_bo;
struct sg_table *sgt = NULL;
u64 pt_count;
int ret;
if (!bo)
return -EINVAL;
if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
(flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
return -EINVAL;
/* Make sure the VA and size are aligned and in-bounds. */
if (size > bo->base.base.size || offset > bo->base.base.size - size)
return -EINVAL;
/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
if (bo->exclusive_vm_root_gem &&
bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
return -EINVAL;
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->flags = flags;
op_ctx->va.range = size;
op_ctx->va.addr = va;
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
if (ret)
goto err_cleanup;
if (!bo->base.base.import_attach) {
/* Pre-reserve the BO pages, so the map operation doesn't have to
* allocate.
*/
ret = drm_gem_shmem_pin(&bo->base);
if (ret)
goto err_cleanup;
}
sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
if (IS_ERR(sgt)) {
if (!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
ret = PTR_ERR(sgt);
goto err_cleanup;
}
op_ctx->map.sgt = sgt;
preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
if (!preallocated_vm_bo) {
if (!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
ret = -ENOMEM;
goto err_cleanup;
}
/* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
* pre-allocated BO if the <BO,VM> association exists. Given we
* only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
* be called immediately, and we have to hold the VM resv lock when
* calling this function.
*/
dma_resv_lock(panthor_vm_resv(vm), NULL);
mutex_lock(&bo->gpuva_list_lock);
op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
mutex_unlock(&bo->gpuva_list_lock);
dma_resv_unlock(panthor_vm_resv(vm));
/* If the a vm_bo for this <VM,BO> combination exists, it already
* retains a pin ref, and we can release the one we took earlier.
*
* If our pre-allocated vm_bo is picked, it now retains the pin ref,
* which will be released in panthor_vm_bo_put().
*/
if (preallocated_vm_bo != op_ctx->map.vm_bo &&
!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
op_ctx->map.bo_offset = offset;
/* L1, L2 and L3 page tables.
* We could optimize L3 allocation by iterating over the sgt and merging
* 2M contiguous blocks, but it's simpler to over-provision and return
* the pages if they're not used.
*/
pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
sizeof(*op_ctx->rsvd_page_tables.pages),
GFP_KERNEL);
if (!op_ctx->rsvd_page_tables.pages) {
ret = -ENOMEM;
goto err_cleanup;
}
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
op_ctx->rsvd_page_tables.pages);
op_ctx->rsvd_page_tables.count = ret;
if (ret != pt_count) {
ret = -ENOMEM;
goto err_cleanup;
}
/* Insert BO into the extobj list last, when we know nothing can fail. */
dma_resv_lock(panthor_vm_resv(vm), NULL);
drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
dma_resv_unlock(panthor_vm_resv(vm));
return 0;
err_cleanup:
panthor_vm_cleanup_op_ctx(op_ctx, vm);
return ret;
}
static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm,
u64 va, u64 size)
{
u32 pt_count = 0;
int ret;
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->va.range = size;
op_ctx->va.addr = va;
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
/* Pre-allocate L3 page tables to account for the split-2M-block
* situation on unmap.
*/
if (va != ALIGN(va, SZ_2M))
pt_count++;
if (va + size != ALIGN(va + size, SZ_2M) &&
ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
pt_count++;
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
if (ret)
goto err_cleanup;
if (pt_count) {
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
sizeof(*op_ctx->rsvd_page_tables.pages),
GFP_KERNEL);
if (!op_ctx->rsvd_page_tables.pages) {
ret = -ENOMEM;
goto err_cleanup;
}
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
op_ctx->rsvd_page_tables.pages);
if (ret != pt_count) {
ret = -ENOMEM;
goto err_cleanup;
}
op_ctx->rsvd_page_tables.count = pt_count;
}
return 0;
err_cleanup:
panthor_vm_cleanup_op_ctx(op_ctx, vm);
return ret;
}
static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm)
{
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
}
/**
* panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
* @vm: VM to look into.
* @va: Virtual address to search for.
* @bo_offset: Offset of the GEM object mapped at this virtual address.
* Only valid on success.
*
* The object returned by this function might no longer be mapped when the
* function returns. It's the caller responsibility to ensure there's no
* concurrent map/unmap operations making the returned value invalid, or
* make sure it doesn't matter if the object is no longer mapped.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
{
struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
struct drm_gpuva *gpuva;
struct panthor_vma *vma;
/* Take the VM lock to prevent concurrent map/unmap operations. */
mutex_lock(&vm->op_lock);
gpuva = drm_gpuva_find_first(&vm->base, va, 1);
vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
if (vma && vma->base.gem.obj) {
drm_gem_object_get(vma->base.gem.obj);
bo = to_panthor_bo(vma->base.gem.obj);
*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
}
mutex_unlock(&vm->op_lock);
return bo;
}
#define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
u64 full_va_range)
{
u64 user_va_range;
/* Make sure we have a minimum amount of VA space for kernel objects. */
if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
return 0;
if (args->user_va_range) {
/* Use the user provided value if != 0. */
user_va_range = args->user_va_range;
} else if (TASK_SIZE_OF(current) < full_va_range) {
/* If the task VM size is smaller than the GPU VA range, pick this
* as our default user VA range, so userspace can CPU/GPU map buffers
* at the same address.
*/
user_va_range = TASK_SIZE_OF(current);
} else {
/* If the GPU VA range is smaller than the task VM size, we
* just have to live with the fact we won't be able to map
* all buffers at the same GPU/CPU address.
*
* If the GPU VA range is bigger than 4G (more than 32-bit of
* VA), we split the range in two, and assign half of it to
* the user and the other half to the kernel, if it's not, we
* keep the kernel VA space as small as possible.
*/
user_va_range = full_va_range > SZ_4G ?
full_va_range / 2 :
full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
}
if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
return user_va_range;
}
#define PANTHOR_VM_CREATE_FLAGS 0
static int
panthor_vm_create_check_args(const struct panthor_device *ptdev,
const struct drm_panthor_vm_create *args,
u64 *kernel_va_start, u64 *kernel_va_range)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
u64 full_va_range = 1ull << va_bits;
u64 user_va_range;
if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
return -EINVAL;
user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
return -EINVAL;
/* Pick a kernel VA range that's a power of two, to have a clear split. */
*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
*kernel_va_start = full_va_range - *kernel_va_range;
return 0;
}
/*
* Only 32 VMs per open file. If that becomes a limiting factor, we can
* increase this number.
*/
#define PANTHOR_MAX_VMS_PER_FILE 32
/**
* panthor_vm_pool_create_vm() - Create a VM
* @pool: The VM to create this VM on.
* @kernel_va_start: Start of the region reserved for kernel objects.
* @kernel_va_range: Size of the region reserved for kernel objects.
*
* Return: a positive VM ID on success, a negative error code otherwise.
*/
int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
struct panthor_vm_pool *pool,
struct drm_panthor_vm_create *args)
{
u64 kernel_va_start, kernel_va_range;
struct panthor_vm *vm;
int ret;
u32 id;
ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
if (ret)
return ret;
vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
kernel_va_start, kernel_va_range);
if (IS_ERR(vm))
return PTR_ERR(vm);
ret = xa_alloc(&pool->xa, &id, vm,
XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
if (ret) {
panthor_vm_put(vm);
return ret;
}
args->user_va_range = kernel_va_start;
return id;
}
static void panthor_vm_destroy(struct panthor_vm *vm)
{
if (!vm)
return;
vm->destroyed = true;
mutex_lock(&vm->heaps.lock);
panthor_heap_pool_destroy(vm->heaps.pool);
vm->heaps.pool = NULL;
mutex_unlock(&vm->heaps.lock);
drm_WARN_ON(&vm->ptdev->base,
panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
panthor_vm_put(vm);
}
/**
* panthor_vm_pool_destroy_vm() - Destroy a VM.
* @pool: VM pool.
* @handle: VM handle.
*
* This function doesn't free the VM object or its resources, it just kills
* all mappings, and makes sure nothing can be mapped after that point.
*
* If there was any active jobs at the time this function is called, these
* jobs should experience page faults and be killed as a result.
*
* The VM resources are freed when the last reference on the VM object is
* dropped.
*/
int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
{
struct panthor_vm *vm;
vm = xa_erase(&pool->xa, handle);
panthor_vm_destroy(vm);
return vm ? 0 : -EINVAL;
}
/**
* panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
* @pool: VM pool to check.
* @handle: Handle of the VM to retrieve.
*
* Return: A valid pointer if the VM exists, NULL otherwise.
*/
struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
{
struct panthor_vm *vm;
vm = panthor_vm_get(xa_load(&pool->xa, handle));
return vm;
}
/**
* panthor_vm_pool_destroy() - Destroy a VM pool.
* @pfile: File.
*
* Destroy all VMs in the pool, and release the pool resources.
*
* Note that VMs can outlive the pool they were created from if other
* objects hold a reference to there VMs.
*/
void panthor_vm_pool_destroy(struct panthor_file *pfile)
{
struct panthor_vm *vm;
unsigned long i;
if (!pfile->vms)
return;
xa_for_each(&pfile->vms->xa, i, vm)
panthor_vm_destroy(vm);
xa_destroy(&pfile->vms->xa);
kfree(pfile->vms);
}
/**
* panthor_vm_pool_create() - Create a VM pool
* @pfile: File.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_pool_create(struct panthor_file *pfile)
{
pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
if (!pfile->vms)
return -ENOMEM;
xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
return 0;
}
/* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
static void mmu_tlb_flush_all(void *cookie)
{
}
static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
{
}
static const struct iommu_flush_ops mmu_tlb_ops = {
.tlb_flush_all = mmu_tlb_flush_all,
.tlb_flush_walk = mmu_tlb_flush_walk,
};
static const char *access_type_name(struct panthor_device *ptdev,
u32 fault_status)
{
switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
return "ATOMIC";
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
return "READ";
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
return "WRITE";
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
return "EXECUTE";
default:
drm_WARN_ON(&ptdev->base, 1);
return NULL;
}
}
static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
{
bool has_unhandled_faults = false;
status = panthor_mmu_fault_mask(ptdev, status);
while (status) {
u32 as = ffs(status | (status >> 16)) - 1;
u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
u32 new_int_mask;
u64 addr;
u32 fault_status;
u32 exception_type;
u32 access_type;
u32 source_id;
fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
/* decode the fault status */
exception_type = fault_status & 0xFF;
access_type = (fault_status >> 8) & 0x3;
source_id = (fault_status >> 16);
mutex_lock(&ptdev->mmu->as.slots_lock);
ptdev->mmu->as.faulty_mask |= mask;
new_int_mask =
panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
/* terminal fault, print info about the fault */
drm_err(&ptdev->base,
"Unhandled Page fault in AS%d at VA 0x%016llX\n"
"raw fault status: 0x%X\n"
"decoded fault status: %s\n"
"exception type 0x%X: %s\n"
"access type 0x%X: %s\n"
"source id 0x%X\n",
as, addr,
fault_status,
(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
exception_type, panthor_exception_name(ptdev, exception_type),
access_type, access_type_name(ptdev, fault_status),
source_id);
/* Ignore MMU interrupts on this AS until it's been
* re-enabled.
*/
ptdev->mmu->irq.mask = new_int_mask;
gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
if (ptdev->mmu->as.slots[as].vm)
ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
/* Disable the MMU to kill jobs on this AS. */
panthor_mmu_as_disable(ptdev, as);
mutex_unlock(&ptdev->mmu->as.slots_lock);
status &= ~mask;
has_unhandled_faults = true;
}
if (has_unhandled_faults)
panthor_sched_report_mmu_fault(ptdev);
}
PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
/**
* panthor_mmu_suspend() - Suspend the MMU logic
* @ptdev: Device.
*
* All we do here is de-assign the AS slots on all active VMs, so things
* get flushed to the main memory, and no further access to these VMs are
* possible.
*
* We also suspend the MMU IRQ.
*/
void panthor_mmu_suspend(struct panthor_device *ptdev)
{
mutex_lock(&ptdev->mmu->as.slots_lock);
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm) {
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
panthor_vm_release_as_locked(vm);
}
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
}
/**
* panthor_mmu_resume() - Resume the MMU logic
* @ptdev: Device.
*
* Resume the IRQ.
*
* We don't re-enable previously active VMs. We assume other parts of the
* driver will call panthor_vm_active() on the VMs they intend to use.
*/
void panthor_mmu_resume(struct panthor_device *ptdev)
{
mutex_lock(&ptdev->mmu->as.slots_lock);
ptdev->mmu->as.alloc_mask = 0;
ptdev->mmu->as.faulty_mask = 0;
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
}
/**
* panthor_mmu_pre_reset() - Prepare for a reset
* @ptdev: Device.
*
* Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
* don't get asked to do a VM operation while the GPU is down.
*
* We don't cleanly shutdown the AS slots here, because the reset might
* come from an AS_ACTIVE_BIT stuck situation.
*/
void panthor_mmu_pre_reset(struct panthor_device *ptdev)
{
struct panthor_vm *vm;
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
mutex_lock(&ptdev->mmu->vm.lock);
ptdev->mmu->vm.reset_in_progress = true;
list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
panthor_vm_stop(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
}
/**
* panthor_mmu_post_reset() - Restore things after a reset
* @ptdev: Device.
*
* Put the MMU logic back in action after a reset. That implies resuming the
* IRQ and re-enabling the VM_BIND queues.
*/
void panthor_mmu_post_reset(struct panthor_device *ptdev)
{
struct panthor_vm *vm;
mutex_lock(&ptdev->mmu->as.slots_lock);
/* Now that the reset is effective, we can assume that none of the
* AS slots are setup, and clear the faulty flags too.
*/
ptdev->mmu->as.alloc_mask = 0;
ptdev->mmu->as.faulty_mask = 0;
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm)
panthor_vm_release_as_locked(vm);
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
/* Restart the VM_BIND queues. */
mutex_lock(&ptdev->mmu->vm.lock);
list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
panthor_vm_start(vm);
}
ptdev->mmu->vm.reset_in_progress = false;
mutex_unlock(&ptdev->mmu->vm.lock);
}
static void panthor_vm_free(struct drm_gpuvm *gpuvm)
{
struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
struct panthor_device *ptdev = vm->ptdev;
mutex_lock(&vm->heaps.lock);
if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
panthor_heap_pool_destroy(vm->heaps.pool);
mutex_unlock(&vm->heaps.lock);
mutex_destroy(&vm->heaps.lock);
mutex_lock(&ptdev->mmu->vm.lock);
list_del(&vm->node);
/* Restore the scheduler state so we can call drm_sched_entity_destroy()
* and drm_sched_fini(). If get there, that means we have no job left
* and no new jobs can be queued, so we can start the scheduler without
* risking interfering with the reset.
*/
if (ptdev->mmu->vm.reset_in_progress)
panthor_vm_start(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
drm_sched_entity_destroy(&vm->entity);
drm_sched_fini(&vm->sched);
mutex_lock(&ptdev->mmu->as.slots_lock);
if (vm->as.id >= 0) {
int cookie;
if (drm_dev_enter(&ptdev->base, &cookie)) {
panthor_mmu_as_disable(ptdev, vm->as.id);
drm_dev_exit(cookie);
}
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
list_del(&vm->as.lru_node);
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
free_io_pgtable_ops(vm->pgtbl_ops);
drm_mm_takedown(&vm->mm);
kfree(vm);
}
/**
* panthor_vm_put() - Release a reference on a VM
* @vm: VM to release the reference on. Can be NULL.
*/
void panthor_vm_put(struct panthor_vm *vm)
{
drm_gpuvm_put(vm ? &vm->base : NULL);
}
/**
* panthor_vm_get() - Get a VM reference
* @vm: VM to get the reference on. Can be NULL.
*
* Return: @vm value.
*/
struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
{
if (vm)
drm_gpuvm_get(&vm->base);
return vm;
}
/**
* panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
* @vm: VM to query the heap pool on.
* @create: True if the heap pool should be created when it doesn't exist.
*
* Heap pools are per-VM. This function allows one to retrieve the heap pool
* attached to a VM.
*
* If no heap pool exists yet, and @create is true, we create one.
*
* The returned panthor_heap_pool should be released with panthor_heap_pool_put().
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
{
struct panthor_heap_pool *pool;
mutex_lock(&vm->heaps.lock);
if (!vm->heaps.pool && create) {
if (vm->destroyed)
pool = ERR_PTR(-EINVAL);
else
pool = panthor_heap_pool_create(vm->ptdev, vm);
if (!IS_ERR(pool))
vm->heaps.pool = panthor_heap_pool_get(pool);
} else {
pool = panthor_heap_pool_get(vm->heaps.pool);
if (!pool)
pool = ERR_PTR(-ENOENT);
}
mutex_unlock(&vm->heaps.lock);
return pool;
}
static u64 mair_to_memattr(u64 mair)
{
u64 memattr = 0;
u32 i;
for (i = 0; i < 8; i++) {
u8 in_attr = mair >> (8 * i), out_attr;
u8 outer = in_attr >> 4, inner = in_attr & 0xf;
/* For caching to be enabled, inner and outer caching policy
* have to be both write-back, if one of them is write-through
* or non-cacheable, we just choose non-cacheable. Device
* memory is also translated to non-cacheable.
*/
if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
} else {
/* Use SH_CPU_INNER mode so SH_IS, which is used when
* IOMMU_CACHE is set, actually maps to the standard
* definition of inner-shareable and not Mali's
* internal-shareable mode.
*/
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
AS_MEMATTR_AARCH64_SH_CPU_INNER |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
}
memattr |= (u64)out_attr << (8 * i);
}
return memattr;
}
static void panthor_vma_link(struct panthor_vm *vm,
struct panthor_vma *vma,
struct drm_gpuvm_bo *vm_bo)
{
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
mutex_lock(&bo->gpuva_list_lock);
drm_gpuva_link(&vma->base, vm_bo);
drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
mutex_unlock(&bo->gpuva_list_lock);
}
static void panthor_vma_unlink(struct panthor_vm *vm,
struct panthor_vma *vma)
{
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
mutex_lock(&bo->gpuva_list_lock);
drm_gpuva_unlink(&vma->base);
mutex_unlock(&bo->gpuva_list_lock);
/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
* when entering this function, so we can implement deferred VMA
* destruction. Re-assign it here.
*/
vma->base.vm_bo = vm_bo;
list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
}
static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
{
INIT_LIST_HEAD(&vma->node);
vma->flags = flags;
}
#define PANTHOR_VM_MAP_FLAGS \
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
{
struct panthor_vm *vm = priv;
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
int ret;
if (!vma)
return -EINVAL;
panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
op_ctx->map.sgt, op->map.gem.offset,
op->map.va.range);
if (ret)
return ret;
/* Ref owned by the mapping now, clear the obj field so we don't release the
* pinning/obj ref behind GPUVA's back.
*/
drm_gpuva_map(&vm->base, &vma->base, &op->map);
panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
op_ctx->map.vm_bo = NULL;
return 0;
}
static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
void *priv)
{
struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
struct panthor_vm *vm = priv;
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
u64 unmap_start, unmap_range;
int ret;
drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
if (ret)
return ret;
if (op->remap.prev) {
prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
panthor_vma_init(prev_vma, unmap_vma->flags);
}
if (op->remap.next) {
next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
panthor_vma_init(next_vma, unmap_vma->flags);
}
drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
next_vma ? &next_vma->base : NULL,
&op->remap);
if (prev_vma) {
/* panthor_vma_link() transfers the vm_bo ownership to
* the VMA object. Since the vm_bo we're passing is still
* owned by the old mapping which will be released when this
* mapping is destroyed, we need to grab a ref here.
*/
panthor_vma_link(vm, prev_vma,
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
}
if (next_vma) {
panthor_vma_link(vm, next_vma,
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
}
panthor_vma_unlink(vm, unmap_vma);
return 0;
}
static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
void *priv)
{
struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
struct panthor_vm *vm = priv;
int ret;
ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
unmap_vma->base.va.range);
if (drm_WARN_ON(&vm->ptdev->base, ret))
return ret;
drm_gpuva_unmap(&op->unmap);
panthor_vma_unlink(vm, unmap_vma);
return 0;
}
static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
.vm_free = panthor_vm_free,
.sm_step_map = panthor_gpuva_sm_step_map,
.sm_step_remap = panthor_gpuva_sm_step_remap,
.sm_step_unmap = panthor_gpuva_sm_step_unmap,
};
/**
* panthor_vm_resv() - Get the dma_resv object attached to a VM.
* @vm: VM to get the dma_resv of.
*
* Return: A dma_resv object.
*/
struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
{
return drm_gpuvm_resv(&vm->base);
}
struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
{
if (!vm)
return NULL;
return vm->base.r_obj;
}
static int
panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
bool flag_vm_unusable_on_failure)
{
u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
int ret;
if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
return 0;
mutex_lock(&vm->op_lock);
vm->op_ctx = op;
switch (op_type) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
if (vm->unusable) {
ret = -EINVAL;
break;
}
ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
op->map.vm_bo->obj, op->map.bo_offset);
break;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
break;
default:
ret = -EINVAL;
break;
}
if (ret && flag_vm_unusable_on_failure)
vm->unusable = true;
vm->op_ctx = NULL;
mutex_unlock(&vm->op_lock);
return ret;
}
static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
bool cookie;
int ret;
/* Not only we report an error whose result is propagated to the
* drm_sched finished fence, but we also flag the VM as unusable, because
* a failure in the async VM_BIND results in an inconsistent state. VM needs
* to be destroyed and recreated.
*/
cookie = dma_fence_begin_signalling();
ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
dma_fence_end_signalling(cookie);
return ret ? ERR_PTR(ret) : NULL;
}
static void panthor_vm_bind_job_release(struct kref *kref)
{
struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
if (job->base.s_fence)
drm_sched_job_cleanup(&job->base);
panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
panthor_vm_put(job->vm);
kfree(job);
}
/**
* panthor_vm_bind_job_put() - Release a VM_BIND job reference
* @sched_job: Job to release the reference on.
*/
void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job =
container_of(sched_job, struct panthor_vm_bind_job, base);
if (sched_job)
kref_put(&job->refcount, panthor_vm_bind_job_release);
}
static void
panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job =
container_of(sched_job, struct panthor_vm_bind_job, base);
drm_sched_job_cleanup(sched_job);
/* Do the heavy cleanups asynchronously, so we're out of the
* dma-signaling path and can acquire dma-resv locks safely.
*/
queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
}
static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
{
WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
return DRM_GPU_SCHED_STAT_NOMINAL;
}
static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
.run_job = panthor_vm_bind_run_job,
.free_job = panthor_vm_bind_free_job,
.timedout_job = panthor_vm_bind_timedout_job,
};
/**
* panthor_vm_create() - Create a VM
* @ptdev: Device.
* @for_mcu: True if this is the FW MCU VM.
* @kernel_va_start: Start of the range reserved for kernel BO mapping.
* @kernel_va_size: Size of the range reserved for kernel BO mapping.
* @auto_kernel_va_start: Start of the auto-VA kernel range.
* @auto_kernel_va_size: Size of the auto-VA kernel range.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_vm *
panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
u64 kernel_va_start, u64 kernel_va_size,
u64 auto_kernel_va_start, u64 auto_kernel_va_size)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
u64 full_va_range = 1ull << va_bits;
struct drm_gem_object *dummy_gem;
struct drm_gpu_scheduler *sched;
struct io_pgtable_cfg pgtbl_cfg;
u64 mair, min_va, va_range;
struct panthor_vm *vm;
int ret;
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
if (!vm)
return ERR_PTR(-ENOMEM);
/* We allocate a dummy GEM for the VM. */
dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
if (!dummy_gem) {
ret = -ENOMEM;
goto err_free_vm;
}
mutex_init(&vm->heaps.lock);
vm->for_mcu = for_mcu;
vm->ptdev = ptdev;
mutex_init(&vm->op_lock);
if (for_mcu) {
/* CSF MCU is a cortex M7, and can only address 4G */
min_va = 0;
va_range = SZ_4G;
} else {
min_va = 0;
va_range = full_va_range;
}
mutex_init(&vm->mm_lock);
drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
vm->kernel_auto_va.start = auto_kernel_va_start;
vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
INIT_LIST_HEAD(&vm->node);
INIT_LIST_HEAD(&vm->as.lru_node);
vm->as.id = -1;
refcount_set(&vm->as.active_cnt, 0);
pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = SZ_4K | SZ_2M,
.ias = va_bits,
.oas = pa_bits,
.coherent_walk = ptdev->coherent,
.tlb = &mmu_tlb_ops,
.iommu_dev = ptdev->base.dev,
.alloc = alloc_pt,
.free = free_pt,
};
vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
if (!vm->pgtbl_ops) {
ret = -EINVAL;
goto err_mm_takedown;
}
/* Bind operations are synchronous for now, no timeout needed. */
ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
1, 1, 0,
MAX_SCHEDULE_TIMEOUT, NULL, NULL,
"panthor-vm-bind", ptdev->base.dev);
if (ret)
goto err_free_io_pgtable;
sched = &vm->sched;
ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
if (ret)
goto err_sched_fini;
mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
vm->memattr = mair_to_memattr(mair);
mutex_lock(&ptdev->mmu->vm.lock);
list_add_tail(&vm->node, &ptdev->mmu->vm.list);
/* If a reset is in progress, stop the scheduler. */
if (ptdev->mmu->vm.reset_in_progress)
panthor_vm_stop(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
/* We intentionally leave the reserved range to zero, because we want kernel VMAs
* to be handled the same way user VMAs are.
*/
drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
min_va, va_range, 0, 0, &panthor_gpuvm_ops);
drm_gem_object_put(dummy_gem);
return vm;
err_sched_fini:
drm_sched_fini(&vm->sched);
err_free_io_pgtable:
free_io_pgtable_ops(vm->pgtbl_ops);
err_mm_takedown:
drm_mm_takedown(&vm->mm);
drm_gem_object_put(dummy_gem);
err_free_vm:
kfree(vm);
return ERR_PTR(ret);
}
static int
panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
struct panthor_vm *vm,
const struct drm_panthor_vm_bind_op *op,
struct panthor_vm_op_ctx *op_ctx)
{
struct drm_gem_object *gem;
int ret;
/* Aligned on page size. */
if ((op->va | op->size) & ~PAGE_MASK)
return -EINVAL;
switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
gem = drm_gem_object_lookup(file, op->bo_handle);
ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
gem ? to_panthor_bo(gem) : NULL,
op->bo_offset,
op->size,
op->va,
op->flags);
drm_gem_object_put(gem);
return ret;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
return -EINVAL;
if (op->bo_handle || op->bo_offset)
return -EINVAL;
return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
return -EINVAL;
if (op->bo_handle || op->bo_offset)
return -EINVAL;
if (op->va || op->size)
return -EINVAL;
if (!op->syncs.count)
return -EINVAL;
panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
return 0;
default:
return -EINVAL;
}
}
static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
{
struct panthor_vm_bind_job *job =
container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
panthor_vm_bind_job_put(&job->base);
}
/**
* panthor_vm_bind_job_create() - Create a VM_BIND job
* @file: File.
* @vm: VM targeted by the VM_BIND job.
* @op: VM operation data.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file *file,
struct panthor_vm *vm,
const struct drm_panthor_vm_bind_op *op)
{
struct panthor_vm_bind_job *job;
int ret;
if (!vm)
return ERR_PTR(-EINVAL);
if (vm->destroyed || vm->unusable)
return ERR_PTR(-EINVAL);
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return ERR_PTR(-ENOMEM);
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
if (ret) {
kfree(job);
return ERR_PTR(ret);
}
INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
kref_init(&job->refcount);
job->vm = panthor_vm_get(vm);
ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
if (ret)
goto err_put_job;
return &job->base;
err_put_job:
panthor_vm_bind_job_put(&job->base);
return ERR_PTR(ret);
}
/**
* panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
* @exec: The locking/preparation context.
* @sched_job: The job to prepare resvs on.
*
* Locks and prepare the VM resv.
*
* If this is a map operation, locks and prepares the GEM resv.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
int ret;
/* Acquire the VM lock an reserve a slot for this VM bind job. */
ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
if (ret)
return ret;
if (job->ctx.map.vm_bo) {
/* Lock/prepare the GEM being mapped. */
ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
if (ret)
return ret;
}
return 0;
}
/**
* panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
* @exec: drm_exec context.
* @sched_job: Job to update the resvs on.
*/
void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
/* Explicit sync => we just register our job finished fence as bookkeep. */
drm_gpuvm_resv_add_fence(&job->vm->base, exec,
&sched_job->s_fence->finished,
DMA_RESV_USAGE_BOOKKEEP,
DMA_RESV_USAGE_BOOKKEEP);
}
void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
struct dma_fence *fence,
enum dma_resv_usage private_usage,
enum dma_resv_usage extobj_usage)
{
drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
}
/**
* panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
* @file: File.
* @vm: VM targeted by the VM operation.
* @op: Data describing the VM operation.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_bind_exec_sync_op(struct drm_file *file,
struct panthor_vm *vm,
struct drm_panthor_vm_bind_op *op)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
/* No sync objects allowed on synchronous operations. */
if (op->syncs.count)
return -EINVAL;
if (!op->size)
return 0;
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_map_bo_range() - Map a GEM object range to a VM
* @vm: VM to map the GEM to.
* @bo: GEM object to map.
* @offset: Offset in the GEM object.
* @size: Size to map.
* @va: Virtual address to map the object to.
* @flags: Combination of drm_panthor_vm_bind_op_flags flags.
* Only map-related flags are valid.
*
* Internal use only. For userspace requests, use
* panthor_vm_bind_exec_sync_op() instead.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
u64 offset, u64 size, u64 va, u32 flags)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_unmap_range() - Unmap a portion of the VA space
* @vm: VM to unmap the region from.
* @va: Virtual address to unmap. Must be 4k aligned.
* @size: Size of the region to unmap. Must be 4k aligned.
*
* Internal use only. For userspace requests, use
* panthor_vm_bind_exec_sync_op() instead.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
* @exec: Locking/preparation context.
* @vm: VM targeted by the GPU job.
* @slot_count: Number of slots to reserve.
*
* GPU jobs assume all BOs bound to the VM at the time the job is submitted
* are available when the job is executed. In order to guarantee that, we
* need to reserve a slot on all BOs mapped to a VM and update this slot with
* the job fence after its submission.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
u32 slot_count)
{
int ret;
/* Acquire the VM lock and reserve a slot for this GPU job. */
ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
if (ret)
return ret;
return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
}
/**
* panthor_mmu_unplug() - Unplug the MMU logic
* @ptdev: Device.
*
* No access to the MMU regs should be done after this function is called.
* We suspend the IRQ and disable all VMs to guarantee that.
*/
void panthor_mmu_unplug(struct panthor_device *ptdev)
{
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
mutex_lock(&ptdev->mmu->as.slots_lock);
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm) {
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
panthor_vm_release_as_locked(vm);
}
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
}
static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
{
destroy_workqueue(res);
}
/**
* panthor_mmu_init() - Initialize the MMU logic.
* @ptdev: Device.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_mmu_init(struct panthor_device *ptdev)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
struct panthor_mmu *mmu;
int ret, irq;
mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
if (!mmu)
return -ENOMEM;
INIT_LIST_HEAD(&mmu->as.lru_list);
ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
if (ret)
return ret;
INIT_LIST_HEAD(&mmu->vm.list);
ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
if (ret)
return ret;
ptdev->mmu = mmu;
irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
if (irq <= 0)
return -ENODEV;
ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
panthor_mmu_fault_mask(ptdev, ~0));
if (ret)
return ret;
mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
if (!mmu->vm.wq)
return -ENOMEM;
/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
* which passes iova as an unsigned long. Patch the mmu_features to reflect this
* limitation.
*/
if (sizeof(unsigned long) * 8 < va_bits) {
ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
}
return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
}
#ifdef CONFIG_DEBUG_FS
static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
{
int ret;
mutex_lock(&vm->op_lock);
ret = drm_debugfs_gpuva_info(m, &vm->base);
mutex_unlock(&vm->op_lock);
return ret;
}
static int show_each_vm(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *ddev = node->minor->dev;
struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
struct panthor_vm *vm;
int ret = 0;
mutex_lock(&ptdev->mmu->vm.lock);
list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
ret = show(vm, m);
if (ret < 0)
break;
seq_puts(m, "\n");
}
mutex_unlock(&ptdev->mmu->vm.lock);
return ret;
}
static struct drm_info_list panthor_mmu_debugfs_list[] = {
DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
};
/**
* panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
* @minor: Minor.
*/
void panthor_mmu_debugfs_init(struct drm_minor *minor)
{
drm_debugfs_create_files(panthor_mmu_debugfs_list,
ARRAY_SIZE(panthor_mmu_debugfs_list),
minor->debugfs_root, minor);
}
#endif /* CONFIG_DEBUG_FS */
/**
* panthor_mmu_pt_cache_init() - Initialize the page table cache.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_mmu_pt_cache_init(void)
{
pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
if (!pt_cache)
return -ENOMEM;
return 0;
}
/**
* panthor_mmu_pt_cache_fini() - Destroy the page table cache.
*/
void panthor_mmu_pt_cache_fini(void)
{
kmem_cache_destroy(pt_cache);
}