| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Mediatek MT7530 DSA Switch driver |
| * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> |
| */ |
| #include <linux/etherdevice.h> |
| #include <linux/if_bridge.h> |
| #include <linux/iopoll.h> |
| #include <linux/mdio.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/of_platform.h> |
| #include <linux/phylink.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/reset.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/gpio/driver.h> |
| #include <net/dsa.h> |
| |
| #include "mt7530.h" |
| |
| static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs) |
| { |
| return container_of(pcs, struct mt753x_pcs, pcs); |
| } |
| |
| /* String, offset, and register size in bytes if different from 4 bytes */ |
| static const struct mt7530_mib_desc mt7530_mib[] = { |
| MIB_DESC(1, 0x00, "TxDrop"), |
| MIB_DESC(1, 0x04, "TxCrcErr"), |
| MIB_DESC(1, 0x08, "TxUnicast"), |
| MIB_DESC(1, 0x0c, "TxMulticast"), |
| MIB_DESC(1, 0x10, "TxBroadcast"), |
| MIB_DESC(1, 0x14, "TxCollision"), |
| MIB_DESC(1, 0x18, "TxSingleCollision"), |
| MIB_DESC(1, 0x1c, "TxMultipleCollision"), |
| MIB_DESC(1, 0x20, "TxDeferred"), |
| MIB_DESC(1, 0x24, "TxLateCollision"), |
| MIB_DESC(1, 0x28, "TxExcessiveCollistion"), |
| MIB_DESC(1, 0x2c, "TxPause"), |
| MIB_DESC(1, 0x30, "TxPktSz64"), |
| MIB_DESC(1, 0x34, "TxPktSz65To127"), |
| MIB_DESC(1, 0x38, "TxPktSz128To255"), |
| MIB_DESC(1, 0x3c, "TxPktSz256To511"), |
| MIB_DESC(1, 0x40, "TxPktSz512To1023"), |
| MIB_DESC(1, 0x44, "Tx1024ToMax"), |
| MIB_DESC(2, 0x48, "TxBytes"), |
| MIB_DESC(1, 0x60, "RxDrop"), |
| MIB_DESC(1, 0x64, "RxFiltering"), |
| MIB_DESC(1, 0x68, "RxUnicast"), |
| MIB_DESC(1, 0x6c, "RxMulticast"), |
| MIB_DESC(1, 0x70, "RxBroadcast"), |
| MIB_DESC(1, 0x74, "RxAlignErr"), |
| MIB_DESC(1, 0x78, "RxCrcErr"), |
| MIB_DESC(1, 0x7c, "RxUnderSizeErr"), |
| MIB_DESC(1, 0x80, "RxFragErr"), |
| MIB_DESC(1, 0x84, "RxOverSzErr"), |
| MIB_DESC(1, 0x88, "RxJabberErr"), |
| MIB_DESC(1, 0x8c, "RxPause"), |
| MIB_DESC(1, 0x90, "RxPktSz64"), |
| MIB_DESC(1, 0x94, "RxPktSz65To127"), |
| MIB_DESC(1, 0x98, "RxPktSz128To255"), |
| MIB_DESC(1, 0x9c, "RxPktSz256To511"), |
| MIB_DESC(1, 0xa0, "RxPktSz512To1023"), |
| MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), |
| MIB_DESC(2, 0xa8, "RxBytes"), |
| MIB_DESC(1, 0xb0, "RxCtrlDrop"), |
| MIB_DESC(1, 0xb4, "RxIngressDrop"), |
| MIB_DESC(1, 0xb8, "RxArlDrop"), |
| }; |
| |
| static void |
| mt7530_mutex_lock(struct mt7530_priv *priv) |
| { |
| if (priv->bus) |
| mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); |
| } |
| |
| static void |
| mt7530_mutex_unlock(struct mt7530_priv *priv) |
| { |
| if (priv->bus) |
| mutex_unlock(&priv->bus->mdio_lock); |
| } |
| |
| static void |
| core_write(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| struct mii_bus *bus = priv->bus; |
| int ret; |
| |
| mt7530_mutex_lock(priv); |
| |
| /* Write the desired MMD Devad */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_CTRL, MDIO_MMD_VEND2); |
| if (ret < 0) |
| goto err; |
| |
| /* Write the desired MMD register address */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_DATA, reg); |
| if (ret < 0) |
| goto err; |
| |
| /* Select the Function : DATA with no post increment */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR); |
| if (ret < 0) |
| goto err; |
| |
| /* Write the data into MMD's selected register */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_DATA, val); |
| err: |
| if (ret < 0) |
| dev_err(&bus->dev, "failed to write mmd register\n"); |
| |
| mt7530_mutex_unlock(priv); |
| } |
| |
| static void |
| core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) |
| { |
| struct mii_bus *bus = priv->bus; |
| u32 val; |
| int ret; |
| |
| mt7530_mutex_lock(priv); |
| |
| /* Write the desired MMD Devad */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_CTRL, MDIO_MMD_VEND2); |
| if (ret < 0) |
| goto err; |
| |
| /* Write the desired MMD register address */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_DATA, reg); |
| if (ret < 0) |
| goto err; |
| |
| /* Select the Function : DATA with no post increment */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR); |
| if (ret < 0) |
| goto err; |
| |
| /* Read the content of the MMD's selected register */ |
| val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_DATA); |
| val &= ~mask; |
| val |= set; |
| /* Write the data into MMD's selected register */ |
| ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MII_MMD_DATA, val); |
| err: |
| if (ret < 0) |
| dev_err(&bus->dev, "failed to write mmd register\n"); |
| |
| mt7530_mutex_unlock(priv); |
| } |
| |
| static void |
| core_set(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| core_rmw(priv, reg, 0, val); |
| } |
| |
| static void |
| core_clear(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| core_rmw(priv, reg, val, 0); |
| } |
| |
| static int |
| mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| int ret; |
| |
| ret = regmap_write(priv->regmap, reg, val); |
| |
| if (ret < 0) |
| dev_err(priv->dev, |
| "failed to write mt7530 register\n"); |
| |
| return ret; |
| } |
| |
| static u32 |
| mt7530_mii_read(struct mt7530_priv *priv, u32 reg) |
| { |
| int ret; |
| u32 val; |
| |
| ret = regmap_read(priv->regmap, reg, &val); |
| if (ret) { |
| WARN_ON_ONCE(1); |
| dev_err(priv->dev, |
| "failed to read mt7530 register\n"); |
| return 0; |
| } |
| |
| return val; |
| } |
| |
| static void |
| mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| mt7530_mutex_lock(priv); |
| |
| mt7530_mii_write(priv, reg, val); |
| |
| mt7530_mutex_unlock(priv); |
| } |
| |
| static u32 |
| _mt7530_unlocked_read(struct mt7530_dummy_poll *p) |
| { |
| return mt7530_mii_read(p->priv, p->reg); |
| } |
| |
| static u32 |
| _mt7530_read(struct mt7530_dummy_poll *p) |
| { |
| u32 val; |
| |
| mt7530_mutex_lock(p->priv); |
| |
| val = mt7530_mii_read(p->priv, p->reg); |
| |
| mt7530_mutex_unlock(p->priv); |
| |
| return val; |
| } |
| |
| static u32 |
| mt7530_read(struct mt7530_priv *priv, u32 reg) |
| { |
| struct mt7530_dummy_poll p; |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, reg); |
| return _mt7530_read(&p); |
| } |
| |
| static void |
| mt7530_rmw(struct mt7530_priv *priv, u32 reg, |
| u32 mask, u32 set) |
| { |
| mt7530_mutex_lock(priv); |
| |
| regmap_update_bits(priv->regmap, reg, mask, set); |
| |
| mt7530_mutex_unlock(priv); |
| } |
| |
| static void |
| mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| mt7530_rmw(priv, reg, val, val); |
| } |
| |
| static void |
| mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) |
| { |
| mt7530_rmw(priv, reg, val, 0); |
| } |
| |
| static int |
| mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) |
| { |
| u32 val; |
| int ret; |
| struct mt7530_dummy_poll p; |
| |
| /* Set the command operating upon the MAC address entries */ |
| val = ATC_BUSY | ATC_MAT(0) | cmd; |
| mt7530_write(priv, MT7530_ATC, val); |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); |
| ret = readx_poll_timeout(_mt7530_read, &p, val, |
| !(val & ATC_BUSY), 20, 20000); |
| if (ret < 0) { |
| dev_err(priv->dev, "reset timeout\n"); |
| return ret; |
| } |
| |
| /* Additional sanity for read command if the specified |
| * entry is invalid |
| */ |
| val = mt7530_read(priv, MT7530_ATC); |
| if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) |
| return -EINVAL; |
| |
| if (rsp) |
| *rsp = val; |
| |
| return 0; |
| } |
| |
| static void |
| mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) |
| { |
| u32 reg[3]; |
| int i; |
| |
| /* Read from ARL table into an array */ |
| for (i = 0; i < 3; i++) { |
| reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); |
| |
| dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", |
| __func__, __LINE__, i, reg[i]); |
| } |
| |
| fdb->vid = (reg[1] >> CVID) & CVID_MASK; |
| fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; |
| fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; |
| fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; |
| fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; |
| fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; |
| fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; |
| fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; |
| fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; |
| fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; |
| } |
| |
| static void |
| mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, |
| u8 port_mask, const u8 *mac, |
| u8 aging, u8 type) |
| { |
| u32 reg[3] = { 0 }; |
| int i; |
| |
| reg[1] |= vid & CVID_MASK; |
| reg[1] |= ATA2_IVL; |
| reg[1] |= ATA2_FID(FID_BRIDGED); |
| reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; |
| reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; |
| /* STATIC_ENT indicate that entry is static wouldn't |
| * be aged out and STATIC_EMP specified as erasing an |
| * entry |
| */ |
| reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; |
| reg[1] |= mac[5] << MAC_BYTE_5; |
| reg[1] |= mac[4] << MAC_BYTE_4; |
| reg[0] |= mac[3] << MAC_BYTE_3; |
| reg[0] |= mac[2] << MAC_BYTE_2; |
| reg[0] |= mac[1] << MAC_BYTE_1; |
| reg[0] |= mac[0] << MAC_BYTE_0; |
| |
| /* Write array into the ARL table */ |
| for (i = 0; i < 3; i++) |
| mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); |
| } |
| |
| /* Set up switch core clock for MT7530 */ |
| static void mt7530_pll_setup(struct mt7530_priv *priv) |
| { |
| /* Disable core clock */ |
| core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); |
| |
| /* Disable PLL */ |
| core_write(priv, CORE_GSWPLL_GRP1, 0); |
| |
| /* Set core clock into 500Mhz */ |
| core_write(priv, CORE_GSWPLL_GRP2, |
| RG_GSWPLL_POSDIV_500M(1) | |
| RG_GSWPLL_FBKDIV_500M(25)); |
| |
| /* Enable PLL */ |
| core_write(priv, CORE_GSWPLL_GRP1, |
| RG_GSWPLL_EN_PRE | |
| RG_GSWPLL_POSDIV_200M(2) | |
| RG_GSWPLL_FBKDIV_200M(32)); |
| |
| udelay(20); |
| |
| /* Enable core clock */ |
| core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); |
| } |
| |
| /* If port 6 is available as a CPU port, always prefer that as the default, |
| * otherwise don't care. |
| */ |
| static struct dsa_port * |
| mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds) |
| { |
| struct dsa_port *cpu_dp = dsa_to_port(ds, 6); |
| |
| if (dsa_port_is_cpu(cpu_dp)) |
| return cpu_dp; |
| |
| return NULL; |
| } |
| |
| /* Setup port 6 interface mode and TRGMII TX circuit */ |
| static void |
| mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u32 ncpo1, ssc_delta, xtal; |
| |
| /* Disable the MT7530 TRGMII clocks */ |
| core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); |
| |
| if (interface == PHY_INTERFACE_MODE_RGMII) { |
| mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, |
| P6_INTF_MODE(0)); |
| return; |
| } |
| |
| mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1)); |
| |
| xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK; |
| |
| if (xtal == MT7530_XTAL_25MHZ) |
| ssc_delta = 0x57; |
| else |
| ssc_delta = 0x87; |
| |
| if (priv->id == ID_MT7621) { |
| /* PLL frequency: 125MHz: 1.0GBit */ |
| if (xtal == MT7530_XTAL_40MHZ) |
| ncpo1 = 0x0640; |
| if (xtal == MT7530_XTAL_25MHZ) |
| ncpo1 = 0x0a00; |
| } else { /* PLL frequency: 250MHz: 2.0Gbit */ |
| if (xtal == MT7530_XTAL_40MHZ) |
| ncpo1 = 0x0c80; |
| if (xtal == MT7530_XTAL_25MHZ) |
| ncpo1 = 0x1400; |
| } |
| |
| /* Setup the MT7530 TRGMII Tx Clock */ |
| core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); |
| core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); |
| core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); |
| core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); |
| core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN | |
| RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN); |
| core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL | |
| RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1)); |
| core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG | |
| RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); |
| |
| /* Enable the MT7530 TRGMII clocks */ |
| core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); |
| } |
| |
| static void |
| mt7531_pll_setup(struct mt7530_priv *priv) |
| { |
| enum mt7531_xtal_fsel xtal; |
| u32 top_sig; |
| u32 hwstrap; |
| u32 val; |
| |
| val = mt7530_read(priv, MT7531_CREV); |
| top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); |
| hwstrap = mt7530_read(priv, MT753X_TRAP); |
| if ((val & CHIP_REV_M) > 0) |
| xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ : |
| MT7531_XTAL_FSEL_25MHZ; |
| else |
| xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ : |
| MT7531_XTAL_FSEL_40MHZ; |
| |
| /* Step 1 : Disable MT7531 COREPLL */ |
| val = mt7530_read(priv, MT7531_PLLGP_EN); |
| val &= ~EN_COREPLL; |
| mt7530_write(priv, MT7531_PLLGP_EN, val); |
| |
| /* Step 2: switch to XTAL output */ |
| val = mt7530_read(priv, MT7531_PLLGP_EN); |
| val |= SW_CLKSW; |
| mt7530_write(priv, MT7531_PLLGP_EN, val); |
| |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val &= ~RG_COREPLL_EN; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| |
| /* Step 3: disable PLLGP and enable program PLLGP */ |
| val = mt7530_read(priv, MT7531_PLLGP_EN); |
| val |= SW_PLLGP; |
| mt7530_write(priv, MT7531_PLLGP_EN, val); |
| |
| /* Step 4: program COREPLL output frequency to 500MHz */ |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val &= ~RG_COREPLL_POSDIV_M; |
| val |= 2 << RG_COREPLL_POSDIV_S; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| usleep_range(25, 35); |
| |
| switch (xtal) { |
| case MT7531_XTAL_FSEL_25MHZ: |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val &= ~RG_COREPLL_SDM_PCW_M; |
| val |= 0x140000 << RG_COREPLL_SDM_PCW_S; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| break; |
| case MT7531_XTAL_FSEL_40MHZ: |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val &= ~RG_COREPLL_SDM_PCW_M; |
| val |= 0x190000 << RG_COREPLL_SDM_PCW_S; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| break; |
| } |
| |
| /* Set feedback divide ratio update signal to high */ |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val |= RG_COREPLL_SDM_PCW_CHG; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| /* Wait for at least 16 XTAL clocks */ |
| usleep_range(10, 20); |
| |
| /* Step 5: set feedback divide ratio update signal to low */ |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val &= ~RG_COREPLL_SDM_PCW_CHG; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| |
| /* Enable 325M clock for SGMII */ |
| mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); |
| |
| /* Enable 250SSC clock for RGMII */ |
| mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); |
| |
| /* Step 6: Enable MT7531 PLL */ |
| val = mt7530_read(priv, MT7531_PLLGP_CR0); |
| val |= RG_COREPLL_EN; |
| mt7530_write(priv, MT7531_PLLGP_CR0, val); |
| |
| val = mt7530_read(priv, MT7531_PLLGP_EN); |
| val |= EN_COREPLL; |
| mt7530_write(priv, MT7531_PLLGP_EN, val); |
| usleep_range(25, 35); |
| } |
| |
| static void |
| mt7530_mib_reset(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); |
| mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); |
| } |
| |
| static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum) |
| { |
| return mdiobus_read_nested(priv->bus, port, regnum); |
| } |
| |
| static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum, |
| u16 val) |
| { |
| return mdiobus_write_nested(priv->bus, port, regnum, val); |
| } |
| |
| static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port, |
| int devad, int regnum) |
| { |
| return mdiobus_c45_read_nested(priv->bus, port, devad, regnum); |
| } |
| |
| static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad, |
| int regnum, u16 val) |
| { |
| return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val); |
| } |
| |
| static int |
| mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, |
| int regnum) |
| { |
| struct mt7530_dummy_poll p; |
| u32 reg, val; |
| int ret; |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); |
| |
| mt7530_mutex_lock(priv); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_DEV_ADDR(devad) | regnum; |
| mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_DEV_ADDR(devad); |
| mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| ret = val & MT7531_MDIO_RW_DATA_MASK; |
| out: |
| mt7530_mutex_unlock(priv); |
| |
| return ret; |
| } |
| |
| static int |
| mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, |
| int regnum, u16 data) |
| { |
| struct mt7530_dummy_poll p; |
| u32 val, reg; |
| int ret; |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); |
| |
| mt7530_mutex_lock(priv); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_DEV_ADDR(devad) | regnum; |
| mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_DEV_ADDR(devad) | data; |
| mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| out: |
| mt7530_mutex_unlock(priv); |
| |
| return ret; |
| } |
| |
| static int |
| mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) |
| { |
| struct mt7530_dummy_poll p; |
| int ret; |
| u32 val; |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); |
| |
| mt7530_mutex_lock(priv); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_REG_ADDR(regnum); |
| |
| mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, |
| !(val & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| ret = val & MT7531_MDIO_RW_DATA_MASK; |
| out: |
| mt7530_mutex_unlock(priv); |
| |
| return ret; |
| } |
| |
| static int |
| mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, |
| u16 data) |
| { |
| struct mt7530_dummy_poll p; |
| int ret; |
| u32 reg; |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); |
| |
| mt7530_mutex_lock(priv); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, |
| !(reg & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | |
| MT7531_MDIO_REG_ADDR(regnum) | data; |
| |
| mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); |
| |
| ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, |
| !(reg & MT7531_PHY_ACS_ST), 20, 100000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| goto out; |
| } |
| |
| out: |
| mt7530_mutex_unlock(priv); |
| |
| return ret; |
| } |
| |
| static int |
| mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum) |
| { |
| struct mt7530_priv *priv = bus->priv; |
| |
| return priv->info->phy_read_c22(priv, port, regnum); |
| } |
| |
| static int |
| mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum) |
| { |
| struct mt7530_priv *priv = bus->priv; |
| |
| return priv->info->phy_read_c45(priv, port, devad, regnum); |
| } |
| |
| static int |
| mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val) |
| { |
| struct mt7530_priv *priv = bus->priv; |
| |
| return priv->info->phy_write_c22(priv, port, regnum, val); |
| } |
| |
| static int |
| mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum, |
| u16 val) |
| { |
| struct mt7530_priv *priv = bus->priv; |
| |
| return priv->info->phy_write_c45(priv, port, devad, regnum, val); |
| } |
| |
| static void |
| mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, |
| uint8_t *data) |
| { |
| int i; |
| |
| if (stringset != ETH_SS_STATS) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) |
| ethtool_puts(&data, mt7530_mib[i].name); |
| } |
| |
| static void |
| mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, |
| uint64_t *data) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| const struct mt7530_mib_desc *mib; |
| u32 reg, i; |
| u64 hi; |
| |
| for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { |
| mib = &mt7530_mib[i]; |
| reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; |
| |
| data[i] = mt7530_read(priv, reg); |
| if (mib->size == 2) { |
| hi = mt7530_read(priv, reg + 4); |
| data[i] |= hi << 32; |
| } |
| } |
| } |
| |
| static int |
| mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) |
| { |
| if (sset != ETH_SS_STATS) |
| return 0; |
| |
| return ARRAY_SIZE(mt7530_mib); |
| } |
| |
| static int |
| mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| unsigned int secs = msecs / 1000; |
| unsigned int tmp_age_count; |
| unsigned int error = -1; |
| unsigned int age_count; |
| unsigned int age_unit; |
| |
| /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ |
| if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) |
| return -ERANGE; |
| |
| /* iterate through all possible age_count to find the closest pair */ |
| for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { |
| unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; |
| |
| if (tmp_age_unit <= AGE_UNIT_MAX) { |
| unsigned int tmp_error = secs - |
| (tmp_age_count + 1) * (tmp_age_unit + 1); |
| |
| /* found a closer pair */ |
| if (error > tmp_error) { |
| error = tmp_error; |
| age_count = tmp_age_count; |
| age_unit = tmp_age_unit; |
| } |
| |
| /* found the exact match, so break the loop */ |
| if (!error) |
| break; |
| } |
| } |
| |
| mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); |
| |
| return 0; |
| } |
| |
| static const char *mt7530_p5_mode_str(unsigned int mode) |
| { |
| switch (mode) { |
| case MUX_PHY_P0: |
| return "MUX PHY P0"; |
| case MUX_PHY_P4: |
| return "MUX PHY P4"; |
| default: |
| return "GMAC5"; |
| } |
| } |
| |
| static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u8 tx_delay = 0; |
| int val; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| val = mt7530_read(priv, MT753X_MTRAP); |
| |
| val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE; |
| |
| switch (priv->p5_mode) { |
| /* MUX_PHY_P0: P0 -> P5 -> SoC MAC */ |
| case MUX_PHY_P0: |
| val |= MT7530_P5_PHY0_SEL; |
| fallthrough; |
| |
| /* MUX_PHY_P4: P4 -> P5 -> SoC MAC */ |
| case MUX_PHY_P4: |
| /* Setup the MAC by default for the cpu port */ |
| mt7530_write(priv, MT753X_PMCR_P(5), 0x56300); |
| break; |
| |
| /* GMAC5: P5 -> SoC MAC or external PHY */ |
| default: |
| val |= MT7530_P5_MAC_SEL; |
| break; |
| } |
| |
| /* Setup RGMII settings */ |
| if (phy_interface_mode_is_rgmii(interface)) { |
| val |= MT7530_P5_RGMII_MODE; |
| |
| /* P5 RGMII RX Clock Control: delay setting for 1000M */ |
| mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); |
| |
| /* Don't set delay in DSA mode */ |
| if (!dsa_is_dsa_port(priv->ds, 5) && |
| (interface == PHY_INTERFACE_MODE_RGMII_TXID || |
| interface == PHY_INTERFACE_MODE_RGMII_ID)) |
| tx_delay = 4; /* n * 0.5 ns */ |
| |
| /* P5 RGMII TX Clock Control: delay x */ |
| mt7530_write(priv, MT7530_P5RGMIITXCR, |
| CSR_RGMII_TXC_CFG(0x10 + tx_delay)); |
| |
| /* reduce P5 RGMII Tx driving, 8mA */ |
| mt7530_write(priv, MT7530_IO_DRV_CR, |
| P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); |
| } |
| |
| mt7530_write(priv, MT753X_MTRAP, val); |
| |
| dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val, |
| mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface)); |
| |
| mutex_unlock(&priv->reg_mutex); |
| } |
| |
| /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL) |
| * of the Open Systems Interconnection basic reference model (OSI/RM) are |
| * described; the medium access control (MAC) and logical link control (LLC) |
| * sublayers. The MAC sublayer is the one facing the physical layer. |
| * |
| * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A |
| * Bridge component comprises a MAC Relay Entity for interconnecting the Ports |
| * of the Bridge, at least two Ports, and higher layer entities with at least a |
| * Spanning Tree Protocol Entity included. |
| * |
| * Each Bridge Port also functions as an end station and shall provide the MAC |
| * Service to an LLC Entity. Each instance of the MAC Service is provided to a |
| * distinct LLC Entity that supports protocol identification, multiplexing, and |
| * demultiplexing, for protocol data unit (PDU) transmission and reception by |
| * one or more higher layer entities. |
| * |
| * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC |
| * Entity associated with each Bridge Port is modeled as being directly |
| * connected to the attached Local Area Network (LAN). |
| * |
| * On the switch with CPU port architecture, CPU port functions as Management |
| * Port, and the Management Port functionality is provided by software which |
| * functions as an end station. Software is connected to an IEEE 802 LAN that is |
| * wholly contained within the system that incorporates the Bridge. Software |
| * provides access to the LLC Entity associated with each Bridge Port by the |
| * value of the source port field on the special tag on the frame received by |
| * software. |
| * |
| * We call frames that carry control information to determine the active |
| * topology and current extent of each Virtual Local Area Network (VLAN), i.e., |
| * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration |
| * Protocol Data Units (MVRPDUs), and frames from other link constrained |
| * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and |
| * Link Layer Discovery Protocol (LLDP), link-local frames. They are not |
| * forwarded by a Bridge. Permanently configured entries in the filtering |
| * database (FDB) ensure that such frames are discarded by the Forwarding |
| * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail: |
| * |
| * Each of the reserved MAC addresses specified in Table 8-1 |
| * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be |
| * permanently configured in the FDB in C-VLAN components and ERs. |
| * |
| * Each of the reserved MAC addresses specified in Table 8-2 |
| * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently |
| * configured in the FDB in S-VLAN components. |
| * |
| * Each of the reserved MAC addresses specified in Table 8-3 |
| * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in |
| * TPMR components. |
| * |
| * The FDB entries for reserved MAC addresses shall specify filtering for all |
| * Bridge Ports and all VIDs. Management shall not provide the capability to |
| * modify or remove entries for reserved MAC addresses. |
| * |
| * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of |
| * propagation of PDUs within a Bridged Network, as follows: |
| * |
| * The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no |
| * conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN) |
| * component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward. |
| * PDUs transmitted using this destination address, or any other addresses |
| * that appear in Table 8-1, Table 8-2, and Table 8-3 |
| * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can |
| * therefore travel no further than those stations that can be reached via a |
| * single individual LAN from the originating station. |
| * |
| * The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an |
| * address that no conformant S-VLAN component, C-VLAN component, or MAC |
| * Bridge can forward; however, this address is relayed by a TPMR component. |
| * PDUs using this destination address, or any of the other addresses that |
| * appear in both Table 8-1 and Table 8-2 but not in Table 8-3 |
| * (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by |
| * any TPMRs but will propagate no further than the nearest S-VLAN component, |
| * C-VLAN component, or MAC Bridge. |
| * |
| * The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address |
| * that no conformant C-VLAN component, MAC Bridge can forward; however, it is |
| * relayed by TPMR components and S-VLAN components. PDUs using this |
| * destination address, or any of the other addresses that appear in Table 8-1 |
| * but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]), |
| * will be relayed by TPMR components and S-VLAN components but will propagate |
| * no further than the nearest C-VLAN component or MAC Bridge. |
| * |
| * Because the LLC Entity associated with each Bridge Port is provided via CPU |
| * port, we must not filter these frames but forward them to CPU port. |
| * |
| * In a Bridge, the transmission Port is majorly decided by ingress and egress |
| * rules, FDB, and spanning tree Port State functions of the Forwarding Process. |
| * For link-local frames, only CPU port should be designated as destination port |
| * in the FDB, and the other functions of the Forwarding Process must not |
| * interfere with the decision of the transmission Port. We call this process |
| * trapping frames to CPU port. |
| * |
| * Therefore, on the switch with CPU port architecture, link-local frames must |
| * be trapped to CPU port, and certain link-local frames received by a Port of a |
| * Bridge comprising a TPMR component or an S-VLAN component must be excluded |
| * from it. |
| * |
| * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port |
| * MAC Relay (TPMR) component as a TPMR component supports only a subset of the |
| * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port |
| * doesn't count) of this architecture will either function as a standard MAC |
| * Bridge or a standard VLAN Bridge. |
| * |
| * Therefore, a Bridge of this architecture can only comprise S-VLAN components, |
| * C-VLAN components, or MAC Bridge components. Since there's no TPMR component, |
| * we don't need to relay PDUs using the destination addresses specified on the |
| * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge |
| * section where they must be relayed by TPMR components. |
| * |
| * One option to trap link-local frames to CPU port is to add static FDB entries |
| * with CPU port designated as destination port. However, because that |
| * Independent VLAN Learning (IVL) is being used on every VID, each entry only |
| * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC |
| * Bridge component or a C-VLAN component, there would have to be 16 times 4096 |
| * entries. This switch intellectual property can only hold a maximum of 2048 |
| * entries. Using this option, there also isn't a mechanism to prevent |
| * link-local frames from being discarded when the spanning tree Port State of |
| * the reception Port is discarding. |
| * |
| * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4 |
| * registers. Whilst this applies to every VID, it doesn't contain all of the |
| * reserved MAC addresses without affecting the remaining Standard Group MAC |
| * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the |
| * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination |
| * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF |
| * destination addresses which may be relayed by MAC Bridges or VLAN Bridges. |
| * The latter option provides better but not complete conformance. |
| * |
| * This switch intellectual property also does not provide a mechanism to trap |
| * link-local frames with specific destination addresses to CPU port by Bridge, |
| * to conform to the filtering rules for the distinct Bridge components. |
| * |
| * Therefore, regardless of the type of the Bridge component, link-local frames |
| * with these destination addresses will be trapped to CPU port: |
| * |
| * 01-80-C2-00-00-[00,01,02,03,0E] |
| * |
| * In a Bridge comprising a MAC Bridge component or a C-VLAN component: |
| * |
| * Link-local frames with these destination addresses won't be trapped to CPU |
| * port which won't conform to IEEE Std 802.1Q-2022: |
| * |
| * 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] |
| * |
| * In a Bridge comprising an S-VLAN component: |
| * |
| * Link-local frames with these destination addresses will be trapped to CPU |
| * port which won't conform to IEEE Std 802.1Q-2022: |
| * |
| * 01-80-C2-00-00-00 |
| * |
| * Link-local frames with these destination addresses won't be trapped to CPU |
| * port which won't conform to IEEE Std 802.1Q-2022: |
| * |
| * 01-80-C2-00-00-[04,05,06,07,08,09,0A] |
| * |
| * To trap link-local frames to CPU port as conformant as this switch |
| * intellectual property can allow, link-local frames are made to be regarded as |
| * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual |
| * property only lets the frames regarded as BPDUs bypass the spanning tree Port |
| * State function of the Forwarding Process. |
| * |
| * The only remaining interference is the ingress rules. When the reception Port |
| * has no PVID assigned on software, VLAN-untagged frames won't be allowed in. |
| * There doesn't seem to be a mechanism on the switch intellectual property to |
| * have link-local frames bypass this function of the Forwarding Process. |
| */ |
| static void |
| mt753x_trap_frames(struct mt7530_priv *priv) |
| { |
| /* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them |
| * VLAN-untagged. |
| */ |
| mt7530_rmw(priv, MT753X_BPC, |
| PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK | |
| BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK, |
| PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) | |
| BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| TO_CPU_FW_CPU_ONLY); |
| |
| /* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress |
| * them VLAN-untagged. |
| */ |
| mt7530_rmw(priv, MT753X_RGAC1, |
| R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK | |
| R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK, |
| R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR | |
| R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| TO_CPU_FW_CPU_ONLY); |
| |
| /* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress |
| * them VLAN-untagged. |
| */ |
| mt7530_rmw(priv, MT753X_RGAC2, |
| R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK | |
| R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK, |
| R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR | |
| R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | |
| TO_CPU_FW_CPU_ONLY); |
| } |
| |
| static void |
| mt753x_cpu_port_enable(struct dsa_switch *ds, int port) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| /* Enable Mediatek header mode on the cpu port */ |
| mt7530_write(priv, MT7530_PVC_P(port), |
| PORT_SPEC_TAG); |
| |
| /* Enable flooding on the CPU port */ |
| mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | |
| UNU_FFP(BIT(port))); |
| |
| /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on |
| * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that |
| * is affine to the inbound user port. |
| */ |
| if (priv->id == ID_MT7531 || priv->id == ID_MT7988 || |
| priv->id == ID_EN7581) |
| mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port))); |
| |
| /* CPU port gets connected to all user ports of |
| * the switch. |
| */ |
| mt7530_write(priv, MT7530_PCR_P(port), |
| PCR_MATRIX(dsa_user_ports(priv->ds))); |
| |
| /* Set to fallback mode for independent VLAN learning */ |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, |
| MT7530_PORT_FALLBACK_MODE); |
| } |
| |
| static int |
| mt7530_port_enable(struct dsa_switch *ds, int port, |
| struct phy_device *phy) |
| { |
| struct dsa_port *dp = dsa_to_port(ds, port); |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| /* Allow the user port gets connected to the cpu port and also |
| * restore the port matrix if the port is the member of a certain |
| * bridge. |
| */ |
| if (dsa_port_is_user(dp)) { |
| struct dsa_port *cpu_dp = dp->cpu_dp; |
| |
| priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index)); |
| } |
| priv->ports[port].enable = true; |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, |
| priv->ports[port].pm); |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| if (priv->id != ID_MT7530 && priv->id != ID_MT7621) |
| return 0; |
| |
| if (port == 5) |
| mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS); |
| else if (port == 6) |
| mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS); |
| |
| return 0; |
| } |
| |
| static void |
| mt7530_port_disable(struct dsa_switch *ds, int port) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| /* Clear up all port matrix which could be restored in the next |
| * enablement for the port. |
| */ |
| priv->ports[port].enable = false; |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, |
| PCR_MATRIX_CLR); |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| if (priv->id != ID_MT7530 && priv->id != ID_MT7621) |
| return; |
| |
| /* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */ |
| if (port == 5 && priv->p5_mode == GMAC5) |
| mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS); |
| else if (port == 6) |
| mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS); |
| } |
| |
| static int |
| mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int length; |
| u32 val; |
| |
| /* When a new MTU is set, DSA always set the CPU port's MTU to the |
| * largest MTU of the user ports. Because the switch only has a global |
| * RX length register, only allowing CPU port here is enough. |
| */ |
| if (!dsa_is_cpu_port(ds, port)) |
| return 0; |
| |
| mt7530_mutex_lock(priv); |
| |
| val = mt7530_mii_read(priv, MT7530_GMACCR); |
| val &= ~MAX_RX_PKT_LEN_MASK; |
| |
| /* RX length also includes Ethernet header, MTK tag, and FCS length */ |
| length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; |
| if (length <= 1522) { |
| val |= MAX_RX_PKT_LEN_1522; |
| } else if (length <= 1536) { |
| val |= MAX_RX_PKT_LEN_1536; |
| } else if (length <= 1552) { |
| val |= MAX_RX_PKT_LEN_1552; |
| } else { |
| val &= ~MAX_RX_JUMBO_MASK; |
| val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); |
| val |= MAX_RX_PKT_LEN_JUMBO; |
| } |
| |
| mt7530_mii_write(priv, MT7530_GMACCR, val); |
| |
| mt7530_mutex_unlock(priv); |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_max_mtu(struct dsa_switch *ds, int port) |
| { |
| return MT7530_MAX_MTU; |
| } |
| |
| static void |
| mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u32 stp_state; |
| |
| switch (state) { |
| case BR_STATE_DISABLED: |
| stp_state = MT7530_STP_DISABLED; |
| break; |
| case BR_STATE_BLOCKING: |
| stp_state = MT7530_STP_BLOCKING; |
| break; |
| case BR_STATE_LISTENING: |
| stp_state = MT7530_STP_LISTENING; |
| break; |
| case BR_STATE_LEARNING: |
| stp_state = MT7530_STP_LEARNING; |
| break; |
| case BR_STATE_FORWARDING: |
| default: |
| stp_state = MT7530_STP_FORWARDING; |
| break; |
| } |
| |
| mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), |
| FID_PST(FID_BRIDGED, stp_state)); |
| } |
| |
| static void mt7530_update_port_member(struct mt7530_priv *priv, int port, |
| const struct net_device *bridge_dev, |
| bool join) __must_hold(&priv->reg_mutex) |
| { |
| struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp; |
| struct mt7530_port *p = &priv->ports[port], *other_p; |
| struct dsa_port *cpu_dp = dp->cpu_dp; |
| u32 port_bitmap = BIT(cpu_dp->index); |
| int other_port; |
| bool isolated; |
| |
| dsa_switch_for_each_user_port(other_dp, priv->ds) { |
| other_port = other_dp->index; |
| other_p = &priv->ports[other_port]; |
| |
| if (dp == other_dp) |
| continue; |
| |
| /* Add/remove this port to/from the port matrix of the other |
| * ports in the same bridge. If the port is disabled, port |
| * matrix is kept and not being setup until the port becomes |
| * enabled. |
| */ |
| if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev)) |
| continue; |
| |
| isolated = p->isolated && other_p->isolated; |
| |
| if (join && !isolated) { |
| other_p->pm |= PCR_MATRIX(BIT(port)); |
| port_bitmap |= BIT(other_port); |
| } else { |
| other_p->pm &= ~PCR_MATRIX(BIT(port)); |
| } |
| |
| if (other_p->enable) |
| mt7530_rmw(priv, MT7530_PCR_P(other_port), |
| PCR_MATRIX_MASK, other_p->pm); |
| } |
| |
| /* Add/remove the all other ports to this port matrix. For !join |
| * (leaving the bridge), only the CPU port will remain in the port matrix |
| * of this port. |
| */ |
| p->pm = PCR_MATRIX(port_bitmap); |
| if (priv->ports[port].enable) |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm); |
| } |
| |
| static int |
| mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, |
| struct switchdev_brport_flags flags, |
| struct netlink_ext_ack *extack) |
| { |
| if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | |
| BR_BCAST_FLOOD | BR_ISOLATED)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_bridge_flags(struct dsa_switch *ds, int port, |
| struct switchdev_brport_flags flags, |
| struct netlink_ext_ack *extack) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| if (flags.mask & BR_LEARNING) |
| mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, |
| flags.val & BR_LEARNING ? 0 : SA_DIS); |
| |
| if (flags.mask & BR_FLOOD) |
| mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)), |
| flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); |
| |
| if (flags.mask & BR_MCAST_FLOOD) |
| mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)), |
| flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); |
| |
| if (flags.mask & BR_BCAST_FLOOD) |
| mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)), |
| flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); |
| |
| if (flags.mask & BR_ISOLATED) { |
| struct dsa_port *dp = dsa_to_port(ds, port); |
| struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp); |
| |
| priv->ports[port].isolated = !!(flags.val & BR_ISOLATED); |
| |
| mutex_lock(&priv->reg_mutex); |
| mt7530_update_port_member(priv, port, bridge_dev, true); |
| mutex_unlock(&priv->reg_mutex); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_bridge_join(struct dsa_switch *ds, int port, |
| struct dsa_bridge bridge, bool *tx_fwd_offload, |
| struct netlink_ext_ack *extack) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_update_port_member(priv, port, bridge.dev, true); |
| |
| /* Set to fallback mode for independent VLAN learning */ |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, |
| MT7530_PORT_FALLBACK_MODE); |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| return 0; |
| } |
| |
| static void |
| mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| bool all_user_ports_removed = true; |
| int i; |
| |
| /* This is called after .port_bridge_leave when leaving a VLAN-aware |
| * bridge. Don't set standalone ports to fallback mode. |
| */ |
| if (dsa_port_bridge_dev_get(dsa_to_port(ds, port))) |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, |
| MT7530_PORT_FALLBACK_MODE); |
| |
| mt7530_rmw(priv, MT7530_PVC_P(port), |
| VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, |
| VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | |
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | |
| MT7530_VLAN_ACC_ALL); |
| |
| /* Set PVID to 0 */ |
| mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, |
| G0_PORT_VID_DEF); |
| |
| for (i = 0; i < priv->ds->num_ports; i++) { |
| if (dsa_is_user_port(ds, i) && |
| dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { |
| all_user_ports_removed = false; |
| break; |
| } |
| } |
| |
| /* CPU port also does the same thing until all user ports belonging to |
| * the CPU port get out of VLAN filtering mode. |
| */ |
| if (all_user_ports_removed) { |
| struct dsa_port *dp = dsa_to_port(ds, port); |
| struct dsa_port *cpu_dp = dp->cpu_dp; |
| |
| mt7530_write(priv, MT7530_PCR_P(cpu_dp->index), |
| PCR_MATRIX(dsa_user_ports(priv->ds))); |
| mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG |
| | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); |
| } |
| } |
| |
| static void |
| mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| /* Trapped into security mode allows packet forwarding through VLAN |
| * table lookup. |
| */ |
| if (dsa_is_user_port(ds, port)) { |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, |
| MT7530_PORT_SECURITY_MODE); |
| mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, |
| G0_PORT_VID(priv->ports[port].pvid)); |
| |
| /* Only accept tagged frames if PVID is not set */ |
| if (!priv->ports[port].pvid) |
| mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, |
| MT7530_VLAN_ACC_TAGGED); |
| |
| /* Set the port as a user port which is to be able to recognize |
| * VID from incoming packets before fetching entry within the |
| * VLAN table. |
| */ |
| mt7530_rmw(priv, MT7530_PVC_P(port), |
| VLAN_ATTR_MASK | PVC_EG_TAG_MASK, |
| VLAN_ATTR(MT7530_VLAN_USER) | |
| PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); |
| } else { |
| /* Also set CPU ports to the "user" VLAN port attribute, to |
| * allow VLAN classification, but keep the EG_TAG attribute as |
| * "consistent" (i.o.w. don't change its value) for packets |
| * received by the switch from the CPU, so that tagged packets |
| * are forwarded to user ports as tagged, and untagged as |
| * untagged. |
| */ |
| mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK, |
| VLAN_ATTR(MT7530_VLAN_USER)); |
| } |
| } |
| |
| static void |
| mt7530_port_bridge_leave(struct dsa_switch *ds, int port, |
| struct dsa_bridge bridge) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_update_port_member(priv, port, bridge.dev, false); |
| |
| /* When a port is removed from the bridge, the port would be set up |
| * back to the default as is at initial boot which is a VLAN-unaware |
| * port. |
| */ |
| mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, |
| MT7530_PORT_MATRIX_MODE); |
| |
| mutex_unlock(&priv->reg_mutex); |
| } |
| |
| static int |
| mt7530_port_fdb_add(struct dsa_switch *ds, int port, |
| const unsigned char *addr, u16 vid, |
| struct dsa_db db) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int ret; |
| u8 port_mask = BIT(port); |
| |
| mutex_lock(&priv->reg_mutex); |
| mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); |
| mutex_unlock(&priv->reg_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| mt7530_port_fdb_del(struct dsa_switch *ds, int port, |
| const unsigned char *addr, u16 vid, |
| struct dsa_db db) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int ret; |
| u8 port_mask = BIT(port); |
| |
| mutex_lock(&priv->reg_mutex); |
| mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); |
| mutex_unlock(&priv->reg_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| mt7530_port_fdb_dump(struct dsa_switch *ds, int port, |
| dsa_fdb_dump_cb_t *cb, void *data) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| struct mt7530_fdb _fdb = { 0 }; |
| int cnt = MT7530_NUM_FDB_RECORDS; |
| int ret = 0; |
| u32 rsp = 0; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); |
| if (ret < 0) |
| goto err; |
| |
| do { |
| if (rsp & ATC_SRCH_HIT) { |
| mt7530_fdb_read(priv, &_fdb); |
| if (_fdb.port_mask & BIT(port)) { |
| ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, |
| data); |
| if (ret < 0) |
| break; |
| } |
| } |
| } while (--cnt && |
| !(rsp & ATC_SRCH_END) && |
| !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); |
| err: |
| mutex_unlock(&priv->reg_mutex); |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_mdb_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| struct dsa_db db) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| const u8 *addr = mdb->addr; |
| u16 vid = mdb->vid; |
| u8 port_mask = 0; |
| int ret; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); |
| if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) |
| port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) |
| & PORT_MAP_MASK; |
| |
| port_mask |= BIT(port); |
| mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| mt7530_port_mdb_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| struct dsa_db db) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| const u8 *addr = mdb->addr; |
| u16 vid = mdb->vid; |
| u8 port_mask = 0; |
| int ret; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); |
| if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) |
| port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) |
| & PORT_MAP_MASK; |
| |
| port_mask &= ~BIT(port); |
| mt7530_fdb_write(priv, vid, port_mask, addr, -1, |
| port_mask ? STATIC_ENT : STATIC_EMP); |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) |
| { |
| struct mt7530_dummy_poll p; |
| u32 val; |
| int ret; |
| |
| val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; |
| mt7530_write(priv, MT7530_VTCR, val); |
| |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); |
| ret = readx_poll_timeout(_mt7530_read, &p, val, |
| !(val & VTCR_BUSY), 20, 20000); |
| if (ret < 0) { |
| dev_err(priv->dev, "poll timeout\n"); |
| return ret; |
| } |
| |
| val = mt7530_read(priv, MT7530_VTCR); |
| if (val & VTCR_INVALID) { |
| dev_err(priv->dev, "read VTCR invalid\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, |
| struct netlink_ext_ack *extack) |
| { |
| struct dsa_port *dp = dsa_to_port(ds, port); |
| struct dsa_port *cpu_dp = dp->cpu_dp; |
| |
| if (vlan_filtering) { |
| /* The port is being kept as VLAN-unaware port when bridge is |
| * set up with vlan_filtering not being set, Otherwise, the |
| * port and the corresponding CPU port is required the setup |
| * for becoming a VLAN-aware port. |
| */ |
| mt7530_port_set_vlan_aware(ds, port); |
| mt7530_port_set_vlan_aware(ds, cpu_dp->index); |
| } else { |
| mt7530_port_set_vlan_unaware(ds, port); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| mt7530_hw_vlan_add(struct mt7530_priv *priv, |
| struct mt7530_hw_vlan_entry *entry) |
| { |
| struct dsa_port *dp = dsa_to_port(priv->ds, entry->port); |
| u8 new_members; |
| u32 val; |
| |
| new_members = entry->old_members | BIT(entry->port); |
| |
| /* Validate the entry with independent learning, create egress tag per |
| * VLAN and joining the port as one of the port members. |
| */ |
| val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | |
| VLAN_VALID; |
| mt7530_write(priv, MT7530_VAWD1, val); |
| |
| /* Decide whether adding tag or not for those outgoing packets from the |
| * port inside the VLAN. |
| * CPU port is always taken as a tagged port for serving more than one |
| * VLANs across and also being applied with egress type stack mode for |
| * that VLAN tags would be appended after hardware special tag used as |
| * DSA tag. |
| */ |
| if (dsa_port_is_cpu(dp)) |
| val = MT7530_VLAN_EGRESS_STACK; |
| else if (entry->untagged) |
| val = MT7530_VLAN_EGRESS_UNTAG; |
| else |
| val = MT7530_VLAN_EGRESS_TAG; |
| mt7530_rmw(priv, MT7530_VAWD2, |
| ETAG_CTRL_P_MASK(entry->port), |
| ETAG_CTRL_P(entry->port, val)); |
| } |
| |
| static void |
| mt7530_hw_vlan_del(struct mt7530_priv *priv, |
| struct mt7530_hw_vlan_entry *entry) |
| { |
| u8 new_members; |
| u32 val; |
| |
| new_members = entry->old_members & ~BIT(entry->port); |
| |
| val = mt7530_read(priv, MT7530_VAWD1); |
| if (!(val & VLAN_VALID)) { |
| dev_err(priv->dev, |
| "Cannot be deleted due to invalid entry\n"); |
| return; |
| } |
| |
| if (new_members) { |
| val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | |
| VLAN_VALID; |
| mt7530_write(priv, MT7530_VAWD1, val); |
| } else { |
| mt7530_write(priv, MT7530_VAWD1, 0); |
| mt7530_write(priv, MT7530_VAWD2, 0); |
| } |
| } |
| |
| static void |
| mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, |
| struct mt7530_hw_vlan_entry *entry, |
| mt7530_vlan_op vlan_op) |
| { |
| u32 val; |
| |
| /* Fetch entry */ |
| mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); |
| |
| val = mt7530_read(priv, MT7530_VAWD1); |
| |
| entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; |
| |
| /* Manipulate entry */ |
| vlan_op(priv, entry); |
| |
| /* Flush result to hardware */ |
| mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); |
| } |
| |
| static int |
| mt7530_setup_vlan0(struct mt7530_priv *priv) |
| { |
| u32 val; |
| |
| /* Validate the entry with independent learning, keep the original |
| * ingress tag attribute. |
| */ |
| val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) | |
| VLAN_VALID; |
| mt7530_write(priv, MT7530_VAWD1, val); |
| |
| return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0); |
| } |
| |
| static int |
| mt7530_port_vlan_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan, |
| struct netlink_ext_ack *extack) |
| { |
| bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; |
| bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; |
| struct mt7530_hw_vlan_entry new_entry; |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_hw_vlan_entry_init(&new_entry, port, untagged); |
| mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); |
| |
| if (pvid) { |
| priv->ports[port].pvid = vlan->vid; |
| |
| /* Accept all frames if PVID is set */ |
| mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, |
| MT7530_VLAN_ACC_ALL); |
| |
| /* Only configure PVID if VLAN filtering is enabled */ |
| if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) |
| mt7530_rmw(priv, MT7530_PPBV1_P(port), |
| G0_PORT_VID_MASK, |
| G0_PORT_VID(vlan->vid)); |
| } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { |
| /* This VLAN is overwritten without PVID, so unset it */ |
| priv->ports[port].pvid = G0_PORT_VID_DEF; |
| |
| /* Only accept tagged frames if the port is VLAN-aware */ |
| if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) |
| mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, |
| MT7530_VLAN_ACC_TAGGED); |
| |
| mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, |
| G0_PORT_VID_DEF); |
| } |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_port_vlan_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan) |
| { |
| struct mt7530_hw_vlan_entry target_entry; |
| struct mt7530_priv *priv = ds->priv; |
| |
| mutex_lock(&priv->reg_mutex); |
| |
| mt7530_hw_vlan_entry_init(&target_entry, port, 0); |
| mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, |
| mt7530_hw_vlan_del); |
| |
| /* PVID is being restored to the default whenever the PVID port |
| * is being removed from the VLAN. |
| */ |
| if (priv->ports[port].pvid == vlan->vid) { |
| priv->ports[port].pvid = G0_PORT_VID_DEF; |
| |
| /* Only accept tagged frames if the port is VLAN-aware */ |
| if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) |
| mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, |
| MT7530_VLAN_ACC_TAGGED); |
| |
| mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, |
| G0_PORT_VID_DEF); |
| } |
| |
| |
| mutex_unlock(&priv->reg_mutex); |
| |
| return 0; |
| } |
| |
| static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, |
| struct dsa_mall_mirror_tc_entry *mirror, |
| bool ingress, struct netlink_ext_ack *extack) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int monitor_port; |
| u32 val; |
| |
| /* Check for existent entry */ |
| if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) |
| return -EEXIST; |
| |
| val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); |
| |
| /* MT7530 only supports one monitor port */ |
| monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val); |
| if (val & MT753X_MIRROR_EN(priv->id) && |
| monitor_port != mirror->to_local_port) |
| return -EEXIST; |
| |
| val |= MT753X_MIRROR_EN(priv->id); |
| val &= ~MT753X_MIRROR_PORT_MASK(priv->id); |
| val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port); |
| mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); |
| |
| val = mt7530_read(priv, MT7530_PCR_P(port)); |
| if (ingress) { |
| val |= PORT_RX_MIR; |
| priv->mirror_rx |= BIT(port); |
| } else { |
| val |= PORT_TX_MIR; |
| priv->mirror_tx |= BIT(port); |
| } |
| mt7530_write(priv, MT7530_PCR_P(port), val); |
| |
| return 0; |
| } |
| |
| static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, |
| struct dsa_mall_mirror_tc_entry *mirror) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u32 val; |
| |
| val = mt7530_read(priv, MT7530_PCR_P(port)); |
| if (mirror->ingress) { |
| val &= ~PORT_RX_MIR; |
| priv->mirror_rx &= ~BIT(port); |
| } else { |
| val &= ~PORT_TX_MIR; |
| priv->mirror_tx &= ~BIT(port); |
| } |
| mt7530_write(priv, MT7530_PCR_P(port), val); |
| |
| if (!priv->mirror_rx && !priv->mirror_tx) { |
| val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); |
| val &= ~MT753X_MIRROR_EN(priv->id); |
| mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); |
| } |
| } |
| |
| static enum dsa_tag_protocol |
| mtk_get_tag_protocol(struct dsa_switch *ds, int port, |
| enum dsa_tag_protocol mp) |
| { |
| return DSA_TAG_PROTO_MTK; |
| } |
| |
| #ifdef CONFIG_GPIOLIB |
| static inline u32 |
| mt7530_gpio_to_bit(unsigned int offset) |
| { |
| /* Map GPIO offset to register bit |
| * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 |
| * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 |
| * [10: 8] port 2 LED 0..2 as GPIO 6..8 |
| * [14:12] port 3 LED 0..2 as GPIO 9..11 |
| * [18:16] port 4 LED 0..2 as GPIO 12..14 |
| */ |
| return BIT(offset + offset / 3); |
| } |
| |
| static int |
| mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) |
| { |
| struct mt7530_priv *priv = gpiochip_get_data(gc); |
| u32 bit = mt7530_gpio_to_bit(offset); |
| |
| return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); |
| } |
| |
| static void |
| mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) |
| { |
| struct mt7530_priv *priv = gpiochip_get_data(gc); |
| u32 bit = mt7530_gpio_to_bit(offset); |
| |
| if (value) |
| mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); |
| else |
| mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); |
| } |
| |
| static int |
| mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) |
| { |
| struct mt7530_priv *priv = gpiochip_get_data(gc); |
| u32 bit = mt7530_gpio_to_bit(offset); |
| |
| return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? |
| GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; |
| } |
| |
| static int |
| mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) |
| { |
| struct mt7530_priv *priv = gpiochip_get_data(gc); |
| u32 bit = mt7530_gpio_to_bit(offset); |
| |
| mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); |
| mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) |
| { |
| struct mt7530_priv *priv = gpiochip_get_data(gc); |
| u32 bit = mt7530_gpio_to_bit(offset); |
| |
| mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); |
| |
| if (value) |
| mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); |
| else |
| mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); |
| |
| mt7530_set(priv, MT7530_LED_GPIO_OE, bit); |
| |
| return 0; |
| } |
| |
| static int |
| mt7530_setup_gpio(struct mt7530_priv *priv) |
| { |
| struct device *dev = priv->dev; |
| struct gpio_chip *gc; |
| |
| gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); |
| if (!gc) |
| return -ENOMEM; |
| |
| mt7530_write(priv, MT7530_LED_GPIO_OE, 0); |
| mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); |
| mt7530_write(priv, MT7530_LED_IO_MODE, 0); |
| |
| gc->label = "mt7530"; |
| gc->parent = dev; |
| gc->owner = THIS_MODULE; |
| gc->get_direction = mt7530_gpio_get_direction; |
| gc->direction_input = mt7530_gpio_direction_input; |
| gc->direction_output = mt7530_gpio_direction_output; |
| gc->get = mt7530_gpio_get; |
| gc->set = mt7530_gpio_set; |
| gc->base = -1; |
| gc->ngpio = 15; |
| gc->can_sleep = true; |
| |
| return devm_gpiochip_add_data(dev, gc, priv); |
| } |
| #endif /* CONFIG_GPIOLIB */ |
| |
| static irqreturn_t |
| mt7530_irq_thread_fn(int irq, void *dev_id) |
| { |
| struct mt7530_priv *priv = dev_id; |
| bool handled = false; |
| u32 val; |
| int p; |
| |
| mt7530_mutex_lock(priv); |
| val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); |
| mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); |
| mt7530_mutex_unlock(priv); |
| |
| for (p = 0; p < MT7530_NUM_PHYS; p++) { |
| if (BIT(p) & val) { |
| unsigned int irq; |
| |
| irq = irq_find_mapping(priv->irq_domain, p); |
| handle_nested_irq(irq); |
| handled = true; |
| } |
| } |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static void |
| mt7530_irq_mask(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| priv->irq_enable &= ~BIT(d->hwirq); |
| } |
| |
| static void |
| mt7530_irq_unmask(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| priv->irq_enable |= BIT(d->hwirq); |
| } |
| |
| static void |
| mt7530_irq_bus_lock(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| mt7530_mutex_lock(priv); |
| } |
| |
| static void |
| mt7530_irq_bus_sync_unlock(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); |
| mt7530_mutex_unlock(priv); |
| } |
| |
| static struct irq_chip mt7530_irq_chip = { |
| .name = KBUILD_MODNAME, |
| .irq_mask = mt7530_irq_mask, |
| .irq_unmask = mt7530_irq_unmask, |
| .irq_bus_lock = mt7530_irq_bus_lock, |
| .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, |
| }; |
| |
| static int |
| mt7530_irq_map(struct irq_domain *domain, unsigned int irq, |
| irq_hw_number_t hwirq) |
| { |
| irq_set_chip_data(irq, domain->host_data); |
| irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); |
| irq_set_nested_thread(irq, true); |
| irq_set_noprobe(irq); |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops mt7530_irq_domain_ops = { |
| .map = mt7530_irq_map, |
| .xlate = irq_domain_xlate_onecell, |
| }; |
| |
| static void |
| mt7988_irq_mask(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| priv->irq_enable &= ~BIT(d->hwirq); |
| mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); |
| } |
| |
| static void |
| mt7988_irq_unmask(struct irq_data *d) |
| { |
| struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); |
| |
| priv->irq_enable |= BIT(d->hwirq); |
| mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); |
| } |
| |
| static struct irq_chip mt7988_irq_chip = { |
| .name = KBUILD_MODNAME, |
| .irq_mask = mt7988_irq_mask, |
| .irq_unmask = mt7988_irq_unmask, |
| }; |
| |
| static int |
| mt7988_irq_map(struct irq_domain *domain, unsigned int irq, |
| irq_hw_number_t hwirq) |
| { |
| irq_set_chip_data(irq, domain->host_data); |
| irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq); |
| irq_set_nested_thread(irq, true); |
| irq_set_noprobe(irq); |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops mt7988_irq_domain_ops = { |
| .map = mt7988_irq_map, |
| .xlate = irq_domain_xlate_onecell, |
| }; |
| |
| static void |
| mt7530_setup_mdio_irq(struct mt7530_priv *priv) |
| { |
| struct dsa_switch *ds = priv->ds; |
| int p; |
| |
| for (p = 0; p < MT7530_NUM_PHYS; p++) { |
| if (BIT(p) & ds->phys_mii_mask) { |
| unsigned int irq; |
| |
| irq = irq_create_mapping(priv->irq_domain, p); |
| ds->user_mii_bus->irq[p] = irq; |
| } |
| } |
| } |
| |
| static int |
| mt7530_setup_irq(struct mt7530_priv *priv) |
| { |
| struct device *dev = priv->dev; |
| struct device_node *np = dev->of_node; |
| int ret; |
| |
| if (!of_property_read_bool(np, "interrupt-controller")) { |
| dev_info(dev, "no interrupt support\n"); |
| return 0; |
| } |
| |
| priv->irq = of_irq_get(np, 0); |
| if (priv->irq <= 0) { |
| dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); |
| return priv->irq ? : -EINVAL; |
| } |
| |
| if (priv->id == ID_MT7988 || priv->id == ID_EN7581) |
| priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, |
| &mt7988_irq_domain_ops, |
| priv); |
| else |
| priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, |
| &mt7530_irq_domain_ops, |
| priv); |
| |
| if (!priv->irq_domain) { |
| dev_err(dev, "failed to create IRQ domain\n"); |
| return -ENOMEM; |
| } |
| |
| /* This register must be set for MT7530 to properly fire interrupts */ |
| if (priv->id == ID_MT7530 || priv->id == ID_MT7621) |
| mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); |
| |
| ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, |
| IRQF_ONESHOT, KBUILD_MODNAME, priv); |
| if (ret) { |
| irq_domain_remove(priv->irq_domain); |
| dev_err(dev, "failed to request IRQ: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| mt7530_free_mdio_irq(struct mt7530_priv *priv) |
| { |
| int p; |
| |
| for (p = 0; p < MT7530_NUM_PHYS; p++) { |
| if (BIT(p) & priv->ds->phys_mii_mask) { |
| unsigned int irq; |
| |
| irq = irq_find_mapping(priv->irq_domain, p); |
| irq_dispose_mapping(irq); |
| } |
| } |
| } |
| |
| static void |
| mt7530_free_irq_common(struct mt7530_priv *priv) |
| { |
| free_irq(priv->irq, priv); |
| irq_domain_remove(priv->irq_domain); |
| } |
| |
| static void |
| mt7530_free_irq(struct mt7530_priv *priv) |
| { |
| struct device_node *mnp, *np = priv->dev->of_node; |
| |
| mnp = of_get_child_by_name(np, "mdio"); |
| if (!mnp) |
| mt7530_free_mdio_irq(priv); |
| of_node_put(mnp); |
| |
| mt7530_free_irq_common(priv); |
| } |
| |
| static int |
| mt7530_setup_mdio(struct mt7530_priv *priv) |
| { |
| struct device_node *mnp, *np = priv->dev->of_node; |
| struct dsa_switch *ds = priv->ds; |
| struct device *dev = priv->dev; |
| struct mii_bus *bus; |
| static int idx; |
| int ret = 0; |
| |
| mnp = of_get_child_by_name(np, "mdio"); |
| |
| if (mnp && !of_device_is_available(mnp)) |
| goto out; |
| |
| bus = devm_mdiobus_alloc(dev); |
| if (!bus) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (!mnp) |
| ds->user_mii_bus = bus; |
| |
| bus->priv = priv; |
| bus->name = KBUILD_MODNAME "-mii"; |
| snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); |
| bus->read = mt753x_phy_read_c22; |
| bus->write = mt753x_phy_write_c22; |
| bus->read_c45 = mt753x_phy_read_c45; |
| bus->write_c45 = mt753x_phy_write_c45; |
| bus->parent = dev; |
| bus->phy_mask = ~ds->phys_mii_mask; |
| |
| if (priv->irq && !mnp) |
| mt7530_setup_mdio_irq(priv); |
| |
| ret = devm_of_mdiobus_register(dev, bus, mnp); |
| if (ret) { |
| dev_err(dev, "failed to register MDIO bus: %d\n", ret); |
| if (priv->irq && !mnp) |
| mt7530_free_mdio_irq(priv); |
| } |
| |
| out: |
| of_node_put(mnp); |
| return ret; |
| } |
| |
| static int |
| mt7530_setup(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| struct device_node *dn = NULL; |
| struct device_node *phy_node; |
| struct device_node *mac_np; |
| struct mt7530_dummy_poll p; |
| phy_interface_t interface; |
| struct dsa_port *cpu_dp; |
| u32 id, val; |
| int ret, i; |
| |
| /* The parent node of conduit netdev which holds the common system |
| * controller also is the container for two GMACs nodes representing |
| * as two netdev instances. |
| */ |
| dsa_switch_for_each_cpu_port(cpu_dp, ds) { |
| dn = cpu_dp->conduit->dev.of_node->parent; |
| /* It doesn't matter which CPU port is found first, |
| * their conduits should share the same parent OF node |
| */ |
| break; |
| } |
| |
| if (!dn) { |
| dev_err(ds->dev, "parent OF node of DSA conduit not found"); |
| return -EINVAL; |
| } |
| |
| ds->assisted_learning_on_cpu_port = true; |
| ds->mtu_enforcement_ingress = true; |
| |
| if (priv->id == ID_MT7530) { |
| regulator_set_voltage(priv->core_pwr, 1000000, 1000000); |
| ret = regulator_enable(priv->core_pwr); |
| if (ret < 0) { |
| dev_err(priv->dev, |
| "Failed to enable core power: %d\n", ret); |
| return ret; |
| } |
| |
| regulator_set_voltage(priv->io_pwr, 3300000, 3300000); |
| ret = regulator_enable(priv->io_pwr); |
| if (ret < 0) { |
| dev_err(priv->dev, "Failed to enable io pwr: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| /* Reset whole chip through gpio pin or memory-mapped registers for |
| * different type of hardware |
| */ |
| if (priv->mcm) { |
| reset_control_assert(priv->rstc); |
| usleep_range(5000, 5100); |
| reset_control_deassert(priv->rstc); |
| } else { |
| gpiod_set_value_cansleep(priv->reset, 0); |
| usleep_range(5000, 5100); |
| gpiod_set_value_cansleep(priv->reset, 1); |
| } |
| |
| /* Waiting for MT7530 got to stable */ |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP); |
| ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, |
| 20, 1000000); |
| if (ret < 0) { |
| dev_err(priv->dev, "reset timeout\n"); |
| return ret; |
| } |
| |
| id = mt7530_read(priv, MT7530_CREV); |
| id >>= CHIP_NAME_SHIFT; |
| if (id != MT7530_ID) { |
| dev_err(priv->dev, "chip %x can't be supported\n", id); |
| return -ENODEV; |
| } |
| |
| if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) { |
| dev_err(priv->dev, |
| "MT7530 with a 20MHz XTAL is not supported!\n"); |
| return -EINVAL; |
| } |
| |
| /* Reset the switch through internal reset */ |
| mt7530_write(priv, MT7530_SYS_CTRL, |
| SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | |
| SYS_CTRL_REG_RST); |
| |
| /* Lower Tx driving for TRGMII path */ |
| for (i = 0; i < NUM_TRGMII_CTRL; i++) |
| mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), |
| TD_DM_DRVP(8) | TD_DM_DRVN(8)); |
| |
| for (i = 0; i < NUM_TRGMII_CTRL; i++) |
| mt7530_rmw(priv, MT7530_TRGMII_RD(i), |
| RD_TAP_MASK, RD_TAP(16)); |
| |
| /* Allow modifying the trap and directly access PHY registers via the |
| * MDIO bus the switch is on. |
| */ |
| mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP | |
| MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP); |
| |
| if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ) |
| mt7530_pll_setup(priv); |
| |
| mt753x_trap_frames(priv); |
| |
| /* Enable and reset MIB counters */ |
| mt7530_mib_reset(ds); |
| |
| for (i = 0; i < priv->ds->num_ports; i++) { |
| /* Clear link settings and enable force mode to force link down |
| * on all ports until they're enabled later. |
| */ |
| mt7530_rmw(priv, MT753X_PMCR_P(i), |
| PMCR_LINK_SETTINGS_MASK | |
| MT753X_FORCE_MODE(priv->id), |
| MT753X_FORCE_MODE(priv->id)); |
| |
| /* Disable forwarding by default on all ports */ |
| mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, |
| PCR_MATRIX_CLR); |
| |
| /* Disable learning by default on all ports */ |
| mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); |
| |
| if (dsa_is_cpu_port(ds, i)) { |
| mt753x_cpu_port_enable(ds, i); |
| } else { |
| mt7530_port_disable(ds, i); |
| |
| /* Set default PVID to 0 on all user ports */ |
| mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, |
| G0_PORT_VID_DEF); |
| } |
| /* Enable consistent egress tag */ |
| mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, |
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); |
| } |
| |
| /* Allow mirroring frames received on the local port (monitor port). */ |
| mt7530_set(priv, MT753X_AGC, LOCAL_EN); |
| |
| /* Setup VLAN ID 0 for VLAN-unaware bridges */ |
| ret = mt7530_setup_vlan0(priv); |
| if (ret) |
| return ret; |
| |
| /* Check for PHY muxing on port 5 */ |
| if (dsa_is_unused_port(ds, 5)) { |
| /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY. |
| * Set priv->p5_mode to the appropriate value if PHY muxing is |
| * detected. |
| */ |
| for_each_child_of_node(dn, mac_np) { |
| if (!of_device_is_compatible(mac_np, |
| "mediatek,eth-mac")) |
| continue; |
| |
| ret = of_property_read_u32(mac_np, "reg", &id); |
| if (ret < 0 || id != 1) |
| continue; |
| |
| phy_node = of_parse_phandle(mac_np, "phy-handle", 0); |
| if (!phy_node) |
| continue; |
| |
| if (phy_node->parent == priv->dev->of_node->parent || |
| phy_node->parent->parent == priv->dev->of_node) { |
| ret = of_get_phy_mode(mac_np, &interface); |
| if (ret && ret != -ENODEV) { |
| of_node_put(mac_np); |
| of_node_put(phy_node); |
| return ret; |
| } |
| id = of_mdio_parse_addr(ds->dev, phy_node); |
| if (id == 0) |
| priv->p5_mode = MUX_PHY_P0; |
| if (id == 4) |
| priv->p5_mode = MUX_PHY_P4; |
| } |
| of_node_put(mac_np); |
| of_node_put(phy_node); |
| break; |
| } |
| |
| if (priv->p5_mode == MUX_PHY_P0 || |
| priv->p5_mode == MUX_PHY_P4) { |
| mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS); |
| mt7530_setup_port5(ds, interface); |
| } |
| } |
| |
| #ifdef CONFIG_GPIOLIB |
| if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { |
| ret = mt7530_setup_gpio(priv); |
| if (ret) |
| return ret; |
| } |
| #endif /* CONFIG_GPIOLIB */ |
| |
| /* Flush the FDB table */ |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| mt7531_setup_common(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int ret, i; |
| |
| mt753x_trap_frames(priv); |
| |
| /* Enable and reset MIB counters */ |
| mt7530_mib_reset(ds); |
| |
| /* Disable flooding on all ports */ |
| mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK | |
| UNU_FFP_MASK); |
| |
| for (i = 0; i < priv->ds->num_ports; i++) { |
| /* Clear link settings and enable force mode to force link down |
| * on all ports until they're enabled later. |
| */ |
| mt7530_rmw(priv, MT753X_PMCR_P(i), |
| PMCR_LINK_SETTINGS_MASK | |
| MT753X_FORCE_MODE(priv->id), |
| MT753X_FORCE_MODE(priv->id)); |
| |
| /* Disable forwarding by default on all ports */ |
| mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, |
| PCR_MATRIX_CLR); |
| |
| /* Disable learning by default on all ports */ |
| mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); |
| |
| mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); |
| |
| if (dsa_is_cpu_port(ds, i)) { |
| mt753x_cpu_port_enable(ds, i); |
| } else { |
| mt7530_port_disable(ds, i); |
| |
| /* Set default PVID to 0 on all user ports */ |
| mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, |
| G0_PORT_VID_DEF); |
| } |
| |
| /* Enable consistent egress tag */ |
| mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, |
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); |
| } |
| |
| /* Allow mirroring frames received on the local port (monitor port). */ |
| mt7530_set(priv, MT753X_AGC, LOCAL_EN); |
| |
| /* Flush the FDB table */ |
| ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| mt7531_setup(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| struct mt7530_dummy_poll p; |
| u32 val, id; |
| int ret, i; |
| |
| /* Reset whole chip through gpio pin or memory-mapped registers for |
| * different type of hardware |
| */ |
| if (priv->mcm) { |
| reset_control_assert(priv->rstc); |
| usleep_range(5000, 5100); |
| reset_control_deassert(priv->rstc); |
| } else { |
| gpiod_set_value_cansleep(priv->reset, 0); |
| usleep_range(5000, 5100); |
| gpiod_set_value_cansleep(priv->reset, 1); |
| } |
| |
| /* Waiting for MT7530 got to stable */ |
| INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP); |
| ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, |
| 20, 1000000); |
| if (ret < 0) { |
| dev_err(priv->dev, "reset timeout\n"); |
| return ret; |
| } |
| |
| id = mt7530_read(priv, MT7531_CREV); |
| id >>= CHIP_NAME_SHIFT; |
| |
| if (id != MT7531_ID) { |
| dev_err(priv->dev, "chip %x can't be supported\n", id); |
| return -ENODEV; |
| } |
| |
| /* MT7531AE has got two SGMII units. One for port 5, one for port 6. |
| * MT7531BE has got only one SGMII unit which is for port 6. |
| */ |
| val = mt7530_read(priv, MT7531_TOP_SIG_SR); |
| priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN); |
| |
| /* Force link down on all ports before internal reset */ |
| for (i = 0; i < priv->ds->num_ports; i++) |
| mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK); |
| |
| /* Reset the switch through internal reset */ |
| mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); |
| |
| if (!priv->p5_sgmii) { |
| mt7531_pll_setup(priv); |
| } else { |
| /* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on |
| * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO |
| * to expose the MDIO bus of the switch. |
| */ |
| mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, |
| MT7531_EXT_P_MDC_11); |
| mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, |
| MT7531_EXT_P_MDIO_12); |
| } |
| |
| mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, |
| MT7531_GPIO0_INTERRUPT); |
| |
| /* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since |
| * phy_device has not yet been created provided for |
| * phy_[read,write]_mmd_indirect is called, we provide our own |
| * mt7531_ind_mmd_phy_[read,write] to complete this function. |
| */ |
| val = mt7531_ind_c45_phy_read(priv, |
| MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MDIO_MMD_VEND2, CORE_PLL_GROUP4); |
| val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE; |
| val &= ~MT7531_PHY_PLL_OFF; |
| mt7531_ind_c45_phy_write(priv, |
| MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), |
| MDIO_MMD_VEND2, CORE_PLL_GROUP4, val); |
| |
| /* Disable EEE advertisement on the switch PHYs. */ |
| for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr); |
| i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS; |
| i++) { |
| mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV, |
| 0); |
| } |
| |
| ret = mt7531_setup_common(ds); |
| if (ret) |
| return ret; |
| |
| /* Setup VLAN ID 0 for VLAN-unaware bridges */ |
| ret = mt7530_setup_vlan0(priv); |
| if (ret) |
| return ret; |
| |
| ds->assisted_learning_on_cpu_port = true; |
| ds->mtu_enforcement_ingress = true; |
| |
| return 0; |
| } |
| |
| static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port, |
| struct phylink_config *config) |
| { |
| config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; |
| |
| switch (port) { |
| /* Ports which are connected to switch PHYs. There is no MII pinout. */ |
| case 0 ... 4: |
| __set_bit(PHY_INTERFACE_MODE_GMII, |
| config->supported_interfaces); |
| break; |
| |
| /* Port 5 supports rgmii with delays, mii, and gmii. */ |
| case 5: |
| phy_interface_set_rgmii(config->supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_MII, |
| config->supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_GMII, |
| config->supported_interfaces); |
| break; |
| |
| /* Port 6 supports rgmii and trgmii. */ |
| case 6: |
| __set_bit(PHY_INTERFACE_MODE_RGMII, |
| config->supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_TRGMII, |
| config->supported_interfaces); |
| break; |
| } |
| } |
| |
| static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port, |
| struct phylink_config *config) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; |
| |
| switch (port) { |
| /* Ports which are connected to switch PHYs. There is no MII pinout. */ |
| case 0 ... 4: |
| __set_bit(PHY_INTERFACE_MODE_GMII, |
| config->supported_interfaces); |
| break; |
| |
| /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on |
| * MT7531AE. |
| */ |
| case 5: |
| if (!priv->p5_sgmii) { |
| phy_interface_set_rgmii(config->supported_interfaces); |
| break; |
| } |
| fallthrough; |
| |
| /* Port 6 supports sgmii/802.3z. */ |
| case 6: |
| __set_bit(PHY_INTERFACE_MODE_SGMII, |
| config->supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_1000BASEX, |
| config->supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_2500BASEX, |
| config->supported_interfaces); |
| |
| config->mac_capabilities |= MAC_2500FD; |
| break; |
| } |
| } |
| |
| static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port, |
| struct phylink_config *config) |
| { |
| switch (port) { |
| /* Ports which are connected to switch PHYs. There is no MII pinout. */ |
| case 0 ... 3: |
| __set_bit(PHY_INTERFACE_MODE_INTERNAL, |
| config->supported_interfaces); |
| |
| config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; |
| break; |
| |
| /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */ |
| case 6: |
| __set_bit(PHY_INTERFACE_MODE_INTERNAL, |
| config->supported_interfaces); |
| |
| config->mac_capabilities |= MAC_10000FD; |
| break; |
| } |
| } |
| |
| static void en7581_mac_port_get_caps(struct dsa_switch *ds, int port, |
| struct phylink_config *config) |
| { |
| switch (port) { |
| /* Ports which are connected to switch PHYs. There is no MII pinout. */ |
| case 0 ... 4: |
| __set_bit(PHY_INTERFACE_MODE_INTERNAL, |
| config->supported_interfaces); |
| |
| config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; |
| break; |
| |
| /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */ |
| case 6: |
| __set_bit(PHY_INTERFACE_MODE_INTERNAL, |
| config->supported_interfaces); |
| |
| config->mac_capabilities |= MAC_10000FD; |
| break; |
| } |
| } |
| |
| static void |
| mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, |
| phy_interface_t interface) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| if (port == 5) |
| mt7530_setup_port5(priv->ds, interface); |
| else if (port == 6) |
| mt7530_setup_port6(priv->ds, interface); |
| } |
| |
| static void mt7531_rgmii_setup(struct mt7530_priv *priv, |
| phy_interface_t interface, |
| struct phy_device *phydev) |
| { |
| u32 val; |
| |
| val = mt7530_read(priv, MT7531_CLKGEN_CTRL); |
| val |= GP_CLK_EN; |
| val &= ~GP_MODE_MASK; |
| val |= GP_MODE(MT7531_GP_MODE_RGMII); |
| val &= ~CLK_SKEW_IN_MASK; |
| val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); |
| val &= ~CLK_SKEW_OUT_MASK; |
| val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); |
| val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; |
| |
| /* Do not adjust rgmii delay when vendor phy driver presents. */ |
| if (!phydev || phy_driver_is_genphy(phydev)) { |
| val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); |
| switch (interface) { |
| case PHY_INTERFACE_MODE_RGMII: |
| val |= TXCLK_NO_REVERSE; |
| val |= RXCLK_NO_DELAY; |
| break; |
| case PHY_INTERFACE_MODE_RGMII_RXID: |
| val |= TXCLK_NO_REVERSE; |
| break; |
| case PHY_INTERFACE_MODE_RGMII_TXID: |
| val |= RXCLK_NO_DELAY; |
| break; |
| case PHY_INTERFACE_MODE_RGMII_ID: |
| break; |
| default: |
| break; |
| } |
| } |
| |
| mt7530_write(priv, MT7531_CLKGEN_CTRL, val); |
| } |
| |
| static void |
| mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, |
| phy_interface_t interface) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| struct phy_device *phydev; |
| struct dsa_port *dp; |
| |
| if (phy_interface_mode_is_rgmii(interface)) { |
| dp = dsa_to_port(ds, port); |
| phydev = dp->user->phydev; |
| mt7531_rgmii_setup(priv, interface, phydev); |
| } |
| } |
| |
| static struct phylink_pcs * |
| mt753x_phylink_mac_select_pcs(struct phylink_config *config, |
| phy_interface_t interface) |
| { |
| struct dsa_port *dp = dsa_phylink_to_port(config); |
| struct mt7530_priv *priv = dp->ds->priv; |
| |
| switch (interface) { |
| case PHY_INTERFACE_MODE_TRGMII: |
| return &priv->pcs[dp->index].pcs; |
| case PHY_INTERFACE_MODE_SGMII: |
| case PHY_INTERFACE_MODE_1000BASEX: |
| case PHY_INTERFACE_MODE_2500BASEX: |
| return priv->ports[dp->index].sgmii_pcs; |
| default: |
| return NULL; |
| } |
| } |
| |
| static void |
| mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode, |
| const struct phylink_link_state *state) |
| { |
| struct dsa_port *dp = dsa_phylink_to_port(config); |
| struct dsa_switch *ds = dp->ds; |
| struct mt7530_priv *priv; |
| int port = dp->index; |
| |
| priv = ds->priv; |
| |
| if ((port == 5 || port == 6) && priv->info->mac_port_config) |
| priv->info->mac_port_config(ds, port, mode, state->interface); |
| |
| /* Are we connected to external phy */ |
| if (port == 5 && dsa_is_user_port(ds, 5)) |
| mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY); |
| } |
| |
| static void mt753x_phylink_mac_link_down(struct phylink_config *config, |
| unsigned int mode, |
| phy_interface_t interface) |
| { |
| struct dsa_port *dp = dsa_phylink_to_port(config); |
| struct mt7530_priv *priv = dp->ds->priv; |
| |
| mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK); |
| } |
| |
| static void mt753x_phylink_mac_link_up(struct phylink_config *config, |
| struct phy_device *phydev, |
| unsigned int mode, |
| phy_interface_t interface, |
| int speed, int duplex, |
| bool tx_pause, bool rx_pause) |
| { |
| struct dsa_port *dp = dsa_phylink_to_port(config); |
| struct mt7530_priv *priv = dp->ds->priv; |
| u32 mcr; |
| |
| mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK; |
| |
| switch (speed) { |
| case SPEED_1000: |
| case SPEED_2500: |
| case SPEED_10000: |
| mcr |= PMCR_FORCE_SPEED_1000; |
| break; |
| case SPEED_100: |
| mcr |= PMCR_FORCE_SPEED_100; |
| break; |
| } |
| if (duplex == DUPLEX_FULL) { |
| mcr |= PMCR_FORCE_FDX; |
| if (tx_pause) |
| mcr |= PMCR_FORCE_TX_FC_EN; |
| if (rx_pause) |
| mcr |= PMCR_FORCE_RX_FC_EN; |
| } |
| |
| if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) { |
| switch (speed) { |
| case SPEED_1000: |
| case SPEED_2500: |
| mcr |= PMCR_FORCE_EEE1G; |
| break; |
| case SPEED_100: |
| mcr |= PMCR_FORCE_EEE100; |
| break; |
| } |
| } |
| |
| mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr); |
| } |
| |
| static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port, |
| struct phylink_config *config) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE; |
| |
| priv->info->mac_port_get_caps(ds, port, config); |
| } |
| |
| static int mt753x_pcs_validate(struct phylink_pcs *pcs, |
| unsigned long *supported, |
| const struct phylink_link_state *state) |
| { |
| /* Autonegotiation is not supported in TRGMII nor 802.3z modes */ |
| if (state->interface == PHY_INTERFACE_MODE_TRGMII || |
| phy_interface_mode_is_8023z(state->interface)) |
| phylink_clear(supported, Autoneg); |
| |
| return 0; |
| } |
| |
| static void mt7530_pcs_get_state(struct phylink_pcs *pcs, |
| struct phylink_link_state *state) |
| { |
| struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; |
| int port = pcs_to_mt753x_pcs(pcs)->port; |
| u32 pmsr; |
| |
| pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); |
| |
| state->link = (pmsr & PMSR_LINK); |
| state->an_complete = state->link; |
| state->duplex = !!(pmsr & PMSR_DPX); |
| |
| switch (pmsr & PMSR_SPEED_MASK) { |
| case PMSR_SPEED_10: |
| state->speed = SPEED_10; |
| break; |
| case PMSR_SPEED_100: |
| state->speed = SPEED_100; |
| break; |
| case PMSR_SPEED_1000: |
| state->speed = SPEED_1000; |
| break; |
| default: |
| state->speed = SPEED_UNKNOWN; |
| break; |
| } |
| |
| state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); |
| if (pmsr & PMSR_RX_FC) |
| state->pause |= MLO_PAUSE_RX; |
| if (pmsr & PMSR_TX_FC) |
| state->pause |= MLO_PAUSE_TX; |
| } |
| |
| static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, |
| phy_interface_t interface, |
| const unsigned long *advertising, |
| bool permit_pause_to_mac) |
| { |
| return 0; |
| } |
| |
| static void mt7530_pcs_an_restart(struct phylink_pcs *pcs) |
| { |
| } |
| |
| static const struct phylink_pcs_ops mt7530_pcs_ops = { |
| .pcs_validate = mt753x_pcs_validate, |
| .pcs_get_state = mt7530_pcs_get_state, |
| .pcs_config = mt753x_pcs_config, |
| .pcs_an_restart = mt7530_pcs_an_restart, |
| }; |
| |
| static int |
| mt753x_setup(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| int ret = priv->info->sw_setup(ds); |
| int i; |
| |
| if (ret) |
| return ret; |
| |
| ret = mt7530_setup_irq(priv); |
| if (ret) |
| return ret; |
| |
| ret = mt7530_setup_mdio(priv); |
| if (ret && priv->irq) |
| mt7530_free_irq_common(priv); |
| if (ret) |
| return ret; |
| |
| /* Initialise the PCS devices */ |
| for (i = 0; i < priv->ds->num_ports; i++) { |
| priv->pcs[i].pcs.ops = priv->info->pcs_ops; |
| priv->pcs[i].pcs.neg_mode = true; |
| priv->pcs[i].priv = priv; |
| priv->pcs[i].port = i; |
| } |
| |
| if (priv->create_sgmii) { |
| ret = priv->create_sgmii(priv); |
| if (ret && priv->irq) |
| mt7530_free_irq(priv); |
| } |
| |
| return ret; |
| } |
| |
| static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, |
| struct ethtool_keee *e) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port)); |
| |
| e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); |
| e->tx_lpi_timer = LPI_THRESH_GET(eeecr); |
| |
| return 0; |
| } |
| |
| static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, |
| struct ethtool_keee *e) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; |
| |
| if (e->tx_lpi_timer > 0xFFF) |
| return -EINVAL; |
| |
| set = LPI_THRESH_SET(e->tx_lpi_timer); |
| if (!e->tx_lpi_enabled) |
| /* Force LPI Mode without a delay */ |
| set |= LPI_MODE_EN; |
| mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set); |
| |
| return 0; |
| } |
| |
| static void |
| mt753x_conduit_state_change(struct dsa_switch *ds, |
| const struct net_device *conduit, |
| bool operational) |
| { |
| struct dsa_port *cpu_dp = conduit->dsa_ptr; |
| struct mt7530_priv *priv = ds->priv; |
| int val = 0; |
| u8 mask; |
| |
| /* Set the CPU port to trap frames to for MT7530. Trapped frames will be |
| * forwarded to the numerically smallest CPU port whose conduit |
| * interface is up. |
| */ |
| if (priv->id != ID_MT7530 && priv->id != ID_MT7621) |
| return; |
| |
| mask = BIT(cpu_dp->index); |
| |
| if (operational) |
| priv->active_cpu_ports |= mask; |
| else |
| priv->active_cpu_ports &= ~mask; |
| |
| if (priv->active_cpu_ports) { |
| val = MT7530_CPU_EN | |
| MT7530_CPU_PORT(__ffs(priv->active_cpu_ports)); |
| } |
| |
| mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val); |
| } |
| |
| static int mt7988_setup(struct dsa_switch *ds) |
| { |
| struct mt7530_priv *priv = ds->priv; |
| |
| /* Reset the switch */ |
| reset_control_assert(priv->rstc); |
| usleep_range(20, 50); |
| reset_control_deassert(priv->rstc); |
| usleep_range(20, 50); |
| |
| /* Reset the switch PHYs */ |
| mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST); |
| |
| return mt7531_setup_common(ds); |
| } |
| |
| const struct dsa_switch_ops mt7530_switch_ops = { |
| .get_tag_protocol = mtk_get_tag_protocol, |
| .setup = mt753x_setup, |
| .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port, |
| .get_strings = mt7530_get_strings, |
| .get_ethtool_stats = mt7530_get_ethtool_stats, |
| .get_sset_count = mt7530_get_sset_count, |
| .set_ageing_time = mt7530_set_ageing_time, |
| .port_enable = mt7530_port_enable, |
| .port_disable = mt7530_port_disable, |
| .port_change_mtu = mt7530_port_change_mtu, |
| .port_max_mtu = mt7530_port_max_mtu, |
| .port_stp_state_set = mt7530_stp_state_set, |
| .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, |
| .port_bridge_flags = mt7530_port_bridge_flags, |
| .port_bridge_join = mt7530_port_bridge_join, |
| .port_bridge_leave = mt7530_port_bridge_leave, |
| .port_fdb_add = mt7530_port_fdb_add, |
| .port_fdb_del = mt7530_port_fdb_del, |
| .port_fdb_dump = mt7530_port_fdb_dump, |
| .port_mdb_add = mt7530_port_mdb_add, |
| .port_mdb_del = mt7530_port_mdb_del, |
| .port_vlan_filtering = mt7530_port_vlan_filtering, |
| .port_vlan_add = mt7530_port_vlan_add, |
| .port_vlan_del = mt7530_port_vlan_del, |
| .port_mirror_add = mt753x_port_mirror_add, |
| .port_mirror_del = mt753x_port_mirror_del, |
| .phylink_get_caps = mt753x_phylink_get_caps, |
| .get_mac_eee = mt753x_get_mac_eee, |
| .set_mac_eee = mt753x_set_mac_eee, |
| .conduit_state_change = mt753x_conduit_state_change, |
| }; |
| EXPORT_SYMBOL_GPL(mt7530_switch_ops); |
| |
| static const struct phylink_mac_ops mt753x_phylink_mac_ops = { |
| .mac_select_pcs = mt753x_phylink_mac_select_pcs, |
| .mac_config = mt753x_phylink_mac_config, |
| .mac_link_down = mt753x_phylink_mac_link_down, |
| .mac_link_up = mt753x_phylink_mac_link_up, |
| }; |
| |
| const struct mt753x_info mt753x_table[] = { |
| [ID_MT7621] = { |
| .id = ID_MT7621, |
| .pcs_ops = &mt7530_pcs_ops, |
| .sw_setup = mt7530_setup, |
| .phy_read_c22 = mt7530_phy_read_c22, |
| .phy_write_c22 = mt7530_phy_write_c22, |
| .phy_read_c45 = mt7530_phy_read_c45, |
| .phy_write_c45 = mt7530_phy_write_c45, |
| .mac_port_get_caps = mt7530_mac_port_get_caps, |
| .mac_port_config = mt7530_mac_config, |
| }, |
| [ID_MT7530] = { |
| .id = ID_MT7530, |
| .pcs_ops = &mt7530_pcs_ops, |
| .sw_setup = mt7530_setup, |
| .phy_read_c22 = mt7530_phy_read_c22, |
| .phy_write_c22 = mt7530_phy_write_c22, |
| .phy_read_c45 = mt7530_phy_read_c45, |
| .phy_write_c45 = mt7530_phy_write_c45, |
| .mac_port_get_caps = mt7530_mac_port_get_caps, |
| .mac_port_config = mt7530_mac_config, |
| }, |
| [ID_MT7531] = { |
| .id = ID_MT7531, |
| .pcs_ops = &mt7530_pcs_ops, |
| .sw_setup = mt7531_setup, |
| .phy_read_c22 = mt7531_ind_c22_phy_read, |
| .phy_write_c22 = mt7531_ind_c22_phy_write, |
| .phy_read_c45 = mt7531_ind_c45_phy_read, |
| .phy_write_c45 = mt7531_ind_c45_phy_write, |
| .mac_port_get_caps = mt7531_mac_port_get_caps, |
| .mac_port_config = mt7531_mac_config, |
| }, |
| [ID_MT7988] = { |
| .id = ID_MT7988, |
| .pcs_ops = &mt7530_pcs_ops, |
| .sw_setup = mt7988_setup, |
| .phy_read_c22 = mt7531_ind_c22_phy_read, |
| .phy_write_c22 = mt7531_ind_c22_phy_write, |
| .phy_read_c45 = mt7531_ind_c45_phy_read, |
| .phy_write_c45 = mt7531_ind_c45_phy_write, |
| .mac_port_get_caps = mt7988_mac_port_get_caps, |
| }, |
| [ID_EN7581] = { |
| .id = ID_EN7581, |
| .pcs_ops = &mt7530_pcs_ops, |
| .sw_setup = mt7988_setup, |
| .phy_read_c22 = mt7531_ind_c22_phy_read, |
| .phy_write_c22 = mt7531_ind_c22_phy_write, |
| .phy_read_c45 = mt7531_ind_c45_phy_read, |
| .phy_write_c45 = mt7531_ind_c45_phy_write, |
| .mac_port_get_caps = en7581_mac_port_get_caps, |
| }, |
| }; |
| EXPORT_SYMBOL_GPL(mt753x_table); |
| |
| int |
| mt7530_probe_common(struct mt7530_priv *priv) |
| { |
| struct device *dev = priv->dev; |
| |
| priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); |
| if (!priv->ds) |
| return -ENOMEM; |
| |
| priv->ds->dev = dev; |
| priv->ds->num_ports = MT7530_NUM_PORTS; |
| |
| /* Get the hardware identifier from the devicetree node. |
| * We will need it for some of the clock and regulator setup. |
| */ |
| priv->info = of_device_get_match_data(dev); |
| if (!priv->info) |
| return -EINVAL; |
| |
| priv->id = priv->info->id; |
| priv->dev = dev; |
| priv->ds->priv = priv; |
| priv->ds->ops = &mt7530_switch_ops; |
| priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops; |
| mutex_init(&priv->reg_mutex); |
| dev_set_drvdata(dev, priv); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mt7530_probe_common); |
| |
| void |
| mt7530_remove_common(struct mt7530_priv *priv) |
| { |
| if (priv->irq) |
| mt7530_free_irq(priv); |
| |
| dsa_unregister_switch(priv->ds); |
| |
| mutex_destroy(&priv->reg_mutex); |
| } |
| EXPORT_SYMBOL_GPL(mt7530_remove_common); |
| |
| MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); |
| MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); |
| MODULE_LICENSE("GPL"); |