blob: ddded162c44c134836662f2940454e90fed32ec0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/phy/broadcom.c
*
* Broadcom BCM5411, BCM5421 and BCM5461 Gigabit Ethernet
* transceivers.
*
* Broadcom BCM54810, BCM54811 BroadR-Reach transceivers.
*
* Copyright (c) 2006 Maciej W. Rozycki
*
* Inspired by code written by Amy Fong.
*/
#include "bcm-phy-lib.h"
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/pm_wakeup.h>
#include <linux/brcmphy.h>
#include <linux/of.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/gpio/consumer.h>
#define BRCM_PHY_MODEL(phydev) \
((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)
#define BRCM_PHY_REV(phydev) \
((phydev)->drv->phy_id & ~((phydev)->drv->phy_id_mask))
MODULE_DESCRIPTION("Broadcom PHY driver");
MODULE_AUTHOR("Maciej W. Rozycki");
MODULE_LICENSE("GPL");
struct bcm54xx_phy_priv {
u64 *stats;
struct bcm_ptp_private *ptp;
int wake_irq;
bool wake_irq_enabled;
bool brr_mode;
};
/* Link modes for BCM58411 PHY */
static const int bcm54811_linkmodes[] = {
ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
ETHTOOL_LINK_MODE_100baseT_Full_BIT,
ETHTOOL_LINK_MODE_100baseT_Half_BIT,
ETHTOOL_LINK_MODE_10baseT_Full_BIT,
ETHTOOL_LINK_MODE_10baseT_Half_BIT
};
/* Long-Distance Signaling (BroadR-Reach mode aneg) relevant linkmode bits */
static const int lds_br_bits[] = {
ETHTOOL_LINK_MODE_Autoneg_BIT,
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
ETHTOOL_LINK_MODE_100baseT1_Full_BIT
};
static bool bcm54xx_phy_can_wakeup(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
return phy_interrupt_is_valid(phydev) || priv->wake_irq >= 0;
}
static int bcm54xx_config_clock_delay(struct phy_device *phydev)
{
int rc, val;
/* handling PHY's internal RX clock delay */
val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
val |= MII_BCM54XX_AUXCTL_MISC_WREN;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
/* Disable RGMII RXC-RXD skew */
val &= ~MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_SKEW_EN;
}
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
/* Enable RGMII RXC-RXD skew */
val |= MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_SKEW_EN;
}
rc = bcm54xx_auxctl_write(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
val);
if (rc < 0)
return rc;
/* handling PHY's internal TX clock delay */
val = bcm_phy_read_shadow(phydev, BCM54810_SHD_CLK_CTL);
if (phydev->interface == PHY_INTERFACE_MODE_RGMII ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
/* Disable internal TX clock delay */
val &= ~BCM54810_SHD_CLK_CTL_GTXCLK_EN;
}
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
/* Enable internal TX clock delay */
val |= BCM54810_SHD_CLK_CTL_GTXCLK_EN;
}
rc = bcm_phy_write_shadow(phydev, BCM54810_SHD_CLK_CTL, val);
if (rc < 0)
return rc;
return 0;
}
static int bcm54210e_config_init(struct phy_device *phydev)
{
int val;
bcm54xx_config_clock_delay(phydev);
if (phydev->dev_flags & PHY_BRCM_EN_MASTER_MODE) {
val = phy_read(phydev, MII_CTRL1000);
val |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
phy_write(phydev, MII_CTRL1000, val);
}
return 0;
}
static int bcm54612e_config_init(struct phy_device *phydev)
{
int reg;
bcm54xx_config_clock_delay(phydev);
/* Enable CLK125 MUX on LED4 if ref clock is enabled. */
if (!(phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED)) {
int err;
reg = bcm_phy_read_exp(phydev, BCM54612E_EXP_SPARE0);
err = bcm_phy_write_exp(phydev, BCM54612E_EXP_SPARE0,
BCM54612E_LED4_CLK125OUT_EN | reg);
if (err < 0)
return err;
}
return 0;
}
static int bcm54616s_config_init(struct phy_device *phydev)
{
int rc, val;
if (phydev->interface != PHY_INTERFACE_MODE_SGMII &&
phydev->interface != PHY_INTERFACE_MODE_1000BASEX)
return 0;
/* Ensure proper interface mode is selected. */
/* Disable RGMII mode */
val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
if (val < 0)
return val;
val &= ~MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_EN;
val |= MII_BCM54XX_AUXCTL_MISC_WREN;
rc = bcm54xx_auxctl_write(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
val);
if (rc < 0)
return rc;
/* Select 1000BASE-X register set (primary SerDes) */
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_MODE);
if (val < 0)
return val;
val |= BCM54XX_SHD_MODE_1000BX;
rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
if (rc < 0)
return rc;
/* Power down SerDes interface */
rc = phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
if (rc < 0)
return rc;
/* Select proper interface mode */
val &= ~BCM54XX_SHD_INTF_SEL_MASK;
val |= phydev->interface == PHY_INTERFACE_MODE_SGMII ?
BCM54XX_SHD_INTF_SEL_SGMII :
BCM54XX_SHD_INTF_SEL_GBIC;
rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
if (rc < 0)
return rc;
/* Power up SerDes interface */
rc = phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
if (rc < 0)
return rc;
/* Select copper register set */
val &= ~BCM54XX_SHD_MODE_1000BX;
rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
if (rc < 0)
return rc;
/* Power up copper interface */
return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
}
/* Needs SMDSP clock enabled via bcm54xx_phydsp_config() */
static int bcm50610_a0_workaround(struct phy_device *phydev)
{
int err;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_AADJ1CH0,
MII_BCM54XX_EXP_AADJ1CH0_SWP_ABCD_OEN |
MII_BCM54XX_EXP_AADJ1CH0_SWSEL_THPF);
if (err < 0)
return err;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_AADJ1CH3,
MII_BCM54XX_EXP_AADJ1CH3_ADCCKADJ);
if (err < 0)
return err;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP75,
MII_BCM54XX_EXP_EXP75_VDACCTRL);
if (err < 0)
return err;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP96,
MII_BCM54XX_EXP_EXP96_MYST);
if (err < 0)
return err;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP97,
MII_BCM54XX_EXP_EXP97_MYST);
return err;
}
static int bcm54xx_phydsp_config(struct phy_device *phydev)
{
int err, err2;
/* Enable the SMDSP clock */
err = bcm54xx_auxctl_write(phydev,
MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL,
MII_BCM54XX_AUXCTL_ACTL_SMDSP_ENA |
MII_BCM54XX_AUXCTL_ACTL_TX_6DB);
if (err < 0)
return err;
if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) {
/* Clear bit 9 to fix a phy interop issue. */
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP08,
MII_BCM54XX_EXP_EXP08_RJCT_2MHZ);
if (err < 0)
goto error;
if (phydev->drv->phy_id == PHY_ID_BCM50610) {
err = bcm50610_a0_workaround(phydev);
if (err < 0)
goto error;
}
}
if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM57780) {
int val;
val = bcm_phy_read_exp(phydev, MII_BCM54XX_EXP_EXP75);
if (val < 0)
goto error;
val |= MII_BCM54XX_EXP_EXP75_CM_OSC;
err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP75, val);
}
error:
/* Disable the SMDSP clock */
err2 = bcm54xx_auxctl_write(phydev,
MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL,
MII_BCM54XX_AUXCTL_ACTL_TX_6DB);
/* Return the first error reported. */
return err ? err : err2;
}
static void bcm54xx_adjust_rxrefclk(struct phy_device *phydev)
{
u32 orig;
int val;
bool clk125en = true;
/* Abort if we are using an untested phy. */
if (BRCM_PHY_MODEL(phydev) != PHY_ID_BCM57780 &&
BRCM_PHY_MODEL(phydev) != PHY_ID_BCM50610 &&
BRCM_PHY_MODEL(phydev) != PHY_ID_BCM50610M &&
BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54210E &&
BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54810 &&
BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54811)
return;
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR3);
if (val < 0)
return;
orig = val;
if ((BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) &&
BRCM_PHY_REV(phydev) >= 0x3) {
/*
* Here, bit 0 _disables_ CLK125 when set.
* This bit is set by default.
*/
clk125en = false;
} else {
if (phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED) {
if (BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54811) {
/* Here, bit 0 _enables_ CLK125 when set */
val &= ~BCM54XX_SHD_SCR3_DEF_CLK125;
}
clk125en = false;
}
}
if (!clk125en || (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
val &= ~BCM54XX_SHD_SCR3_DLLAPD_DIS;
else
val |= BCM54XX_SHD_SCR3_DLLAPD_DIS;
if (phydev->dev_flags & PHY_BRCM_DIS_TXCRXC_NOENRGY) {
if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54210E ||
BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54810 ||
BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54811)
val |= BCM54XX_SHD_SCR3_RXCTXC_DIS;
else
val |= BCM54XX_SHD_SCR3_TRDDAPD;
}
if (orig != val)
bcm_phy_write_shadow(phydev, BCM54XX_SHD_SCR3, val);
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_APD);
if (val < 0)
return;
orig = val;
if (!clk125en || (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
val |= BCM54XX_SHD_APD_EN;
else
val &= ~BCM54XX_SHD_APD_EN;
if (orig != val)
bcm_phy_write_shadow(phydev, BCM54XX_SHD_APD, val);
}
static void bcm54xx_ptp_stop(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
if (priv->ptp)
bcm_ptp_stop(priv->ptp);
}
static void bcm54xx_ptp_config_init(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
if (priv->ptp)
bcm_ptp_config_init(phydev);
}
static int bcm5481x_set_brrmode(struct phy_device *phydev, bool on)
{
int reg;
int err;
u16 val;
reg = bcm_phy_read_exp(phydev, BCM54810_EXP_BROADREACH_LRE_MISC_CTL);
if (reg < 0)
return reg;
if (on)
reg |= BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;
else
reg &= ~BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;
err = bcm_phy_write_exp(phydev,
BCM54810_EXP_BROADREACH_LRE_MISC_CTL, reg);
if (err)
return err;
/* Ensure LRE or IEEE register set is accessed according to the brr
* on/off, thus set the override
*/
val = BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL_EN;
if (!on)
val |= BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL_OVERRIDE_VAL;
return bcm_phy_write_exp(phydev,
BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL, val);
}
static int bcm54811_config_init(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
int err, reg;
/* Enable CLK125 MUX on LED4 if ref clock is enabled. */
if (!(phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED)) {
reg = bcm_phy_read_exp(phydev, BCM54612E_EXP_SPARE0);
if (reg < 0)
return reg;
err = bcm_phy_write_exp(phydev, BCM54612E_EXP_SPARE0,
BCM54612E_LED4_CLK125OUT_EN | reg);
if (err < 0)
return err;
}
/* With BCM54811, BroadR-Reach implies no autoneg */
if (priv->brr_mode)
phydev->autoneg = 0;
return bcm5481x_set_brrmode(phydev, priv->brr_mode);
}
static int bcm54xx_config_init(struct phy_device *phydev)
{
int reg, err, val;
reg = phy_read(phydev, MII_BCM54XX_ECR);
if (reg < 0)
return reg;
/* Mask interrupts globally. */
reg |= MII_BCM54XX_ECR_IM;
err = phy_write(phydev, MII_BCM54XX_ECR, reg);
if (err < 0)
return err;
/* Unmask events we are interested in. */
reg = ~(MII_BCM54XX_INT_DUPLEX |
MII_BCM54XX_INT_SPEED |
MII_BCM54XX_INT_LINK);
err = phy_write(phydev, MII_BCM54XX_IMR, reg);
if (err < 0)
return err;
if ((BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) &&
(phydev->dev_flags & PHY_BRCM_CLEAR_RGMII_MODE))
bcm_phy_write_shadow(phydev, BCM54XX_SHD_RGMII_MODE, 0);
bcm54xx_adjust_rxrefclk(phydev);
switch (BRCM_PHY_MODEL(phydev)) {
case PHY_ID_BCM50610:
case PHY_ID_BCM50610M:
err = bcm54xx_config_clock_delay(phydev);
break;
case PHY_ID_BCM54210E:
err = bcm54210e_config_init(phydev);
break;
case PHY_ID_BCM54612E:
err = bcm54612e_config_init(phydev);
break;
case PHY_ID_BCM54616S:
err = bcm54616s_config_init(phydev);
break;
case PHY_ID_BCM54810:
/* For BCM54810, we need to disable BroadR-Reach function */
val = bcm_phy_read_exp(phydev,
BCM54810_EXP_BROADREACH_LRE_MISC_CTL);
val &= ~BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;
err = bcm_phy_write_exp(phydev,
BCM54810_EXP_BROADREACH_LRE_MISC_CTL,
val);
break;
case PHY_ID_BCM54811:
err = bcm54811_config_init(phydev);
break;
}
if (err)
return err;
bcm54xx_phydsp_config(phydev);
/* For non-SFP setups, encode link speed into LED1 and LED3 pair
* (green/amber).
* Also flash these two LEDs on activity. This means configuring
* them for MULTICOLOR and encoding link/activity into them.
* Don't do this for devices on an SFP module, since some of these
* use the LED outputs to control the SFP LOS signal, and changing
* these settings will cause LOS to malfunction.
*/
if (!phy_on_sfp(phydev)) {
val = BCM54XX_SHD_LEDS1_LED1(BCM_LED_SRC_MULTICOLOR1) |
BCM54XX_SHD_LEDS1_LED3(BCM_LED_SRC_MULTICOLOR1);
bcm_phy_write_shadow(phydev, BCM54XX_SHD_LEDS1, val);
val = BCM_LED_MULTICOLOR_IN_PHASE |
BCM54XX_SHD_LEDS1_LED1(BCM_LED_MULTICOLOR_LINK_ACT) |
BCM54XX_SHD_LEDS1_LED3(BCM_LED_MULTICOLOR_LINK_ACT);
bcm_phy_write_exp(phydev, BCM_EXP_MULTICOLOR, val);
}
bcm54xx_ptp_config_init(phydev);
/* Acknowledge any left over interrupt and charge the device for
* wake-up.
*/
err = bcm_phy_read_exp(phydev, BCM54XX_WOL_INT_STATUS);
if (err < 0)
return err;
if (err)
pm_wakeup_event(&phydev->mdio.dev, 0);
return 0;
}
static int bcm54xx_iddq_set(struct phy_device *phydev, bool enable)
{
int ret = 0;
if (!(phydev->dev_flags & PHY_BRCM_IDDQ_SUSPEND))
return ret;
ret = bcm_phy_read_exp(phydev, BCM54XX_TOP_MISC_IDDQ_CTRL);
if (ret < 0)
goto out;
if (enable)
ret |= BCM54XX_TOP_MISC_IDDQ_SR | BCM54XX_TOP_MISC_IDDQ_LP;
else
ret &= ~(BCM54XX_TOP_MISC_IDDQ_SR | BCM54XX_TOP_MISC_IDDQ_LP);
ret = bcm_phy_write_exp(phydev, BCM54XX_TOP_MISC_IDDQ_CTRL, ret);
out:
return ret;
}
static int bcm54xx_set_wakeup_irq(struct phy_device *phydev, bool state)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
int ret = 0;
if (!bcm54xx_phy_can_wakeup(phydev))
return ret;
if (priv->wake_irq_enabled != state) {
if (state)
ret = enable_irq_wake(priv->wake_irq);
else
ret = disable_irq_wake(priv->wake_irq);
priv->wake_irq_enabled = state;
}
return ret;
}
static int bcm54xx_suspend(struct phy_device *phydev)
{
int ret = 0;
bcm54xx_ptp_stop(phydev);
/* Acknowledge any Wake-on-LAN interrupt prior to suspend */
ret = bcm_phy_read_exp(phydev, BCM54XX_WOL_INT_STATUS);
if (ret < 0)
return ret;
if (phydev->wol_enabled)
return bcm54xx_set_wakeup_irq(phydev, true);
/* We cannot use a read/modify/write here otherwise the PHY gets into
* a bad state where its LEDs keep flashing, thus defeating the purpose
* of low power mode.
*/
ret = phy_write(phydev, MII_BMCR, BMCR_PDOWN);
if (ret < 0)
return ret;
return bcm54xx_iddq_set(phydev, true);
}
static int bcm54xx_resume(struct phy_device *phydev)
{
int ret = 0;
if (phydev->wol_enabled) {
ret = bcm54xx_set_wakeup_irq(phydev, false);
if (ret)
return ret;
}
ret = bcm54xx_iddq_set(phydev, false);
if (ret < 0)
return ret;
/* Writes to register other than BMCR would be ignored
* unless we clear the PDOWN bit first
*/
ret = genphy_resume(phydev);
if (ret < 0)
return ret;
/* Upon exiting power down, the PHY remains in an internal reset state
* for 40us
*/
fsleep(40);
/* Issue a soft reset after clearing the power down bit
* and before doing any other configuration.
*/
if (phydev->dev_flags & PHY_BRCM_IDDQ_SUSPEND) {
ret = genphy_soft_reset(phydev);
if (ret < 0)
return ret;
}
return bcm54xx_config_init(phydev);
}
static int bcm54810_read_mmd(struct phy_device *phydev, int devnum, u16 regnum)
{
return -EOPNOTSUPP;
}
static int bcm54810_write_mmd(struct phy_device *phydev, int devnum, u16 regnum,
u16 val)
{
return -EOPNOTSUPP;
}
/**
* bcm5481x_read_abilities - read PHY abilities from LRESR or Clause 22
* (BMSR) registers, based on whether the PHY is in BroadR-Reach or IEEE mode
* @phydev: target phy_device struct
*
* Description: Reads the PHY's abilities and populates phydev->supported
* accordingly. The register to read the abilities from is determined by
* the brr mode setting of the PHY as read from the device tree.
* Note that the LRE and IEEE sets of abilities are disjunct, in other words,
* not only the link modes differ, but also the auto-negotiation and
* master-slave setup is controlled differently.
*
* Returns: 0 on success, < 0 on failure
*/
static int bcm5481x_read_abilities(struct phy_device *phydev)
{
struct device_node *np = phydev->mdio.dev.of_node;
struct bcm54xx_phy_priv *priv = phydev->priv;
int i, val, err;
for (i = 0; i < ARRAY_SIZE(bcm54811_linkmodes); i++)
linkmode_clear_bit(bcm54811_linkmodes[i], phydev->supported);
priv->brr_mode = of_property_read_bool(np, "brr-mode");
/* Set BroadR-Reach mode as configured in the DT. */
err = bcm5481x_set_brrmode(phydev, priv->brr_mode);
if (err)
return err;
if (priv->brr_mode) {
linkmode_set_bit_array(phy_basic_ports_array,
ARRAY_SIZE(phy_basic_ports_array),
phydev->supported);
val = phy_read(phydev, MII_BCM54XX_LRESR);
if (val < 0)
return val;
linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
phydev->supported,
val & LRESR_LDSABILITY);
linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
phydev->supported,
val & LRESR_100_1PAIR);
linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
phydev->supported,
val & LRESR_10_1PAIR);
return 0;
}
return genphy_read_abilities(phydev);
}
static int bcm5481x_config_delay_swap(struct phy_device *phydev)
{
struct device_node *np = phydev->mdio.dev.of_node;
/* Set up the delay. */
bcm54xx_config_clock_delay(phydev);
if (of_property_read_bool(np, "enet-phy-lane-swap")) {
/* Lane Swap - Undocumented register...magic! */
int ret = bcm_phy_write_exp(phydev,
MII_BCM54XX_EXP_SEL_ER + 0x9,
0x11B);
if (ret < 0)
return ret;
}
return 0;
}
static int bcm5481_config_aneg(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
int ret;
/* Aneg firstly. */
if (priv->brr_mode)
ret = bcm_config_lre_aneg(phydev, false);
else
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
/* Then we can set up the delay and swap. */
return bcm5481x_config_delay_swap(phydev);
}
static int bcm54811_config_aneg(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
int ret;
/* Aneg firstly. */
if (priv->brr_mode) {
/* BCM54811 is only capable of autonegotiation in IEEE mode */
phydev->autoneg = 0;
ret = bcm_config_lre_aneg(phydev, false);
} else {
ret = genphy_config_aneg(phydev);
}
if (ret)
return ret;
/* Then we can set up the delay and swap. */
return bcm5481x_config_delay_swap(phydev);
}
struct bcm54616s_phy_priv {
bool mode_1000bx_en;
};
static int bcm54616s_probe(struct phy_device *phydev)
{
struct bcm54616s_phy_priv *priv;
int val;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_MODE);
if (val < 0)
return val;
/* The PHY is strapped in RGMII-fiber mode when INTERF_SEL[1:0]
* is 01b, and the link between PHY and its link partner can be
* either 1000Base-X or 100Base-FX.
* RGMII-1000Base-X is properly supported, but RGMII-100Base-FX
* support is still missing as of now.
*/
if ((val & BCM54XX_SHD_INTF_SEL_MASK) == BCM54XX_SHD_INTF_SEL_RGMII) {
val = bcm_phy_read_shadow(phydev, BCM54616S_SHD_100FX_CTRL);
if (val < 0)
return val;
/* Bit 0 of the SerDes 100-FX Control register, when set
* to 1, sets the MII/RGMII -> 100BASE-FX configuration.
* When this bit is set to 0, it sets the GMII/RGMII ->
* 1000BASE-X configuration.
*/
if (!(val & BCM54616S_100FX_MODE))
priv->mode_1000bx_en = true;
phydev->port = PORT_FIBRE;
}
return 0;
}
static int bcm54616s_config_aneg(struct phy_device *phydev)
{
struct bcm54616s_phy_priv *priv = phydev->priv;
int ret;
/* Aneg firstly. */
if (priv->mode_1000bx_en)
ret = genphy_c37_config_aneg(phydev);
else
ret = genphy_config_aneg(phydev);
/* Then we can set up the delay. */
bcm54xx_config_clock_delay(phydev);
return ret;
}
static int bcm54616s_read_status(struct phy_device *phydev)
{
struct bcm54616s_phy_priv *priv = phydev->priv;
bool changed;
int err;
if (priv->mode_1000bx_en)
err = genphy_c37_read_status(phydev, &changed);
else
err = genphy_read_status(phydev);
return err;
}
static int brcm_fet_config_init(struct phy_device *phydev)
{
int reg, err, err2, brcmtest;
/* Reset the PHY to bring it to a known state. */
err = phy_write(phydev, MII_BMCR, BMCR_RESET);
if (err < 0)
return err;
/* The datasheet indicates the PHY needs up to 1us to complete a reset,
* build some slack here.
*/
usleep_range(1000, 2000);
/* The PHY requires 65 MDC clock cycles to complete a write operation
* and turnaround the line properly.
*
* We ignore -EIO here as the MDIO controller (e.g.: mdio-bcm-unimac)
* may flag the lack of turn-around as a read failure. This is
* particularly true with this combination since the MDIO controller
* only used 64 MDC cycles. This is not a critical failure in this
* specific case and it has no functional impact otherwise, so we let
* that one go through. If there is a genuine bus error, the next read
* of MII_BRCM_FET_INTREG will error out.
*/
err = phy_read(phydev, MII_BMCR);
if (err < 0 && err != -EIO)
return err;
/* Read to clear status bits */
reg = phy_read(phydev, MII_BRCM_FET_INTREG);
if (reg < 0)
return reg;
/* Unmask events we are interested in and mask interrupts globally. */
if (phydev->phy_id == PHY_ID_BCM5221)
reg = MII_BRCM_FET_IR_ENABLE |
MII_BRCM_FET_IR_MASK;
else
reg = MII_BRCM_FET_IR_DUPLEX_EN |
MII_BRCM_FET_IR_SPEED_EN |
MII_BRCM_FET_IR_LINK_EN |
MII_BRCM_FET_IR_ENABLE |
MII_BRCM_FET_IR_MASK;
err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
if (err < 0)
return err;
/* Enable shadow register access */
brcmtest = phy_read(phydev, MII_BRCM_FET_BRCMTEST);
if (brcmtest < 0)
return brcmtest;
reg = brcmtest | MII_BRCM_FET_BT_SRE;
phy_lock_mdio_bus(phydev);
err = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, reg);
if (err < 0) {
phy_unlock_mdio_bus(phydev);
return err;
}
if (phydev->phy_id != PHY_ID_BCM5221) {
/* Set the LED mode */
reg = __phy_read(phydev, MII_BRCM_FET_SHDW_AUXMODE4);
if (reg < 0) {
err = reg;
goto done;
}
err = __phy_modify(phydev, MII_BRCM_FET_SHDW_AUXMODE4,
MII_BRCM_FET_SHDW_AM4_LED_MASK,
MII_BRCM_FET_SHDW_AM4_LED_MODE1);
if (err < 0)
goto done;
/* Enable auto MDIX */
err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_MISCCTRL,
MII_BRCM_FET_SHDW_MC_FAME);
if (err < 0)
goto done;
}
if (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE) {
/* Enable auto power down */
err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_AUXSTAT2,
MII_BRCM_FET_SHDW_AS2_APDE);
}
done:
/* Disable shadow register access */
err2 = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, brcmtest);
if (!err)
err = err2;
phy_unlock_mdio_bus(phydev);
return err;
}
static int brcm_fet_ack_interrupt(struct phy_device *phydev)
{
int reg;
/* Clear pending interrupts. */
reg = phy_read(phydev, MII_BRCM_FET_INTREG);
if (reg < 0)
return reg;
return 0;
}
static int brcm_fet_config_intr(struct phy_device *phydev)
{
int reg, err;
reg = phy_read(phydev, MII_BRCM_FET_INTREG);
if (reg < 0)
return reg;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = brcm_fet_ack_interrupt(phydev);
if (err)
return err;
reg &= ~MII_BRCM_FET_IR_MASK;
err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
} else {
reg |= MII_BRCM_FET_IR_MASK;
err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
if (err)
return err;
err = brcm_fet_ack_interrupt(phydev);
}
return err;
}
static irqreturn_t brcm_fet_handle_interrupt(struct phy_device *phydev)
{
int irq_status;
irq_status = phy_read(phydev, MII_BRCM_FET_INTREG);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (irq_status == 0)
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int brcm_fet_suspend(struct phy_device *phydev)
{
int reg, err, err2, brcmtest;
/* We cannot use a read/modify/write here otherwise the PHY continues
* to drive LEDs which defeats the purpose of low power mode.
*/
err = phy_write(phydev, MII_BMCR, BMCR_PDOWN);
if (err < 0)
return err;
/* Enable shadow register access */
brcmtest = phy_read(phydev, MII_BRCM_FET_BRCMTEST);
if (brcmtest < 0)
return brcmtest;
reg = brcmtest | MII_BRCM_FET_BT_SRE;
phy_lock_mdio_bus(phydev);
err = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, reg);
if (err < 0) {
phy_unlock_mdio_bus(phydev);
return err;
}
if (phydev->phy_id == PHY_ID_BCM5221)
/* Force Low Power Mode with clock enabled */
reg = BCM5221_SHDW_AM4_EN_CLK_LPM | BCM5221_SHDW_AM4_FORCE_LPM;
else
/* Set standby mode */
reg = MII_BRCM_FET_SHDW_AM4_STANDBY;
err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_AUXMODE4, reg);
/* Disable shadow register access */
err2 = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, brcmtest);
if (!err)
err = err2;
phy_unlock_mdio_bus(phydev);
return err;
}
static int bcm5221_config_aneg(struct phy_device *phydev)
{
int ret, val;
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
switch (phydev->mdix_ctrl) {
case ETH_TP_MDI:
val = BCM5221_AEGSR_MDIX_DIS;
break;
case ETH_TP_MDI_X:
val = BCM5221_AEGSR_MDIX_DIS | BCM5221_AEGSR_MDIX_MAN_SWAP;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, BCM5221_AEGSR, BCM5221_AEGSR_MDIX_MAN_SWAP |
BCM5221_AEGSR_MDIX_DIS,
val);
}
static int bcm5221_read_status(struct phy_device *phydev)
{
int ret;
/* Read MDIX status */
ret = phy_read(phydev, BCM5221_AEGSR);
if (ret < 0)
return ret;
if (ret & BCM5221_AEGSR_MDIX_DIS) {
if (ret & BCM5221_AEGSR_MDIX_MAN_SWAP)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
} else {
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
}
if (ret & BCM5221_AEGSR_MDIX_STATUS)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
return genphy_read_status(phydev);
}
static void bcm54xx_phy_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
/* We cannot wake-up if we do not have a dedicated PHY interrupt line
* or an out of band GPIO descriptor for wake-up. Zeroing
* wol->supported allows the caller (MAC driver) to play through and
* offer its own Wake-on-LAN scheme if available.
*/
if (!bcm54xx_phy_can_wakeup(phydev)) {
wol->supported = 0;
return;
}
bcm_phy_get_wol(phydev, wol);
}
static int bcm54xx_phy_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int ret;
/* We cannot wake-up if we do not have a dedicated PHY interrupt line
* or an out of band GPIO descriptor for wake-up. Returning -EOPNOTSUPP
* allows the caller (MAC driver) to play through and offer its own
* Wake-on-LAN scheme if available.
*/
if (!bcm54xx_phy_can_wakeup(phydev))
return -EOPNOTSUPP;
ret = bcm_phy_set_wol(phydev, wol);
if (ret < 0)
return ret;
return 0;
}
static int bcm54xx_phy_probe(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv;
struct gpio_desc *wakeup_gpio;
int ret = 0;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->wake_irq = -ENXIO;
phydev->priv = priv;
priv->stats = devm_kcalloc(&phydev->mdio.dev,
bcm_phy_get_sset_count(phydev), sizeof(u64),
GFP_KERNEL);
if (!priv->stats)
return -ENOMEM;
priv->ptp = bcm_ptp_probe(phydev);
if (IS_ERR(priv->ptp))
return PTR_ERR(priv->ptp);
/* We cannot utilize the _optional variant here since we want to know
* whether the GPIO descriptor exists or not to advertise Wake-on-LAN
* support or not.
*/
wakeup_gpio = devm_gpiod_get(&phydev->mdio.dev, "wakeup", GPIOD_IN);
if (PTR_ERR(wakeup_gpio) == -EPROBE_DEFER)
return PTR_ERR(wakeup_gpio);
if (!IS_ERR(wakeup_gpio)) {
priv->wake_irq = gpiod_to_irq(wakeup_gpio);
/* Dummy interrupt handler which is not enabled but is provided
* in order for the interrupt descriptor to be fully set-up.
*/
ret = devm_request_irq(&phydev->mdio.dev, priv->wake_irq,
bcm_phy_wol_isr,
IRQF_TRIGGER_LOW | IRQF_NO_AUTOEN,
dev_name(&phydev->mdio.dev), phydev);
if (ret)
return ret;
}
/* If we do not have a main interrupt or a side-band wake-up interrupt,
* then the device cannot be marked as wake-up capable.
*/
if (!bcm54xx_phy_can_wakeup(phydev))
return 0;
return device_init_wakeup(&phydev->mdio.dev, true);
}
static void bcm54xx_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
bcm_phy_get_stats(phydev, priv->stats, stats, data);
}
static void bcm54xx_link_change_notify(struct phy_device *phydev)
{
u16 mask = MII_BCM54XX_EXP_EXP08_EARLY_DAC_WAKE |
MII_BCM54XX_EXP_EXP08_FORCE_DAC_WAKE;
int ret;
if (phydev->state != PHY_RUNNING)
return;
/* Don't change the DAC wake settings if auto power down
* is not requested.
*/
if (!(phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
return;
ret = bcm_phy_read_exp(phydev, MII_BCM54XX_EXP_EXP08);
if (ret < 0)
return;
/* Enable/disable 10BaseT auto and forced early DAC wake depending
* on the negotiated speed, those settings should only be done
* for 10Mbits/sec.
*/
if (phydev->speed == SPEED_10)
ret |= mask;
else
ret &= ~mask;
bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP08, ret);
}
static int lre_read_master_slave(struct phy_device *phydev)
{
int cfg = MASTER_SLAVE_CFG_UNKNOWN, state;
int val;
/* In BroadR-Reach mode we are always capable of master-slave
* and there is no preferred master or slave configuration
*/
phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
val = phy_read(phydev, MII_BCM54XX_LRECR);
if (val < 0)
return val;
if ((val & LRECR_LDSEN) == 0) {
if (val & LRECR_MASTER)
cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
else
cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
}
val = phy_read(phydev, MII_BCM54XX_LRELDSE);
if (val < 0)
return val;
if (val & LDSE_MASTER)
state = MASTER_SLAVE_STATE_MASTER;
else
state = MASTER_SLAVE_STATE_SLAVE;
phydev->master_slave_get = cfg;
phydev->master_slave_state = state;
return 0;
}
/* Read LDS Link Partner Ability in BroadR-Reach mode */
static int lre_read_lpa(struct phy_device *phydev)
{
int i, lrelpa;
if (phydev->autoneg != AUTONEG_ENABLE) {
if (!phydev->autoneg_complete) {
/* aneg not yet done, reset all relevant bits */
for (i = 0; i < ARRAY_SIZE(lds_br_bits); i++)
linkmode_clear_bit(lds_br_bits[i],
phydev->lp_advertising);
return 0;
}
/* Long-Distance Signaling Link Partner Ability */
lrelpa = phy_read(phydev, MII_BCM54XX_LRELPA);
if (lrelpa < 0)
return lrelpa;
linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
phydev->lp_advertising,
lrelpa & LRELPA_PAUSE_ASYM);
linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
phydev->lp_advertising,
lrelpa & LRELPA_PAUSE);
linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
phydev->lp_advertising,
lrelpa & LRELPA_100_1PAIR);
linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
phydev->lp_advertising,
lrelpa & LRELPA_10_1PAIR);
} else {
linkmode_zero(phydev->lp_advertising);
}
return 0;
}
static int lre_read_status_fixed(struct phy_device *phydev)
{
int lrecr = phy_read(phydev, MII_BCM54XX_LRECR);
if (lrecr < 0)
return lrecr;
phydev->duplex = DUPLEX_FULL;
if (lrecr & LRECR_SPEED100)
phydev->speed = SPEED_100;
else
phydev->speed = SPEED_10;
return 0;
}
/**
* lre_update_link - update link status in @phydev
* @phydev: target phy_device struct
* Return: 0 on success, < 0 on error
*
* Description: Update the value in phydev->link to reflect the
* current link value. In order to do this, we need to read
* the status register twice, keeping the second value.
* This is a genphy_update_link modified to work on LRE registers
* of BroadR-Reach PHY
*/
static int lre_update_link(struct phy_device *phydev)
{
int status = 0, lrecr;
lrecr = phy_read(phydev, MII_BCM54XX_LRECR);
if (lrecr < 0)
return lrecr;
/* Autoneg is being started, therefore disregard BMSR value and
* report link as down.
*/
if (lrecr & BMCR_ANRESTART)
goto done;
/* The link state is latched low so that momentary link
* drops can be detected. Do not double-read the status
* in polling mode to detect such short link drops except
* the link was already down.
*/
if (!phy_polling_mode(phydev) || !phydev->link) {
status = phy_read(phydev, MII_BCM54XX_LRESR);
if (status < 0)
return status;
else if (status & LRESR_LSTATUS)
goto done;
}
/* Read link and autonegotiation status */
status = phy_read(phydev, MII_BCM54XX_LRESR);
if (status < 0)
return status;
done:
phydev->link = status & LRESR_LSTATUS ? 1 : 0;
phydev->autoneg_complete = status & LRESR_LDSCOMPLETE ? 1 : 0;
/* Consider the case that autoneg was started and "aneg complete"
* bit has been reset, but "link up" bit not yet.
*/
if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
phydev->link = 0;
return 0;
}
/* Get the status in BroadRReach mode just like genphy_read_status does
* in normal mode
*/
static int bcm54811_lre_read_status(struct phy_device *phydev)
{
int err, old_link = phydev->link;
/* Update the link, but return if there was an error */
err = lre_update_link(phydev);
if (err)
return err;
/* why bother the PHY if nothing can have changed */
if (phydev->autoneg ==
AUTONEG_ENABLE && old_link && phydev->link)
return 0;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
err = lre_read_master_slave(phydev);
if (err < 0)
return err;
/* Read LDS Link Partner Ability */
err = lre_read_lpa(phydev);
if (err < 0)
return err;
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete)
phy_resolve_aneg_linkmode(phydev);
else if (phydev->autoneg == AUTONEG_DISABLE)
err = lre_read_status_fixed(phydev);
return err;
}
static int bcm54811_read_status(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
if (priv->brr_mode)
return bcm54811_lre_read_status(phydev);
return genphy_read_status(phydev);
}
static struct phy_driver broadcom_drivers[] = {
{
.phy_id = PHY_ID_BCM5411,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5411",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
}, {
.phy_id = PHY_ID_BCM5421,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5421",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
}, {
.phy_id = PHY_ID_BCM54210E,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM54210E",
/* PHY_GBIT_FEATURES */
.flags = PHY_ALWAYS_CALL_SUSPEND,
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
.get_wol = bcm54xx_phy_get_wol,
.set_wol = bcm54xx_phy_set_wol,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM5461,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5461",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM54612E,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM54612E",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
}, {
.phy_id = PHY_ID_BCM54616S,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM54616S",
/* PHY_GBIT_FEATURES */
.soft_reset = genphy_soft_reset,
.config_init = bcm54xx_config_init,
.config_aneg = bcm54616s_config_aneg,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.read_status = bcm54616s_read_status,
.probe = bcm54616s_probe,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM5464,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5464",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.suspend = genphy_suspend,
.resume = genphy_resume,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM5481,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5481",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_aneg = bcm5481_config_aneg,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM54810,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM54810",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.read_mmd = bcm54810_read_mmd,
.write_mmd = bcm54810_write_mmd,
.config_init = bcm54xx_config_init,
.config_aneg = bcm5481_config_aneg,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM54811,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM54811",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_aneg = bcm54811_config_aneg,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.read_status = bcm54811_read_status,
.get_features = bcm5481x_read_abilities,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM5482,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5482",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM50610,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM50610",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM50610M,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM50610M",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.suspend = bcm54xx_suspend,
.resume = bcm54xx_resume,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM57780,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM57780",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCMAC131,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCMAC131",
/* PHY_BASIC_FEATURES */
.config_init = brcm_fet_config_init,
.config_intr = brcm_fet_config_intr,
.handle_interrupt = brcm_fet_handle_interrupt,
.suspend = brcm_fet_suspend,
.resume = brcm_fet_config_init,
}, {
.phy_id = PHY_ID_BCM5241,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5241",
/* PHY_BASIC_FEATURES */
.config_init = brcm_fet_config_init,
.config_intr = brcm_fet_config_intr,
.handle_interrupt = brcm_fet_handle_interrupt,
.suspend = brcm_fet_suspend,
.resume = brcm_fet_config_init,
}, {
.phy_id = PHY_ID_BCM5221,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5221",
/* PHY_BASIC_FEATURES */
.config_init = brcm_fet_config_init,
.config_intr = brcm_fet_config_intr,
.handle_interrupt = brcm_fet_handle_interrupt,
.suspend = brcm_fet_suspend,
.resume = brcm_fet_config_init,
.config_aneg = bcm5221_config_aneg,
.read_status = bcm5221_read_status,
}, {
.phy_id = PHY_ID_BCM5395,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM5395",
.flags = PHY_IS_INTERNAL,
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM53125,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM53125",
.flags = PHY_IS_INTERNAL,
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM53128,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM53128",
.flags = PHY_IS_INTERNAL,
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
.led_brightness_set = bcm_phy_led_brightness_set,
}, {
.phy_id = PHY_ID_BCM89610,
.phy_id_mask = 0xfffffff0,
.name = "Broadcom BCM89610",
/* PHY_GBIT_FEATURES */
.get_sset_count = bcm_phy_get_sset_count,
.get_strings = bcm_phy_get_strings,
.get_stats = bcm54xx_get_stats,
.probe = bcm54xx_phy_probe,
.config_init = bcm54xx_config_init,
.config_intr = bcm_phy_config_intr,
.handle_interrupt = bcm_phy_handle_interrupt,
.link_change_notify = bcm54xx_link_change_notify,
} };
module_phy_driver(broadcom_drivers);
static struct mdio_device_id __maybe_unused broadcom_tbl[] = {
{ PHY_ID_BCM5411, 0xfffffff0 },
{ PHY_ID_BCM5421, 0xfffffff0 },
{ PHY_ID_BCM54210E, 0xfffffff0 },
{ PHY_ID_BCM5461, 0xfffffff0 },
{ PHY_ID_BCM54612E, 0xfffffff0 },
{ PHY_ID_BCM54616S, 0xfffffff0 },
{ PHY_ID_BCM5464, 0xfffffff0 },
{ PHY_ID_BCM5481, 0xfffffff0 },
{ PHY_ID_BCM54810, 0xfffffff0 },
{ PHY_ID_BCM54811, 0xfffffff0 },
{ PHY_ID_BCM5482, 0xfffffff0 },
{ PHY_ID_BCM50610, 0xfffffff0 },
{ PHY_ID_BCM50610M, 0xfffffff0 },
{ PHY_ID_BCM57780, 0xfffffff0 },
{ PHY_ID_BCMAC131, 0xfffffff0 },
{ PHY_ID_BCM5221, 0xfffffff0 },
{ PHY_ID_BCM5241, 0xfffffff0 },
{ PHY_ID_BCM5395, 0xfffffff0 },
{ PHY_ID_BCM53125, 0xfffffff0 },
{ PHY_ID_BCM53128, 0xfffffff0 },
{ PHY_ID_BCM89610, 0xfffffff0 },
{ }
};
MODULE_DEVICE_TABLE(mdio, broadcom_tbl);