blob: 92aa3a2b9744c240a231b6aec23df61e2eebfa52 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Driver for the Texas Instruments DP83TD510 PHY
* Copyright (c) 2022 Pengutronix, Oleksij Rempel <kernel@pengutronix.de>
*/
#include <linux/bitfield.h>
#include <linux/ethtool_netlink.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/phy.h>
#define DP83TD510E_PHY_ID 0x20000181
/* MDIO_MMD_VEND2 registers */
#define DP83TD510E_PHY_STS 0x10
/* Bit 7 - mii_interrupt, active high. Clears on read.
* Note: Clearing does not necessarily deactivate IRQ pin if interrupts pending.
* This differs from the DP83TD510E datasheet (2020) which states this bit
* clears on write 0.
*/
#define DP83TD510E_STS_MII_INT BIT(7)
#define DP83TD510E_LINK_STATUS BIT(0)
#define DP83TD510E_GEN_CFG 0x11
#define DP83TD510E_GENCFG_INT_POLARITY BIT(3)
#define DP83TD510E_GENCFG_INT_EN BIT(1)
#define DP83TD510E_GENCFG_INT_OE BIT(0)
#define DP83TD510E_INTERRUPT_REG_1 0x12
#define DP83TD510E_INT1_LINK BIT(13)
#define DP83TD510E_INT1_LINK_EN BIT(5)
#define DP83TD510E_CTRL 0x1f
#define DP83TD510E_CTRL_HW_RESET BIT(15)
#define DP83TD510E_CTRL_SW_RESET BIT(14)
#define DP83TD510E_AN_STAT_1 0x60c
#define DP83TD510E_MASTER_SLAVE_RESOL_FAIL BIT(15)
#define DP83TD510E_MSE_DETECT 0xa85
#define DP83TD510_SQI_MAX 7
/* Register values are converted to SNR(dB) as suggested by
* "Application Report - DP83TD510E Cable Diagnostics Toolkit":
* SNR(dB) = -10 * log10 (VAL/2^17) - 1.76 dB.
* SQI ranges are implemented according to "OPEN ALLIANCE - Advanced diagnostic
* features for 100BASE-T1 automotive Ethernet PHYs"
*/
static const u16 dp83td510_mse_sqi_map[] = {
0x0569, /* < 18dB */
0x044c, /* 18dB =< SNR < 19dB */
0x0369, /* 19dB =< SNR < 20dB */
0x02b6, /* 20dB =< SNR < 21dB */
0x0227, /* 21dB =< SNR < 22dB */
0x01b6, /* 22dB =< SNR < 23dB */
0x015b, /* 23dB =< SNR < 24dB */
0x0000 /* 24dB =< SNR */
};
struct dp83td510_priv {
bool alcd_test_active;
};
/* Time Domain Reflectometry (TDR) Functionality of DP83TD510 PHY
*
* I assume that this PHY is using a variation of Spread Spectrum Time Domain
* Reflectometry (SSTDR) rather than the commonly used TDR found in many PHYs.
* Here are the following observations which likely confirm this:
* - The DP83TD510 PHY transmits a modulated signal of configurable length
* (default 16000 µs) instead of a single pulse pattern, which is typical
* for traditional TDR.
* - The pulse observed on the wire, triggered by the HW RESET register, is not
* part of the cable testing process.
*
* I assume that SSTDR seems to be a logical choice for the 10BaseT1L
* environment due to improved noise resistance, making it suitable for
* environments with significant electrical noise, such as long 10BaseT1L cable
* runs.
*
* Configuration Variables:
* The SSTDR variation used in this PHY involves more configuration variables
* that can dramatically affect the functionality and precision of cable
* testing. Since most of these configuration options are either not well
* documented or documented with minimal details, the following sections
* describe my understanding and observations of these variables and their
* impact on TDR functionality.
*
* Timeline:
* ,<--cfg_pre_silence_time
* | ,<-SSTDR Modulated Transmission
* | | ,<--cfg_post_silence_time
* | | | ,<--Force Link Mode
* |<--'-->|<-------'------->|<--'-->|<--------'------->|
*
* - cfg_pre_silence_time: Optional silence time before TDR transmission starts.
* - SSTDR Modulated Transmission: Transmission duration configured by
* cfg_tdr_tx_duration and amplitude configured by cfg_tdr_tx_type.
* - cfg_post_silence_time: Silence time after TDR transmission.
* - Force Link Mode: If nothing is configured after cfg_post_silence_time,
* the PHY continues in force link mode without autonegotiation.
*/
#define DP83TD510E_TDR_CFG 0x1e
#define DP83TD510E_TDR_START BIT(15)
#define DP83TD510E_TDR_DONE BIT(1)
#define DP83TD510E_TDR_FAIL BIT(0)
#define DP83TD510E_TDR_CFG1 0x300
/* cfg_tdr_tx_type: Transmit voltage level for TDR.
* 0 = 1V, 1 = 2.4V
* Note: Using different voltage levels may not work
* in all configuration variations. For example, setting
* 2.4V may give different cable length measurements.
* Other settings may be needed to make it work properly.
*/
#define DP83TD510E_TDR_TX_TYPE BIT(12)
#define DP83TD510E_TDR_TX_TYPE_1V 0
#define DP83TD510E_TDR_TX_TYPE_2_4V 1
/* cfg_post_silence_time: Time after the TDR sequence. Since we force master mode
* for the TDR will proceed with forced link state after this time. For Linux
* it is better to set max value to avoid false link state detection.
*/
#define DP83TD510E_TDR_CFG1_POST_SILENCE_TIME GENMASK(3, 2)
#define DP83TD510E_TDR_CFG1_POST_SILENCE_TIME_0MS 0
#define DP83TD510E_TDR_CFG1_POST_SILENCE_TIME_10MS 1
#define DP83TD510E_TDR_CFG1_POST_SILENCE_TIME_100MS 2
#define DP83TD510E_TDR_CFG1_POST_SILENCE_TIME_1000MS 3
/* cfg_pre_silence_time: Time before the TDR sequence. It should be enough to
* settle down all pulses and reflections. Since for 10BASE-T1L we have
* maximum 2000m cable length, we can set it to 1ms.
*/
#define DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME GENMASK(1, 0)
#define DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME_0MS 0
#define DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME_10MS 1
#define DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME_100MS 2
#define DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME_1000MS 3
#define DP83TD510E_TDR_CFG2 0x301
#define DP83TD510E_TDR_END_TAP_INDEX_1 GENMASK(14, 8)
#define DP83TD510E_TDR_END_TAP_INDEX_1_DEF 36
#define DP83TD510E_TDR_START_TAP_INDEX_1 GENMASK(6, 0)
#define DP83TD510E_TDR_START_TAP_INDEX_1_DEF 4
#define DP83TD510E_TDR_CFG3 0x302
/* cfg_tdr_tx_duration: Duration of the TDR transmission in microseconds.
* This value sets the duration of the modulated signal used for TDR
* measurements.
* - Default: 16000 µs
* - Observation: A minimum duration of 6000 µs is recommended to ensure
* accurate detection of cable faults. Durations shorter than 6000 µs may
* result in incomplete data, especially for shorter cables (e.g., 20 meters),
* leading to false "OK" results. Longer durations (e.g., 6000 µs or more)
* provide better accuracy, particularly for detecting open circuits.
*/
#define DP83TD510E_TDR_TX_DURATION_US GENMASK(15, 0)
#define DP83TD510E_TDR_TX_DURATION_US_DEF 16000
#define DP83TD510E_TDR_FAULT_CFG1 0x303
#define DP83TD510E_TDR_FLT_LOC_OFFSET_1 GENMASK(14, 8)
#define DP83TD510E_TDR_FLT_LOC_OFFSET_1_DEF 4
#define DP83TD510E_TDR_FLT_INIT_1 GENMASK(7, 0)
#define DP83TD510E_TDR_FLT_INIT_1_DEF 62
#define DP83TD510E_TDR_FAULT_STAT 0x30c
#define DP83TD510E_TDR_PEAK_DETECT BIT(11)
#define DP83TD510E_TDR_PEAK_SIGN BIT(10)
#define DP83TD510E_TDR_PEAK_LOCATION GENMASK(9, 0)
/* Not documented registers and values but recommended according to
* "DP83TD510E Cable Diagnostics Toolkit revC"
*/
#define DP83TD510E_UNKN_030E 0x30e
#define DP83TD510E_030E_VAL 0x2520
#define DP83TD510E_ALCD_STAT 0xa9f
#define DP83TD510E_ALCD_COMPLETE BIT(15)
#define DP83TD510E_ALCD_CABLE_LENGTH GENMASK(10, 0)
static int dp83td510_config_intr(struct phy_device *phydev)
{
int ret;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_INTERRUPT_REG_1,
DP83TD510E_INT1_LINK_EN);
if (ret)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_GEN_CFG,
DP83TD510E_GENCFG_INT_POLARITY |
DP83TD510E_GENCFG_INT_EN |
DP83TD510E_GENCFG_INT_OE);
} else {
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_INTERRUPT_REG_1, 0x0);
if (ret)
return ret;
ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_GEN_CFG,
DP83TD510E_GENCFG_INT_EN);
if (ret)
return ret;
}
return ret;
}
static irqreturn_t dp83td510_handle_interrupt(struct phy_device *phydev)
{
int ret;
/* Read the current enabled interrupts */
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_INTERRUPT_REG_1);
if (ret < 0) {
phy_error(phydev);
return IRQ_NONE;
} else if (!(ret & DP83TD510E_INT1_LINK_EN) ||
!(ret & DP83TD510E_INT1_LINK)) {
return IRQ_NONE;
}
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int dp83td510_read_status(struct phy_device *phydev)
{
u16 phy_sts;
int ret;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
linkmode_zero(phydev->lp_advertising);
phy_sts = phy_read(phydev, DP83TD510E_PHY_STS);
phydev->link = !!(phy_sts & DP83TD510E_LINK_STATUS);
if (phydev->link) {
/* This PHY supports only one link mode: 10BaseT1L_Full */
phydev->duplex = DUPLEX_FULL;
phydev->speed = SPEED_10;
if (phydev->autoneg == AUTONEG_ENABLE) {
ret = genphy_c45_read_lpa(phydev);
if (ret)
return ret;
phy_resolve_aneg_linkmode(phydev);
}
}
if (phydev->autoneg == AUTONEG_ENABLE) {
ret = genphy_c45_baset1_read_status(phydev);
if (ret < 0)
return ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_AN_STAT_1);
if (ret < 0)
return ret;
if (ret & DP83TD510E_MASTER_SLAVE_RESOL_FAIL)
phydev->master_slave_state = MASTER_SLAVE_STATE_ERR;
} else {
return genphy_c45_pma_baset1_read_master_slave(phydev);
}
return 0;
}
static int dp83td510_config_aneg(struct phy_device *phydev)
{
bool changed = false;
int ret;
ret = genphy_c45_pma_baset1_setup_master_slave(phydev);
if (ret < 0)
return ret;
if (phydev->autoneg == AUTONEG_DISABLE)
return genphy_c45_an_disable_aneg(phydev);
ret = genphy_c45_an_config_aneg(phydev);
if (ret < 0)
return ret;
if (ret > 0)
changed = true;
return genphy_c45_check_and_restart_aneg(phydev, changed);
}
static int dp83td510_get_sqi(struct phy_device *phydev)
{
int sqi, ret;
u16 mse_val;
if (!phydev->link)
return 0;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_MSE_DETECT);
if (ret < 0)
return ret;
mse_val = 0xFFFF & ret;
for (sqi = 0; sqi < ARRAY_SIZE(dp83td510_mse_sqi_map); sqi++) {
if (mse_val >= dp83td510_mse_sqi_map[sqi])
return sqi;
}
return -EINVAL;
}
static int dp83td510_get_sqi_max(struct phy_device *phydev)
{
return DP83TD510_SQI_MAX;
}
/**
* dp83td510_cable_test_start - Start the cable test for the DP83TD510 PHY.
* @phydev: Pointer to the phy_device structure.
*
* This sequence is implemented according to the "Application Note DP83TD510E
* Cable Diagnostics Toolkit revC".
*
* Returns: 0 on success, a negative error code on failure.
*/
static int dp83td510_cable_test_start(struct phy_device *phydev)
{
struct dp83td510_priv *priv = phydev->priv;
int ret;
/* If link partner is active, we won't be able to use TDR, since
* we can't force link partner to be silent. The autonegotiation
* pulses will be too frequent and the TDR sequence will be
* too long. So, TDR will always fail. Since the link is established
* we already know that the cable is working, so we can get some
* extra information line the cable length using ALCD.
*/
if (phydev->link) {
priv->alcd_test_active = true;
return 0;
}
priv->alcd_test_active = false;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_CTRL,
DP83TD510E_CTRL_HW_RESET);
if (ret)
return ret;
ret = genphy_c45_an_disable_aneg(phydev);
if (ret)
return ret;
/* Force master mode */
ret = phy_set_bits_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_PMD_BT1_CTRL,
MDIO_PMA_PMD_BT1_CTRL_CFG_MST);
if (ret)
return ret;
/* There is no official recommendation for this register, but it is
* better to use 1V for TDR since other values seems to be optimized
* for this amplitude. Except of amplitude, it is better to configure
* pre TDR silence time to 10ms to avoid false reflections (value 0
* seems to be too short, otherwise we need to implement own silence
* time). Also, post TDR silence time should be set to 1000ms to avoid
* false link state detection, it fits to the polling time of the
* PHY framework. The idea is to wait until
* dp83td510_cable_test_get_status() will be called and reconfigure
* the PHY to the default state within the post silence time window.
*/
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_CFG1,
DP83TD510E_TDR_TX_TYPE |
DP83TD510E_TDR_CFG1_POST_SILENCE_TIME |
DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME,
DP83TD510E_TDR_TX_TYPE_1V |
DP83TD510E_TDR_CFG1_PRE_SILENCE_TIME_10MS |
DP83TD510E_TDR_CFG1_POST_SILENCE_TIME_1000MS);
if (ret)
return ret;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_CFG2,
FIELD_PREP(DP83TD510E_TDR_END_TAP_INDEX_1,
DP83TD510E_TDR_END_TAP_INDEX_1_DEF) |
FIELD_PREP(DP83TD510E_TDR_START_TAP_INDEX_1,
DP83TD510E_TDR_START_TAP_INDEX_1_DEF));
if (ret)
return ret;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_FAULT_CFG1,
FIELD_PREP(DP83TD510E_TDR_FLT_LOC_OFFSET_1,
DP83TD510E_TDR_FLT_LOC_OFFSET_1_DEF) |
FIELD_PREP(DP83TD510E_TDR_FLT_INIT_1,
DP83TD510E_TDR_FLT_INIT_1_DEF));
if (ret)
return ret;
/* Undocumented register, from the "Application Note DP83TD510E Cable
* Diagnostics Toolkit revC".
*/
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_UNKN_030E,
DP83TD510E_030E_VAL);
if (ret)
return ret;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_CFG3,
DP83TD510E_TDR_TX_DURATION_US_DEF);
if (ret)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_CTRL,
DP83TD510E_CTRL_SW_RESET);
if (ret)
return ret;
return phy_set_bits_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_CFG,
DP83TD510E_TDR_START);
}
/**
* dp83td510_cable_test_get_tdr_status - Get the status of the TDR test for the
* DP83TD510 PHY.
* @phydev: Pointer to the phy_device structure.
* @finished: Pointer to a boolean that indicates whether the test is finished.
*
* The function sets the @finished flag to true if the test is complete.
*
* Returns: 0 on success or a negative error code on failure.
*/
static int dp83td510_cable_test_get_tdr_status(struct phy_device *phydev,
bool *finished)
{
int ret, stat;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_TDR_CFG);
if (ret < 0)
return ret;
if (!(ret & DP83TD510E_TDR_DONE))
return 0;
if (!(ret & DP83TD510E_TDR_FAIL)) {
int location;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2,
DP83TD510E_TDR_FAULT_STAT);
if (ret < 0)
return ret;
if (ret & DP83TD510E_TDR_PEAK_DETECT) {
if (ret & DP83TD510E_TDR_PEAK_SIGN)
stat = ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
else
stat = ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
location = FIELD_GET(DP83TD510E_TDR_PEAK_LOCATION,
ret) * 100;
ethnl_cable_test_fault_length(phydev,
ETHTOOL_A_CABLE_PAIR_A,
location);
} else {
stat = ETHTOOL_A_CABLE_RESULT_CODE_OK;
}
} else {
/* Most probably we have active link partner */
stat = ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
*finished = true;
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, stat);
return phy_init_hw(phydev);
}
/**
* dp83td510_cable_test_get_alcd_status - Get the status of the ALCD test for the
* DP83TD510 PHY.
* @phydev: Pointer to the phy_device structure.
* @finished: Pointer to a boolean that indicates whether the test is finished.
*
* The function sets the @finished flag to true if the test is complete.
* The function reads the cable length and reports it to the user.
*
* Returns: 0 on success or a negative error code on failure.
*/
static int dp83td510_cable_test_get_alcd_status(struct phy_device *phydev,
bool *finished)
{
unsigned int location;
int ret, phy_sts;
phy_sts = phy_read(phydev, DP83TD510E_PHY_STS);
if (!(phy_sts & DP83TD510E_LINK_STATUS)) {
/* If the link is down, we can't do any thing usable now */
ethnl_cable_test_result_with_src(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC,
ETHTOOL_A_CABLE_INF_SRC_ALCD);
*finished = true;
return 0;
}
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, DP83TD510E_ALCD_STAT);
if (ret < 0)
return ret;
if (!(ret & DP83TD510E_ALCD_COMPLETE))
return 0;
location = FIELD_GET(DP83TD510E_ALCD_CABLE_LENGTH, ret) * 100;
ethnl_cable_test_fault_length_with_src(phydev, ETHTOOL_A_CABLE_PAIR_A,
location,
ETHTOOL_A_CABLE_INF_SRC_ALCD);
ethnl_cable_test_result_with_src(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_OK,
ETHTOOL_A_CABLE_INF_SRC_ALCD);
*finished = true;
return 0;
}
/**
* dp83td510_cable_test_get_status - Get the status of the cable test for the
* DP83TD510 PHY.
* @phydev: Pointer to the phy_device structure.
* @finished: Pointer to a boolean that indicates whether the test is finished.
*
* The function sets the @finished flag to true if the test is complete.
*
* Returns: 0 on success or a negative error code on failure.
*/
static int dp83td510_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
struct dp83td510_priv *priv = phydev->priv;
*finished = false;
if (priv->alcd_test_active)
return dp83td510_cable_test_get_alcd_status(phydev, finished);
return dp83td510_cable_test_get_tdr_status(phydev, finished);
}
static int dp83td510_get_features(struct phy_device *phydev)
{
/* This PHY can't respond on MDIO bus if no RMII clock is enabled.
* In case RMII mode is used (most meaningful mode for this PHY) and
* the PHY do not have own XTAL, and CLK providing MAC is not probed,
* we won't be able to read all needed ability registers.
* So provide it manually.
*/
linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
phydev->supported);
return 0;
}
static int dp83td510_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct dp83td510_priv *priv;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
return 0;
}
static struct phy_driver dp83td510_driver[] = {
{
PHY_ID_MATCH_MODEL(DP83TD510E_PHY_ID),
.name = "TI DP83TD510E",
.flags = PHY_POLL_CABLE_TEST,
.probe = dp83td510_probe,
.config_aneg = dp83td510_config_aneg,
.read_status = dp83td510_read_status,
.get_features = dp83td510_get_features,
.config_intr = dp83td510_config_intr,
.handle_interrupt = dp83td510_handle_interrupt,
.get_sqi = dp83td510_get_sqi,
.get_sqi_max = dp83td510_get_sqi_max,
.cable_test_start = dp83td510_cable_test_start,
.cable_test_get_status = dp83td510_cable_test_get_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
} };
module_phy_driver(dp83td510_driver);
static struct mdio_device_id __maybe_unused dp83td510_tbl[] = {
{ PHY_ID_MATCH_MODEL(DP83TD510E_PHY_ID) },
{ }
};
MODULE_DEVICE_TABLE(mdio, dp83td510_tbl);
MODULE_DESCRIPTION("Texas Instruments DP83TD510E PHY driver");
MODULE_AUTHOR("Oleksij Rempel <kernel@pengutronix.de>");
MODULE_LICENSE("GPL v2");