blob: 9ae2e831456d57698699cb7769f9f6b680d03ac8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* OMAP Remote Processor driver
*
* Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Brian Swetland <swetland@google.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Mark Grosen <mgrosen@ti.com>
* Suman Anna <s-anna@ti.com>
* Hari Kanigeri <h-kanigeri2@ti.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/clk/ti.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/remoteproc.h>
#include <linux/mailbox_client.h>
#include <linux/omap-iommu.h>
#include <linux/omap-mailbox.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/reset.h>
#include <clocksource/timer-ti-dm.h>
#include <linux/platform_data/dmtimer-omap.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
/* default auto-suspend delay (ms) */
#define DEFAULT_AUTOSUSPEND_DELAY 10000
/**
* struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
* @syscon: regmap handle for the system control configuration module
* @boot_reg: boot register offset within the @syscon regmap
* @boot_reg_shift: bit-field shift required for the boot address value in
* @boot_reg
*/
struct omap_rproc_boot_data {
struct regmap *syscon;
unsigned int boot_reg;
unsigned int boot_reg_shift;
};
/**
* struct omap_rproc_mem - internal memory structure
* @cpu_addr: MPU virtual address of the memory region
* @bus_addr: bus address used to access the memory region
* @dev_addr: device address of the memory region from DSP view
* @size: size of the memory region
*/
struct omap_rproc_mem {
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
/**
* struct omap_rproc_timer - data structure for a timer used by a omap rproc
* @odt: timer pointer
* @timer_ops: OMAP dmtimer ops for @odt timer
* @irq: timer irq
*/
struct omap_rproc_timer {
struct omap_dm_timer *odt;
const struct omap_dm_timer_ops *timer_ops;
int irq;
};
/**
* struct omap_rproc - omap remote processor state
* @mbox: mailbox channel handle
* @client: mailbox client to request the mailbox channel
* @boot_data: boot data structure for setting processor boot address
* @mem: internal memory regions data
* @num_mems: number of internal memory regions
* @num_timers: number of rproc timer(s)
* @num_wd_timers: number of rproc watchdog timers
* @timers: timer(s) info used by rproc
* @autosuspend_delay: auto-suspend delay value to be used for runtime pm
* @need_resume: if true a resume is needed in the system resume callback
* @rproc: rproc handle
* @reset: reset handle
* @pm_comp: completion primitive to sync for suspend response
* @fck: functional clock for the remoteproc
* @suspend_acked: state machine flag to store the suspend request ack
*/
struct omap_rproc {
struct mbox_chan *mbox;
struct mbox_client client;
struct omap_rproc_boot_data *boot_data;
struct omap_rproc_mem *mem;
int num_mems;
int num_timers;
int num_wd_timers;
struct omap_rproc_timer *timers;
int autosuspend_delay;
bool need_resume;
struct rproc *rproc;
struct reset_control *reset;
struct completion pm_comp;
struct clk *fck;
bool suspend_acked;
};
/**
* struct omap_rproc_mem_data - memory definitions for an omap remote processor
* @name: name for this memory entry
* @dev_addr: device address for the memory entry
*/
struct omap_rproc_mem_data {
const char *name;
const u32 dev_addr;
};
/**
* struct omap_rproc_dev_data - device data for the omap remote processor
* @device_name: device name of the remote processor
* @mems: memory definitions for this remote processor
*/
struct omap_rproc_dev_data {
const char *device_name;
const struct omap_rproc_mem_data *mems;
};
/**
* omap_rproc_request_timer() - request a timer for a remoteproc
* @dev: device requesting the timer
* @np: device node pointer to the desired timer
* @timer: handle to a struct omap_rproc_timer to return the timer handle
*
* This helper function is used primarily to request a timer associated with
* a remoteproc. The returned handle is stored in the .odt field of the
* @timer structure passed in, and is used to invoke other timer specific
* ops (like starting a timer either during device initialization or during
* a resume operation, or for stopping/freeing a timer).
*
* Return: 0 on success, otherwise an appropriate failure
*/
static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
struct omap_rproc_timer *timer)
{
int ret;
timer->odt = timer->timer_ops->request_by_node(np);
if (!timer->odt) {
dev_err(dev, "request for timer node %p failed\n", np);
return -EBUSY;
}
ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
if (ret) {
dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
np);
timer->timer_ops->free(timer->odt);
return ret;
}
/* clean counter, remoteproc code will set the value */
timer->timer_ops->set_load(timer->odt, 0);
return 0;
}
/**
* omap_rproc_start_timer() - start a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used to start a timer associated with a remoteproc,
* obtained using the request_timer ops. The helper function needs to be
* invoked by the driver to start the timer (during device initialization)
* or to just resume the timer.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->start(timer->odt);
}
/**
* omap_rproc_stop_timer() - stop a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used to disable a timer associated with a
* remoteproc, and needs to be called either during a device shutdown
* or suspend operation. The separate helper function allows the driver
* to just stop a timer without having to release the timer during a
* suspend operation.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->stop(timer->odt);
}
/**
* omap_rproc_release_timer() - release a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used primarily to release a timer associated
* with a remoteproc. The dmtimer will be available for other clients to
* use once released.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->free(timer->odt);
}
/**
* omap_rproc_get_timer_irq() - get the irq for a timer
* @timer: handle to a OMAP rproc timer
*
* This function is used to get the irq associated with a watchdog timer. The
* function is called by the OMAP remoteproc driver to register a interrupt
* handler to handle watchdog events on the remote processor.
*
* Return: irq id on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
{
return timer->timer_ops->get_irq(timer->odt);
}
/**
* omap_rproc_ack_timer_irq() - acknowledge a timer irq
* @timer: handle to a OMAP rproc timer
*
* This function is used to clear the irq associated with a watchdog timer.
* The function is called by the OMAP remoteproc upon a watchdog event on the
* remote processor to clear the interrupt status of the watchdog timer.
*/
static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
{
timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
}
/**
* omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
* @irq: IRQ number associated with a watchdog timer
* @data: IRQ handler data
*
* This ISR routine executes the required necessary low-level code to
* acknowledge a watchdog timer interrupt. There can be multiple watchdog
* timers associated with a rproc (like IPUs which have 2 watchdog timers,
* one per Cortex M3/M4 core), so a lookup has to be performed to identify
* the timer to acknowledge its interrupt.
*
* The function also invokes rproc_report_crash to report the watchdog event
* to the remoteproc driver core, to trigger a recovery.
*
* Return: IRQ_HANDLED on success, otherwise IRQ_NONE
*/
static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
{
struct rproc *rproc = data;
struct omap_rproc *oproc = rproc->priv;
struct device *dev = rproc->dev.parent;
struct omap_rproc_timer *timers = oproc->timers;
struct omap_rproc_timer *wd_timer = NULL;
int num_timers = oproc->num_timers + oproc->num_wd_timers;
int i;
for (i = oproc->num_timers; i < num_timers; i++) {
if (timers[i].irq > 0 && irq == timers[i].irq) {
wd_timer = &timers[i];
break;
}
}
if (!wd_timer) {
dev_err(dev, "invalid timer\n");
return IRQ_NONE;
}
omap_rproc_ack_timer_irq(wd_timer);
rproc_report_crash(rproc, RPROC_WATCHDOG);
return IRQ_HANDLED;
}
/**
* omap_rproc_enable_timers() - enable the timers for a remoteproc
* @rproc: handle of a remote processor
* @configure: boolean flag used to acquire and configure the timer handle
*
* This function is used primarily to enable the timers associated with
* a remoteproc. The configure flag is provided to allow the driver
* to either acquire and start a timer (during device initialization) or
* to just start a timer (during a resume operation).
*
* Return: 0 on success, otherwise an appropriate failure
*/
static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
{
int i;
int ret = 0;
struct platform_device *tpdev;
struct dmtimer_platform_data *tpdata;
const struct omap_dm_timer_ops *timer_ops;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_timer *timers = oproc->timers;
struct device *dev = rproc->dev.parent;
struct device_node *np = NULL;
int num_timers = oproc->num_timers + oproc->num_wd_timers;
if (!num_timers)
return 0;
if (!configure)
goto start_timers;
for (i = 0; i < num_timers; i++) {
if (i < oproc->num_timers)
np = of_parse_phandle(dev->of_node, "ti,timers", i);
else
np = of_parse_phandle(dev->of_node,
"ti,watchdog-timers",
(i - oproc->num_timers));
if (!np) {
ret = -ENXIO;
dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
i < oproc->num_timers ? i :
i - oproc->num_timers, ret);
goto free_timers;
}
tpdev = of_find_device_by_node(np);
if (!tpdev) {
ret = -ENODEV;
dev_err(dev, "could not get timer platform device\n");
goto put_node;
}
tpdata = dev_get_platdata(&tpdev->dev);
put_device(&tpdev->dev);
if (!tpdata) {
ret = -EINVAL;
dev_err(dev, "dmtimer pdata structure NULL\n");
goto put_node;
}
timer_ops = tpdata->timer_ops;
if (!timer_ops || !timer_ops->request_by_node ||
!timer_ops->set_source || !timer_ops->set_load ||
!timer_ops->free || !timer_ops->start ||
!timer_ops->stop || !timer_ops->get_irq ||
!timer_ops->write_status) {
ret = -EINVAL;
dev_err(dev, "device does not have required timer ops\n");
goto put_node;
}
timers[i].irq = -1;
timers[i].timer_ops = timer_ops;
ret = omap_rproc_request_timer(dev, np, &timers[i]);
if (ret) {
dev_err(dev, "request for timer %p failed: %d\n", np,
ret);
goto put_node;
}
of_node_put(np);
if (i >= oproc->num_timers) {
timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
if (timers[i].irq < 0) {
dev_err(dev, "get_irq for timer %p failed: %d\n",
np, timers[i].irq);
ret = -EBUSY;
goto free_timers;
}
ret = request_irq(timers[i].irq,
omap_rproc_watchdog_isr, IRQF_SHARED,
"rproc-wdt", rproc);
if (ret) {
dev_err(dev, "error requesting irq for timer %p\n",
np);
omap_rproc_release_timer(&timers[i]);
timers[i].odt = NULL;
timers[i].timer_ops = NULL;
timers[i].irq = -1;
goto free_timers;
}
}
}
start_timers:
for (i = 0; i < num_timers; i++) {
ret = omap_rproc_start_timer(&timers[i]);
if (ret) {
dev_err(dev, "start timer %p failed failed: %d\n", np,
ret);
break;
}
}
if (ret) {
while (i >= 0) {
omap_rproc_stop_timer(&timers[i]);
i--;
}
goto put_node;
}
return 0;
put_node:
if (configure)
of_node_put(np);
free_timers:
while (i--) {
if (i >= oproc->num_timers)
free_irq(timers[i].irq, rproc);
omap_rproc_release_timer(&timers[i]);
timers[i].odt = NULL;
timers[i].timer_ops = NULL;
timers[i].irq = -1;
}
return ret;
}
/**
* omap_rproc_disable_timers() - disable the timers for a remoteproc
* @rproc: handle of a remote processor
* @configure: boolean flag used to release the timer handle
*
* This function is used primarily to disable the timers associated with
* a remoteproc. The configure flag is provided to allow the driver
* to either stop and release a timer (during device shutdown) or to just
* stop a timer (during a suspend operation).
*
* Return: 0 on success or no timers
*/
static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
{
int i;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_timer *timers = oproc->timers;
int num_timers = oproc->num_timers + oproc->num_wd_timers;
if (!num_timers)
return 0;
for (i = 0; i < num_timers; i++) {
omap_rproc_stop_timer(&timers[i]);
if (configure) {
if (i >= oproc->num_timers)
free_irq(timers[i].irq, rproc);
omap_rproc_release_timer(&timers[i]);
timers[i].odt = NULL;
timers[i].timer_ops = NULL;
timers[i].irq = -1;
}
}
return 0;
}
/**
* omap_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by omap's mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicates different events. Those values are deliberately very
* big so they don't coincide with virtqueue indices.
*/
static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct omap_rproc *oproc = container_of(client, struct omap_rproc,
client);
struct device *dev = oproc->rproc->dev.parent;
const char *name = oproc->rproc->name;
u32 msg = (u32)data;
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, notify the rproc core.
* The remoteproc core will handle the recovery.
*/
dev_err(dev, "omap rproc %s crashed\n", name);
rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", name);
break;
case RP_MBOX_SUSPEND_ACK:
case RP_MBOX_SUSPEND_CANCEL:
oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
complete(&oproc->pm_comp);
break;
default:
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > oproc->rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
/* kick a virtqueue */
static void omap_rproc_kick(struct rproc *rproc, int vqid)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = rproc->dev.parent;
int ret;
/* wake up the rproc before kicking it */
ret = pm_runtime_get_sync(dev);
if (WARN_ON(ret < 0)) {
dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
ret);
pm_runtime_put_noidle(dev);
return;
}
/* send the index of the triggered virtqueue in the mailbox payload */
ret = mbox_send_message(oproc->mbox, (void *)vqid);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
/**
* omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
* @rproc: handle of a remote processor
*
* Set boot address for a supported DSP remote processor.
*
* Return: 0 on success, or -EINVAL if boot address is not aligned properly
*/
static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_boot_data *bdata = oproc->boot_data;
u32 offset = bdata->boot_reg;
u32 value;
u32 mask;
if (rproc->bootaddr & (SZ_1K - 1)) {
dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
rproc->bootaddr);
return -EINVAL;
}
value = rproc->bootaddr >> bdata->boot_reg_shift;
mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
return regmap_update_bits(bdata->syscon, offset, mask, value);
}
/*
* Power up the remote processor.
*
* This function will be invoked only after the firmware for this rproc
* was loaded, parsed successfully, and all of its resource requirements
* were met.
*/
static int omap_rproc_start(struct rproc *rproc)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = rproc->dev.parent;
int ret;
struct mbox_client *client = &oproc->client;
if (oproc->boot_data) {
ret = omap_rproc_write_dsp_boot_addr(rproc);
if (ret)
return ret;
}
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = omap_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
oproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(oproc->mbox)) {
ret = -EBUSY;
dev_err(dev, "mbox_request_channel failed: %ld\n",
PTR_ERR(oproc->mbox));
return ret;
}
/*
* Ping the remote processor. this is only for sanity-sake;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed: %d\n", ret);
goto put_mbox;
}
ret = omap_rproc_enable_timers(rproc, true);
if (ret) {
dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
goto put_mbox;
}
ret = reset_control_deassert(oproc->reset);
if (ret) {
dev_err(dev, "reset control deassert failed: %d\n", ret);
goto disable_timers;
}
/*
* remote processor is up, so update the runtime pm status and
* enable the auto-suspend. The device usage count is incremented
* manually for balancing it for auto-suspend
*/
pm_runtime_set_active(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
disable_timers:
omap_rproc_disable_timers(rproc, true);
put_mbox:
mbox_free_channel(oproc->mbox);
return ret;
}
/* power off the remote processor */
static int omap_rproc_stop(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
int ret;
/*
* cancel any possible scheduled runtime suspend by incrementing
* the device usage count, and resuming the device. The remoteproc
* also needs to be woken up if suspended, to avoid the remoteproc
* OS to continue to remember any context that it has saved, and
* avoid potential issues in misindentifying a subsequent device
* reboot as a power restore boot
*/
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
ret = reset_control_assert(oproc->reset);
if (ret)
goto out;
ret = omap_rproc_disable_timers(rproc, true);
if (ret)
goto enable_device;
mbox_free_channel(oproc->mbox);
/*
* update the runtime pm states and status now that the remoteproc
* has stopped
*/
pm_runtime_disable(dev);
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_put_noidle(dev);
pm_runtime_set_suspended(dev);
return 0;
enable_device:
reset_control_deassert(oproc->reset);
out:
/* schedule the next auto-suspend */
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
/**
* omap_rproc_da_to_va() - internal memory translation helper
* @rproc: remote processor to apply the address translation for
* @da: device address to translate
* @len: length of the memory buffer
*
* Custom function implementing the rproc .da_to_va ops to provide address
* translation (device address to kernel virtual address) for internal RAMs
* present in a DSP or IPU device). The translated addresses can be used
* either by the remoteproc core for loading, or by any rpmsg bus drivers.
*
* Return: translated virtual address in kernel memory space on success,
* or NULL on failure.
*/
static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct omap_rproc *oproc = rproc->priv;
int i;
u32 offset;
if (len <= 0)
return NULL;
if (!oproc->num_mems)
return NULL;
for (i = 0; i < oproc->num_mems; i++) {
if (da >= oproc->mem[i].dev_addr && da + len <=
oproc->mem[i].dev_addr + oproc->mem[i].size) {
offset = da - oproc->mem[i].dev_addr;
/* __force to make sparse happy with type conversion */
return (__force void *)(oproc->mem[i].cpu_addr +
offset);
}
}
return NULL;
}
static const struct rproc_ops omap_rproc_ops = {
.start = omap_rproc_start,
.stop = omap_rproc_stop,
.kick = omap_rproc_kick,
.da_to_va = omap_rproc_da_to_va,
};
#ifdef CONFIG_PM
static bool _is_rproc_in_standby(struct omap_rproc *oproc)
{
return ti_clk_is_in_standby(oproc->fck);
}
/* 1 sec is long enough time to let the remoteproc side suspend the device */
#define DEF_SUSPEND_TIMEOUT 1000
static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
unsigned long ta = jiffies + to;
u32 suspend_msg = auto_suspend ?
RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
int ret;
reinit_completion(&oproc->pm_comp);
oproc->suspend_acked = false;
ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
if (ret < 0) {
dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
return ret;
}
ret = wait_for_completion_timeout(&oproc->pm_comp, to);
if (!oproc->suspend_acked)
return -EBUSY;
/*
* The remoteproc side is returning the ACK message before saving the
* context, because the context saving is performed within a SYS/BIOS
* function, and it cannot have any inter-dependencies against the IPC
* layer. Also, as the SYS/BIOS needs to preserve properly the processor
* register set, sending this ACK or signalling the completion of the
* context save through a shared memory variable can never be the
* absolute last thing to be executed on the remoteproc side, and the
* MPU cannot use the ACK message as a sync point to put the remoteproc
* into reset. The only way to ensure that the remote processor has
* completed saving the context is to check that the module has reached
* STANDBY state (after saving the context, the SYS/BIOS executes the
* appropriate target-specific WFI instruction causing the module to
* enter STANDBY).
*/
while (!_is_rproc_in_standby(oproc)) {
if (time_after(jiffies, ta))
return -ETIME;
schedule();
}
ret = reset_control_assert(oproc->reset);
if (ret) {
dev_err(dev, "reset assert during suspend failed %d\n", ret);
return ret;
}
ret = omap_rproc_disable_timers(rproc, false);
if (ret) {
dev_err(dev, "disabling timers during suspend failed %d\n",
ret);
goto enable_device;
}
/*
* IOMMUs would have to be disabled specifically for runtime suspend.
* They are handled automatically through System PM callbacks for
* regular system suspend
*/
if (auto_suspend) {
ret = omap_iommu_domain_deactivate(rproc->domain);
if (ret) {
dev_err(dev, "iommu domain deactivate failed %d\n",
ret);
goto enable_timers;
}
}
return 0;
enable_timers:
/* ignore errors on re-enabling code */
omap_rproc_enable_timers(rproc, false);
enable_device:
reset_control_deassert(oproc->reset);
return ret;
}
static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
int ret;
/*
* IOMMUs would have to be enabled specifically for runtime resume.
* They would have been already enabled automatically through System
* PM callbacks for regular system resume
*/
if (auto_suspend) {
ret = omap_iommu_domain_activate(rproc->domain);
if (ret) {
dev_err(dev, "omap_iommu activate failed %d\n", ret);
goto out;
}
}
/* boot address could be lost after suspend, so restore it */
if (oproc->boot_data) {
ret = omap_rproc_write_dsp_boot_addr(rproc);
if (ret) {
dev_err(dev, "boot address restore failed %d\n", ret);
goto suspend_iommu;
}
}
ret = omap_rproc_enable_timers(rproc, false);
if (ret) {
dev_err(dev, "enabling timers during resume failed %d\n", ret);
goto suspend_iommu;
}
ret = reset_control_deassert(oproc->reset);
if (ret) {
dev_err(dev, "reset deassert during resume failed %d\n", ret);
goto disable_timers;
}
return 0;
disable_timers:
omap_rproc_disable_timers(rproc, false);
suspend_iommu:
if (auto_suspend)
omap_iommu_domain_deactivate(rproc->domain);
out:
return ret;
}
static int __maybe_unused omap_rproc_suspend(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct omap_rproc *oproc = rproc->priv;
int ret = 0;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_OFFLINE)
goto out;
if (rproc->state == RPROC_SUSPENDED)
goto out;
if (rproc->state != RPROC_RUNNING) {
ret = -EBUSY;
goto out;
}
ret = _omap_rproc_suspend(rproc, false);
if (ret) {
dev_err(dev, "suspend failed %d\n", ret);
goto out;
}
/*
* remoteproc is running at the time of system suspend, so remember
* it so as to wake it up during system resume
*/
oproc->need_resume = true;
rproc->state = RPROC_SUSPENDED;
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int __maybe_unused omap_rproc_resume(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct omap_rproc *oproc = rproc->priv;
int ret = 0;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_OFFLINE)
goto out;
if (rproc->state != RPROC_SUSPENDED) {
ret = -EBUSY;
goto out;
}
/*
* remoteproc was auto-suspended at the time of system suspend,
* so no need to wake-up the processor (leave it in suspended
* state, will be woken up during a subsequent runtime_resume)
*/
if (!oproc->need_resume)
goto out;
ret = _omap_rproc_resume(rproc, false);
if (ret) {
dev_err(dev, "resume failed %d\n", ret);
goto out;
}
oproc->need_resume = false;
rproc->state = RPROC_RUNNING;
pm_runtime_mark_last_busy(dev);
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int omap_rproc_runtime_suspend(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct omap_rproc *oproc = rproc->priv;
int ret;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_CRASHED) {
dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
ret = -EBUSY;
goto out;
}
if (WARN_ON(rproc->state != RPROC_RUNNING)) {
dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
ret = -EBUSY;
goto out;
}
/*
* do not even attempt suspend if the remote processor is not
* idled for runtime auto-suspend
*/
if (!_is_rproc_in_standby(oproc)) {
ret = -EBUSY;
goto abort;
}
ret = _omap_rproc_suspend(rproc, true);
if (ret)
goto abort;
rproc->state = RPROC_SUSPENDED;
mutex_unlock(&rproc->lock);
return 0;
abort:
pm_runtime_mark_last_busy(dev);
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int omap_rproc_runtime_resume(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
int ret;
mutex_lock(&rproc->lock);
if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
rproc->state);
ret = -EBUSY;
goto out;
}
ret = _omap_rproc_resume(rproc, true);
if (ret) {
dev_err(dev, "runtime resume failed %d\n", ret);
goto out;
}
rproc->state = RPROC_RUNNING;
out:
mutex_unlock(&rproc->lock);
return ret;
}
#endif /* CONFIG_PM */
static const struct omap_rproc_mem_data ipu_mems[] = {
{ .name = "l2ram", .dev_addr = 0x20000000 },
{ },
};
static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
{ .name = "l2ram", .dev_addr = 0x800000 },
{ .name = "l1pram", .dev_addr = 0xe00000 },
{ .name = "l1dram", .dev_addr = 0xf00000 },
{ },
};
static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
.device_name = "dsp",
};
static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
.device_name = "dsp",
};
static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
.device_name = "dsp",
.mems = dra7_dsp_mems,
};
static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct of_device_id omap_rproc_of_match[] = {
{
.compatible = "ti,omap4-dsp",
.data = &omap4_dsp_dev_data,
},
{
.compatible = "ti,omap4-ipu",
.data = &omap4_ipu_dev_data,
},
{
.compatible = "ti,omap5-dsp",
.data = &omap5_dsp_dev_data,
},
{
.compatible = "ti,omap5-ipu",
.data = &omap5_ipu_dev_data,
},
{
.compatible = "ti,dra7-dsp",
.data = &dra7_dsp_dev_data,
},
{
.compatible = "ti,dra7-ipu",
.data = &dra7_ipu_dev_data,
},
{
/* end */
},
};
MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
static const char *omap_rproc_get_firmware(struct platform_device *pdev)
{
const char *fw_name;
int ret;
ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
&fw_name);
if (ret)
return ERR_PTR(ret);
return fw_name;
}
static int omap_rproc_get_boot_data(struct platform_device *pdev,
struct rproc *rproc)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc = rproc->priv;
const struct omap_rproc_dev_data *data;
int ret;
data = of_device_get_match_data(&pdev->dev);
if (!data)
return -ENODEV;
if (!of_property_read_bool(np, "ti,bootreg"))
return 0;
oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
GFP_KERNEL);
if (!oproc->boot_data)
return -ENOMEM;
oproc->boot_data->syscon =
syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
if (IS_ERR(oproc->boot_data->syscon)) {
ret = PTR_ERR(oproc->boot_data->syscon);
return ret;
}
if (of_property_read_u32_index(np, "ti,bootreg", 1,
&oproc->boot_data->boot_reg)) {
dev_err(&pdev->dev, "couldn't get the boot register\n");
return -EINVAL;
}
of_property_read_u32_index(np, "ti,bootreg", 2,
&oproc->boot_data->boot_reg_shift);
return 0;
}
static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
struct rproc *rproc)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = &pdev->dev;
const struct omap_rproc_dev_data *data;
struct resource *res;
int num_mems;
int i;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
if (!data->mems)
return 0;
num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
sizeof(u32)) / 2;
oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
GFP_KERNEL);
if (!oproc->mem)
return -ENOMEM;
for (i = 0; data->mems[i].name; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
data->mems[i].name);
if (!res) {
dev_err(dev, "no memory defined for %s\n",
data->mems[i].name);
return -ENOMEM;
}
oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(oproc->mem[i].cpu_addr)) {
dev_err(dev, "failed to parse and map %s memory\n",
data->mems[i].name);
return PTR_ERR(oproc->mem[i].cpu_addr);
}
oproc->mem[i].bus_addr = res->start;
oproc->mem[i].dev_addr = data->mems[i].dev_addr;
oproc->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
data->mems[i].name, &oproc->mem[i].bus_addr,
oproc->mem[i].size, oproc->mem[i].cpu_addr,
oproc->mem[i].dev_addr);
}
oproc->num_mems = num_mems;
return 0;
}
#ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
static int omap_rproc_count_wdog_timers(struct device *dev)
{
struct device_node *np = dev->of_node;
int ret;
ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
if (ret <= 0) {
dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
ret);
ret = 0;
}
return ret;
}
#else
static int omap_rproc_count_wdog_timers(struct device *dev)
{
return 0;
}
#endif
static int omap_rproc_of_get_timers(struct platform_device *pdev,
struct rproc *rproc)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc = rproc->priv;
struct device *dev = &pdev->dev;
int num_timers;
/*
* Timer nodes are directly used in client nodes as phandles, so
* retrieve the count using appropriate size
*/
oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
if (oproc->num_timers <= 0) {
dev_dbg(dev, "device does not have timers, status = %d\n",
oproc->num_timers);
oproc->num_timers = 0;
}
oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
num_timers = oproc->num_timers + oproc->num_wd_timers;
if (num_timers) {
oproc->timers = devm_kcalloc(dev, num_timers,
sizeof(*oproc->timers),
GFP_KERNEL);
if (!oproc->timers)
return -ENOMEM;
dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
oproc->num_timers, oproc->num_wd_timers);
}
return 0;
}
static void omap_rproc_mem_release(void *data)
{
struct device *dev = data;
of_reserved_mem_device_release(dev);
}
static int omap_rproc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc;
struct rproc *rproc;
const char *firmware;
int ret;
struct reset_control *reset;
if (!np) {
dev_err(&pdev->dev, "only DT-based devices are supported\n");
return -ENODEV;
}
reset = devm_reset_control_array_get_exclusive(&pdev->dev);
if (IS_ERR(reset))
return PTR_ERR(reset);
firmware = omap_rproc_get_firmware(pdev);
if (IS_ERR(firmware))
return PTR_ERR(firmware);
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
return ret;
}
rproc = devm_rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
firmware, sizeof(*oproc));
if (!rproc)
return -ENOMEM;
oproc = rproc->priv;
oproc->rproc = rproc;
oproc->reset = reset;
/* All existing OMAP IPU and DSP processors have an MMU */
rproc->has_iommu = true;
ret = omap_rproc_of_get_internal_memories(pdev, rproc);
if (ret)
return ret;
ret = omap_rproc_get_boot_data(pdev, rproc);
if (ret)
return ret;
ret = omap_rproc_of_get_timers(pdev, rproc);
if (ret)
return ret;
init_completion(&oproc->pm_comp);
oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
&oproc->autosuspend_delay);
pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
oproc->fck = devm_clk_get(&pdev->dev, 0);
if (IS_ERR(oproc->fck))
return PTR_ERR(oproc->fck);
ret = of_reserved_mem_device_init(&pdev->dev);
if (ret) {
dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
dev_warn(&pdev->dev, "Typically this should be provided,\n");
dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
}
ret = devm_add_action_or_reset(&pdev->dev, omap_rproc_mem_release, &pdev->dev);
if (ret)
return ret;
platform_set_drvdata(pdev, rproc);
ret = devm_rproc_add(&pdev->dev, rproc);
if (ret)
return ret;
return 0;
}
static const struct dev_pm_ops omap_rproc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
omap_rproc_runtime_resume, NULL)
};
static struct platform_driver omap_rproc_driver = {
.probe = omap_rproc_probe,
.driver = {
.name = "omap-rproc",
.pm = &omap_rproc_pm_ops,
.of_match_table = omap_rproc_of_match,
},
};
module_platform_driver(omap_rproc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("OMAP Remote Processor control driver");