blob: b6fbe4988f2e9e7cee0090f33b6035cc7ae039c0 [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2023 Intel Corporation
*/
#ifndef _UAPI_XE_DRM_H_
#define _UAPI_XE_DRM_H_
#include "drm.h"
#if defined(__cplusplus)
extern "C" {
#endif
/*
* Please note that modifications to all structs defined here are
* subject to backwards-compatibility constraints.
* Sections in this file are organized as follows:
* 1. IOCTL definition
* 2. Extension definition and helper structs
* 3. IOCTL's Query structs in the order of the Query's entries.
* 4. The rest of IOCTL structs in the order of IOCTL declaration.
*/
/**
* DOC: Xe Device Block Diagram
*
* The diagram below represents a high-level simplification of a discrete
* GPU supported by the Xe driver. It shows some device components which
* are necessary to understand this API, as well as how their relations
* to each other. This diagram does not represent real hardware::
*
* ┌──────────────────────────────────────────────────────────────────┐
* │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
* │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │
* │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │
* │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │
* │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
* │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
* │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
* │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │
* │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
* │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │
* │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │
* │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
* │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
* └─────────────────────────────Device0───────┬──────────────────────┘
* │
* ───────────────────────┴────────── PCI bus
*/
/**
* DOC: Xe uAPI Overview
*
* This section aims to describe the Xe's IOCTL entries, its structs, and other
* Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
* entries and usage.
*
* List of supported IOCTLs:
* - &DRM_IOCTL_XE_DEVICE_QUERY
* - &DRM_IOCTL_XE_GEM_CREATE
* - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
* - &DRM_IOCTL_XE_VM_CREATE
* - &DRM_IOCTL_XE_VM_DESTROY
* - &DRM_IOCTL_XE_VM_BIND
* - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
* - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
* - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
* - &DRM_IOCTL_XE_EXEC
* - &DRM_IOCTL_XE_WAIT_USER_FENCE
* - &DRM_IOCTL_XE_OBSERVATION
*/
/*
* xe specific ioctls.
*
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
*/
#define DRM_XE_DEVICE_QUERY 0x00
#define DRM_XE_GEM_CREATE 0x01
#define DRM_XE_GEM_MMAP_OFFSET 0x02
#define DRM_XE_VM_CREATE 0x03
#define DRM_XE_VM_DESTROY 0x04
#define DRM_XE_VM_BIND 0x05
#define DRM_XE_EXEC_QUEUE_CREATE 0x06
#define DRM_XE_EXEC_QUEUE_DESTROY 0x07
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08
#define DRM_XE_EXEC 0x09
#define DRM_XE_WAIT_USER_FENCE 0x0a
#define DRM_XE_OBSERVATION 0x0b
/* Must be kept compact -- no holes */
#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
#define DRM_IOCTL_XE_OBSERVATION DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
/**
* DOC: Xe IOCTL Extensions
*
* Before detailing the IOCTLs and its structs, it is important to highlight
* that every IOCTL in Xe is extensible.
*
* Many interfaces need to grow over time. In most cases we can simply
* extend the struct and have userspace pass in more data. Another option,
* as demonstrated by Vulkan's approach to providing extensions for forward
* and backward compatibility, is to use a list of optional structs to
* provide those extra details.
*
* The key advantage to using an extension chain is that it allows us to
* redefine the interface more easily than an ever growing struct of
* increasing complexity, and for large parts of that interface to be
* entirely optional. The downside is more pointer chasing; chasing across
* the __user boundary with pointers encapsulated inside u64.
*
* Example chaining:
*
* .. code-block:: C
*
* struct drm_xe_user_extension ext3 {
* .next_extension = 0, // end
* .name = ...,
* };
* struct drm_xe_user_extension ext2 {
* .next_extension = (uintptr_t)&ext3,
* .name = ...,
* };
* struct drm_xe_user_extension ext1 {
* .next_extension = (uintptr_t)&ext2,
* .name = ...,
* };
*
* Typically the struct drm_xe_user_extension would be embedded in some uAPI
* struct, and in this case we would feed it the head of the chain(i.e ext1),
* which would then apply all of the above extensions.
*/
/**
* struct drm_xe_user_extension - Base class for defining a chain of extensions
*/
struct drm_xe_user_extension {
/**
* @next_extension:
*
* Pointer to the next struct drm_xe_user_extension, or zero if the end.
*/
__u64 next_extension;
/**
* @name: Name of the extension.
*
* Note that the name here is just some integer.
*
* Also note that the name space for this is not global for the whole
* driver, but rather its scope/meaning is limited to the specific piece
* of uAPI which has embedded the struct drm_xe_user_extension.
*/
__u32 name;
/**
* @pad: MBZ
*
* All undefined bits must be zero.
*/
__u32 pad;
};
/**
* struct drm_xe_ext_set_property - Generic set property extension
*
* A generic struct that allows any of the Xe's IOCTL to be extended
* with a set_property operation.
*/
struct drm_xe_ext_set_property {
/** @base: base user extension */
struct drm_xe_user_extension base;
/** @property: property to set */
__u32 property;
/** @pad: MBZ */
__u32 pad;
/** @value: property value */
__u64 value;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_engine_class_instance - instance of an engine class
*
* It is returned as part of the @drm_xe_engine, but it also is used as
* the input of engine selection for both @drm_xe_exec_queue_create and
* @drm_xe_query_engine_cycles
*
* The @engine_class can be:
* - %DRM_XE_ENGINE_CLASS_RENDER
* - %DRM_XE_ENGINE_CLASS_COPY
* - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
* - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
* - %DRM_XE_ENGINE_CLASS_COMPUTE
* - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
* hardware engine class). Used for creating ordered queues of VM
* bind operations.
*/
struct drm_xe_engine_class_instance {
#define DRM_XE_ENGINE_CLASS_RENDER 0
#define DRM_XE_ENGINE_CLASS_COPY 1
#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2
#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3
#define DRM_XE_ENGINE_CLASS_COMPUTE 4
#define DRM_XE_ENGINE_CLASS_VM_BIND 5
/** @engine_class: engine class id */
__u16 engine_class;
/** @engine_instance: engine instance id */
__u16 engine_instance;
/** @gt_id: Unique ID of this GT within the PCI Device */
__u16 gt_id;
/** @pad: MBZ */
__u16 pad;
};
/**
* struct drm_xe_engine - describe hardware engine
*/
struct drm_xe_engine {
/** @instance: The @drm_xe_engine_class_instance */
struct drm_xe_engine_class_instance instance;
/** @reserved: Reserved */
__u64 reserved[3];
};
/**
* struct drm_xe_query_engines - describe engines
*
* If a query is made with a struct @drm_xe_device_query where .query
* is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
* struct @drm_xe_query_engines in .data.
*/
struct drm_xe_query_engines {
/** @num_engines: number of engines returned in @engines */
__u32 num_engines;
/** @pad: MBZ */
__u32 pad;
/** @engines: The returned engines for this device */
struct drm_xe_engine engines[];
};
/**
* enum drm_xe_memory_class - Supported memory classes.
*/
enum drm_xe_memory_class {
/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
/**
* @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
* represents the memory that is local to the device, which we
* call VRAM. Not valid on integrated platforms.
*/
DRM_XE_MEM_REGION_CLASS_VRAM
};
/**
* struct drm_xe_mem_region - Describes some region as known to
* the driver.
*/
struct drm_xe_mem_region {
/**
* @mem_class: The memory class describing this region.
*
* See enum drm_xe_memory_class for supported values.
*/
__u16 mem_class;
/**
* @instance: The unique ID for this region, which serves as the
* index in the placement bitmask used as argument for
* &DRM_IOCTL_XE_GEM_CREATE
*/
__u16 instance;
/**
* @min_page_size: Min page-size in bytes for this region.
*
* When the kernel allocates memory for this region, the
* underlying pages will be at least @min_page_size in size.
* Buffer objects with an allowable placement in this region must be
* created with a size aligned to this value.
* GPU virtual address mappings of (parts of) buffer objects that
* may be placed in this region must also have their GPU virtual
* address and range aligned to this value.
* Affected IOCTLS will return %-EINVAL if alignment restrictions are
* not met.
*/
__u32 min_page_size;
/**
* @total_size: The usable size in bytes for this region.
*/
__u64 total_size;
/**
* @used: Estimate of the memory used in bytes for this region.
*
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
* accounting. Without this the value here will always equal
* zero.
*/
__u64 used;
/**
* @cpu_visible_size: How much of this region can be CPU
* accessed, in bytes.
*
* This will always be <= @total_size, and the remainder (if
* any) will not be CPU accessible. If the CPU accessible part
* is smaller than @total_size then this is referred to as a
* small BAR system.
*
* On systems without small BAR (full BAR), the probed_size will
* always equal the @total_size, since all of it will be CPU
* accessible.
*
* Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
* regions (for other types the value here will always equal
* zero).
*/
__u64 cpu_visible_size;
/**
* @cpu_visible_used: Estimate of CPU visible memory used, in
* bytes.
*
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
* accounting. Without this the value here will always equal
* zero. Note this is only currently tracked for
* DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
* here will always be zero).
*/
__u64 cpu_visible_used;
/** @reserved: Reserved */
__u64 reserved[6];
};
/**
* struct drm_xe_query_mem_regions - describe memory regions
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
* struct drm_xe_query_mem_regions in .data.
*/
struct drm_xe_query_mem_regions {
/** @num_mem_regions: number of memory regions returned in @mem_regions */
__u32 num_mem_regions;
/** @pad: MBZ */
__u32 pad;
/** @mem_regions: The returned memory regions for this device */
struct drm_xe_mem_region mem_regions[];
};
/**
* struct drm_xe_query_config - describe the device configuration
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
* struct drm_xe_query_config in .data.
*
* The index in @info can be:
* - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
* and the device revision (next 8 bits)
* - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
* configuration, see list below
*
* - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
* has usable VRAM
* - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
* required by this device, typically SZ_4K or SZ_64K
* - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
* - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
* available exec queue priority
*/
struct drm_xe_query_config {
/** @num_params: number of parameters returned in info */
__u32 num_params;
/** @pad: MBZ */
__u32 pad;
#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0
#define DRM_XE_QUERY_CONFIG_FLAGS 1
#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0)
#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2
#define DRM_XE_QUERY_CONFIG_VA_BITS 3
#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4
/** @info: array of elements containing the config info */
__u64 info[];
};
/**
* struct drm_xe_gt - describe an individual GT.
*
* To be used with drm_xe_query_gt_list, which will return a list with all the
* existing GT individual descriptions.
* Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
* implementing graphics and/or media operations.
*
* The index in @type can be:
* - %DRM_XE_QUERY_GT_TYPE_MAIN
* - %DRM_XE_QUERY_GT_TYPE_MEDIA
*/
struct drm_xe_gt {
#define DRM_XE_QUERY_GT_TYPE_MAIN 0
#define DRM_XE_QUERY_GT_TYPE_MEDIA 1
/** @type: GT type: Main or Media */
__u16 type;
/** @tile_id: Tile ID where this GT lives (Information only) */
__u16 tile_id;
/** @gt_id: Unique ID of this GT within the PCI Device */
__u16 gt_id;
/** @pad: MBZ */
__u16 pad[3];
/** @reference_clock: A clock frequency for timestamp */
__u32 reference_clock;
/**
* @near_mem_regions: Bit mask of instances from
* drm_xe_query_mem_regions that are nearest to the current engines
* of this GT.
* Each index in this mask refers directly to the struct
* drm_xe_query_mem_regions' instance, no assumptions should
* be made about order. The type of each region is described
* by struct drm_xe_query_mem_regions' mem_class.
*/
__u64 near_mem_regions;
/**
* @far_mem_regions: Bit mask of instances from
* drm_xe_query_mem_regions that are far from the engines of this GT.
* In general, they have extra indirections when compared to the
* @near_mem_regions. For a discrete device this could mean system
* memory and memory living in a different tile.
* Each index in this mask refers directly to the struct
* drm_xe_query_mem_regions' instance, no assumptions should
* be made about order. The type of each region is described
* by struct drm_xe_query_mem_regions' mem_class.
*/
__u64 far_mem_regions;
/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
__u16 ip_ver_major;
/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
__u16 ip_ver_minor;
/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
__u16 ip_ver_rev;
/** @pad2: MBZ */
__u16 pad2;
/** @reserved: Reserved */
__u64 reserved[7];
};
/**
* struct drm_xe_query_gt_list - A list with GT description items.
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
* drm_xe_query_gt_list in .data.
*/
struct drm_xe_query_gt_list {
/** @num_gt: number of GT items returned in gt_list */
__u32 num_gt;
/** @pad: MBZ */
__u32 pad;
/** @gt_list: The GT list returned for this device */
struct drm_xe_gt gt_list[];
};
/**
* struct drm_xe_query_topology_mask - describe the topology mask of a GT
*
* This is the hardware topology which reflects the internal physical
* structure of the GPU.
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
* struct drm_xe_query_topology_mask in .data.
*
* The @type can be:
* - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
* (DSS) available for geometry operations. For example a query response
* containing the following in mask:
* ``DSS_GEOMETRY ff ff ff ff 00 00 00 00``
* means 32 DSS are available for geometry.
* - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
* (DSS) available for compute operations. For example a query response
* containing the following in mask:
* ``DSS_COMPUTE ff ff ff ff 00 00 00 00``
* means 32 DSS are available for compute.
* - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks
* - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
* available per Dual Sub Slices (DSS). For example a query response
* containing the following in mask:
* ``EU_PER_DSS ff ff 00 00 00 00 00 00``
* means each DSS has 16 SIMD8 EUs. This type may be omitted if device
* doesn't have SIMD8 EUs.
* - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
* Units (EU) available per Dual Sub Slices (DSS). For example a query
* response containing the following in mask:
* ``SIMD16_EU_PER_DSS ff ff 00 00 00 00 00 00``
* means each DSS has 16 SIMD16 EUs. This type may be omitted if device
* doesn't have SIMD16 EUs.
*/
struct drm_xe_query_topology_mask {
/** @gt_id: GT ID the mask is associated with */
__u16 gt_id;
#define DRM_XE_TOPO_DSS_GEOMETRY 1
#define DRM_XE_TOPO_DSS_COMPUTE 2
#define DRM_XE_TOPO_L3_BANK 3
#define DRM_XE_TOPO_EU_PER_DSS 4
#define DRM_XE_TOPO_SIMD16_EU_PER_DSS 5
/** @type: type of mask */
__u16 type;
/** @num_bytes: number of bytes in requested mask */
__u32 num_bytes;
/** @mask: little-endian mask of @num_bytes */
__u8 mask[];
};
/**
* struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
*
* If a query is made with a struct drm_xe_device_query where .query is equal to
* DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
* in .data. struct drm_xe_query_engine_cycles is allocated by the user and
* .data points to this allocated structure.
*
* The query returns the engine cycles, which along with GT's @reference_clock,
* can be used to calculate the engine timestamp. In addition the
* query returns a set of cpu timestamps that indicate when the command
* streamer cycle count was captured.
*/
struct drm_xe_query_engine_cycles {
/**
* @eci: This is input by the user and is the engine for which command
* streamer cycles is queried.
*/
struct drm_xe_engine_class_instance eci;
/**
* @clockid: This is input by the user and is the reference clock id for
* CPU timestamp. For definition, see clock_gettime(2) and
* perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
* CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
*/
__s32 clockid;
/** @width: Width of the engine cycle counter in bits. */
__u32 width;
/**
* @engine_cycles: Engine cycles as read from its register
* at 0x358 offset.
*/
__u64 engine_cycles;
/**
* @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
* reading the engine_cycles register using the reference clockid set by the
* user.
*/
__u64 cpu_timestamp;
/**
* @cpu_delta: Time delta in ns captured around reading the lower dword
* of the engine_cycles register.
*/
__u64 cpu_delta;
};
/**
* struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
*
* Given a uc_type this will return the branch, major, minor and patch version
* of the micro-controller firmware.
*/
struct drm_xe_query_uc_fw_version {
/** @uc_type: The micro-controller type to query firmware version */
#define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
#define XE_QUERY_UC_TYPE_HUC 1
__u16 uc_type;
/** @pad: MBZ */
__u16 pad;
/** @branch_ver: branch uc fw version */
__u32 branch_ver;
/** @major_ver: major uc fw version */
__u32 major_ver;
/** @minor_ver: minor uc fw version */
__u32 minor_ver;
/** @patch_ver: patch uc fw version */
__u32 patch_ver;
/** @pad2: MBZ */
__u32 pad2;
/** @reserved: Reserved */
__u64 reserved;
};
/**
* struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
* structure to query device information
*
* The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
* and sets the value in the query member. This determines the type of
* the structure provided by the driver in data, among struct drm_xe_query_*.
*
* The @query can be:
* - %DRM_XE_DEVICE_QUERY_ENGINES
* - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
* - %DRM_XE_DEVICE_QUERY_CONFIG
* - %DRM_XE_DEVICE_QUERY_GT_LIST
* - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
* configuration of the device such as information on slices, memory,
* caches, and so on. It is provided as a table of key / value
* attributes.
* - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
* - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
*
* If size is set to 0, the driver fills it with the required size for
* the requested type of data to query. If size is equal to the required
* size, the queried information is copied into data. If size is set to
* a value different from 0 and different from the required size, the
* IOCTL call returns -EINVAL.
*
* For example the following code snippet allows retrieving and printing
* information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
*
* .. code-block:: C
*
* struct drm_xe_query_engines *engines;
* struct drm_xe_device_query query = {
* .extensions = 0,
* .query = DRM_XE_DEVICE_QUERY_ENGINES,
* .size = 0,
* .data = 0,
* };
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
* engines = malloc(query.size);
* query.data = (uintptr_t)engines;
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
* for (int i = 0; i < engines->num_engines; i++) {
* printf("Engine %d: %s\n", i,
* engines->engines[i].instance.engine_class ==
* DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
* engines->engines[i].instance.engine_class ==
* DRM_XE_ENGINE_CLASS_COPY ? "COPY":
* engines->engines[i].instance.engine_class ==
* DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
* engines->engines[i].instance.engine_class ==
* DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
* engines->engines[i].instance.engine_class ==
* DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
* "UNKNOWN");
* }
* free(engines);
*/
struct drm_xe_device_query {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_DEVICE_QUERY_ENGINES 0
#define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1
#define DRM_XE_DEVICE_QUERY_CONFIG 2
#define DRM_XE_DEVICE_QUERY_GT_LIST 3
#define DRM_XE_DEVICE_QUERY_HWCONFIG 4
#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5
#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6
#define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7
#define DRM_XE_DEVICE_QUERY_OA_UNITS 8
/** @query: The type of data to query */
__u32 query;
/** @size: Size of the queried data */
__u32 size;
/** @data: Queried data is placed here */
__u64 data;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
* gem creation
*
* The @flags can be:
* - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
* - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
* - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
* possible placement, ensure that the corresponding VRAM allocation
* will always use the CPU accessible part of VRAM. This is important
* for small-bar systems (on full-bar systems this gets turned into a
* noop).
* Note1: System memory can be used as an extra placement if the kernel
* should spill the allocation to system memory, if space can't be made
* available in the CPU accessible part of VRAM (giving the same
* behaviour as the i915 interface, see
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
* Note2: For clear-color CCS surfaces the kernel needs to read the
* clear-color value stored in the buffer, and on discrete platforms we
* need to use VRAM for display surfaces, therefore the kernel requires
* setting this flag for such objects, otherwise an error is thrown on
* small-bar systems.
*
* @cpu_caching supports the following values:
* - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
* caching. On iGPU this can't be used for scanout surfaces. Currently
* not allowed for objects placed in VRAM.
* - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
* is uncached. Scanout surfaces should likely use this. All objects
* that can be placed in VRAM must use this.
*/
struct drm_xe_gem_create {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/**
* @size: Size of the object to be created, must match region
* (system or vram) minimum alignment (&min_page_size).
*/
__u64 size;
/**
* @placement: A mask of memory instances of where BO can be placed.
* Each index in this mask refers directly to the struct
* drm_xe_query_mem_regions' instance, no assumptions should
* be made about order. The type of each region is described
* by struct drm_xe_query_mem_regions' mem_class.
*/
__u32 placement;
#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0)
#define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1)
#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2)
/**
* @flags: Flags, currently a mask of memory instances of where BO can
* be placed
*/
__u32 flags;
/**
* @vm_id: Attached VM, if any
*
* If a VM is specified, this BO must:
*
* 1. Only ever be bound to that VM.
* 2. Cannot be exported as a PRIME fd.
*/
__u32 vm_id;
/**
* @handle: Returned handle for the object.
*
* Object handles are nonzero.
*/
__u32 handle;
#define DRM_XE_GEM_CPU_CACHING_WB 1
#define DRM_XE_GEM_CPU_CACHING_WC 2
/**
* @cpu_caching: The CPU caching mode to select for this object. If
* mmaping the object the mode selected here will also be used. The
* exception is when mapping system memory (including data evicted
* to system) on discrete GPUs. The caching mode selected will
* then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
* between GPU- and CPU is guaranteed. The caching mode of
* existing CPU-mappings will be updated transparently to
* user-space clients.
*/
__u16 cpu_caching;
/** @pad: MBZ */
__u16 pad[3];
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
*/
struct drm_xe_gem_mmap_offset {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @handle: Handle for the object being mapped. */
__u32 handle;
/** @flags: Must be zero */
__u32 flags;
/** @offset: The fake offset to use for subsequent mmap call */
__u64 offset;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
*
* The @flags can be:
* - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
* - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
* exec submissions to its exec_queues that don't have an upper time
* limit on the job execution time. But exec submissions to these
* don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
* DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
* used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
* LR VMs can be created in recoverable page-fault mode using
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
* If that flag is omitted, the UMD can not rely on the slightly
* different per-VM overcommit semantics that are enabled by
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
* still enable recoverable pagefaults if supported by the device.
* - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
* DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
* demand when accessed, and also allows per-VM overcommit of memory.
* The xe driver internally uses recoverable pagefaults to implement
* this.
*/
struct drm_xe_vm_create {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0)
#define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1)
#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2)
/** @flags: Flags */
__u32 flags;
/** @vm_id: Returned VM ID */
__u32 vm_id;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
*/
struct drm_xe_vm_destroy {
/** @vm_id: VM ID */
__u32 vm_id;
/** @pad: MBZ */
__u32 pad;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_vm_bind_op - run bind operations
*
* The @op can be:
* - %DRM_XE_VM_BIND_OP_MAP
* - %DRM_XE_VM_BIND_OP_UNMAP
* - %DRM_XE_VM_BIND_OP_MAP_USERPTR
* - %DRM_XE_VM_BIND_OP_UNMAP_ALL
* - %DRM_XE_VM_BIND_OP_PREFETCH
*
* and the @flags can be:
* - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
* to ensure write protection
* - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
* MAP operation immediately rather than deferring the MAP to the page
* fault handler. This is implied on a non-faulting VM as there is no
* fault handler to defer to.
* - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
* tables are setup with a special bit which indicates writes are
* dropped and all reads return zero. In the future, the NULL flags
* will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
* handle MBZ, and the BO offset MBZ. This flag is intended to
* implement VK sparse bindings.
*/
struct drm_xe_vm_bind_op {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/**
* @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
*/
__u32 obj;
/**
* @pat_index: The platform defined @pat_index to use for this mapping.
* The index basically maps to some predefined memory attributes,
* including things like caching, coherency, compression etc. The exact
* meaning of the pat_index is platform specific and defined in the
* Bspec and PRMs. When the KMD sets up the binding the index here is
* encoded into the ppGTT PTE.
*
* For coherency the @pat_index needs to be at least 1way coherent when
* drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
* will extract the coherency mode from the @pat_index and reject if
* there is a mismatch (see note below for pre-MTL platforms).
*
* Note: On pre-MTL platforms there is only a caching mode and no
* explicit coherency mode, but on such hardware there is always a
* shared-LLC (or is dgpu) so all GT memory accesses are coherent with
* CPU caches even with the caching mode set as uncached. It's only the
* display engine that is incoherent (on dgpu it must be in VRAM which
* is always mapped as WC on the CPU). However to keep the uapi somewhat
* consistent with newer platforms the KMD groups the different cache
* levels into the following coherency buckets on all pre-MTL platforms:
*
* ppGTT UC -> COH_NONE
* ppGTT WC -> COH_NONE
* ppGTT WT -> COH_NONE
* ppGTT WB -> COH_AT_LEAST_1WAY
*
* In practice UC/WC/WT should only ever used for scanout surfaces on
* such platforms (or perhaps in general for dma-buf if shared with
* another device) since it is only the display engine that is actually
* incoherent. Everything else should typically use WB given that we
* have a shared-LLC. On MTL+ this completely changes and the HW
* defines the coherency mode as part of the @pat_index, where
* incoherent GT access is possible.
*
* Note: For userptr and externally imported dma-buf the kernel expects
* either 1WAY or 2WAY for the @pat_index.
*
* For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
* on the @pat_index. For such mappings there is no actual memory being
* mapped (the address in the PTE is invalid), so the various PAT memory
* attributes likely do not apply. Simply leaving as zero is one
* option (still a valid pat_index).
*/
__u16 pat_index;
/** @pad: MBZ */
__u16 pad;
union {
/**
* @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
* ignored for unbind
*/
__u64 obj_offset;
/** @userptr: user pointer to bind on */
__u64 userptr;
};
/**
* @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
*/
__u64 range;
/** @addr: Address to operate on, MBZ for UNMAP_ALL */
__u64 addr;
#define DRM_XE_VM_BIND_OP_MAP 0x0
#define DRM_XE_VM_BIND_OP_UNMAP 0x1
#define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2
#define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3
#define DRM_XE_VM_BIND_OP_PREFETCH 0x4
/** @op: Bind operation to perform */
__u32 op;
#define DRM_XE_VM_BIND_FLAG_READONLY (1 << 0)
#define DRM_XE_VM_BIND_FLAG_IMMEDIATE (1 << 1)
#define DRM_XE_VM_BIND_FLAG_NULL (1 << 2)
#define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3)
/** @flags: Bind flags */
__u32 flags;
/**
* @prefetch_mem_region_instance: Memory region to prefetch VMA to.
* It is a region instance, not a mask.
* To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
*/
__u32 prefetch_mem_region_instance;
/** @pad2: MBZ */
__u32 pad2;
/** @reserved: Reserved */
__u64 reserved[3];
};
/**
* struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
*
* Below is an example of a minimal use of @drm_xe_vm_bind to
* asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
* illustrate `userptr`. It can be synchronized by using the example
* provided for @drm_xe_sync.
*
* .. code-block:: C
*
* data = aligned_alloc(ALIGNMENT, BO_SIZE);
* struct drm_xe_vm_bind bind = {
* .vm_id = vm,
* .num_binds = 1,
* .bind.obj = 0,
* .bind.obj_offset = to_user_pointer(data),
* .bind.range = BO_SIZE,
* .bind.addr = BIND_ADDRESS,
* .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
* .bind.flags = 0,
* .num_syncs = 1,
* .syncs = &sync,
* .exec_queue_id = 0,
* };
* ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
*
*/
struct drm_xe_vm_bind {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @vm_id: The ID of the VM to bind to */
__u32 vm_id;
/**
* @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
* and exec queue must have same vm_id. If zero, the default VM bind engine
* is used.
*/
__u32 exec_queue_id;
/** @pad: MBZ */
__u32 pad;
/** @num_binds: number of binds in this IOCTL */
__u32 num_binds;
union {
/** @bind: used if num_binds == 1 */
struct drm_xe_vm_bind_op bind;
/**
* @vector_of_binds: userptr to array of struct
* drm_xe_vm_bind_op if num_binds > 1
*/
__u64 vector_of_binds;
};
/** @pad2: MBZ */
__u32 pad2;
/** @num_syncs: amount of syncs to wait on */
__u32 num_syncs;
/** @syncs: pointer to struct drm_xe_sync array */
__u64 syncs;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
*
* The example below shows how to use @drm_xe_exec_queue_create to create
* a simple exec_queue (no parallel submission) of class
* &DRM_XE_ENGINE_CLASS_RENDER.
*
* .. code-block:: C
*
* struct drm_xe_engine_class_instance instance = {
* .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
* };
* struct drm_xe_exec_queue_create exec_queue_create = {
* .extensions = 0,
* .vm_id = vm,
* .num_bb_per_exec = 1,
* .num_eng_per_bb = 1,
* .instances = to_user_pointer(&instance),
* };
* ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
*
*/
struct drm_xe_exec_queue_create {
#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @width: submission width (number BB per exec) for this exec queue */
__u16 width;
/** @num_placements: number of valid placements for this exec queue */
__u16 num_placements;
/** @vm_id: VM to use for this exec queue */
__u32 vm_id;
/** @flags: MBZ */
__u32 flags;
/** @exec_queue_id: Returned exec queue ID */
__u32 exec_queue_id;
/**
* @instances: user pointer to a 2-d array of struct
* drm_xe_engine_class_instance
*
* length = width (i) * num_placements (j)
* index = j + i * width
*/
__u64 instances;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
*/
struct drm_xe_exec_queue_destroy {
/** @exec_queue_id: Exec queue ID */
__u32 exec_queue_id;
/** @pad: MBZ */
__u32 pad;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
*
* The @property can be:
* - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
*/
struct drm_xe_exec_queue_get_property {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @exec_queue_id: Exec queue ID */
__u32 exec_queue_id;
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0
/** @property: property to get */
__u32 property;
/** @value: property value */
__u64 value;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_sync - sync object
*
* The @type can be:
* - %DRM_XE_SYNC_TYPE_SYNCOBJ
* - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
* - %DRM_XE_SYNC_TYPE_USER_FENCE
*
* and the @flags can be:
* - %DRM_XE_SYNC_FLAG_SIGNAL
*
* A minimal use of @drm_xe_sync looks like this:
*
* .. code-block:: C
*
* struct drm_xe_sync sync = {
* .flags = DRM_XE_SYNC_FLAG_SIGNAL,
* .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
* };
* struct drm_syncobj_create syncobj_create = { 0 };
* ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
* sync.handle = syncobj_create.handle;
* ...
* use of &sync in drm_xe_exec or drm_xe_vm_bind
* ...
* struct drm_syncobj_wait wait = {
* .handles = &sync.handle,
* .timeout_nsec = INT64_MAX,
* .count_handles = 1,
* .flags = 0,
* .first_signaled = 0,
* .pad = 0,
* };
* ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
*/
struct drm_xe_sync {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
#define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0
#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1
#define DRM_XE_SYNC_TYPE_USER_FENCE 0x2
/** @type: Type of the this sync object */
__u32 type;
#define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0)
/** @flags: Sync Flags */
__u32 flags;
union {
/** @handle: Handle for the object */
__u32 handle;
/**
* @addr: Address of user fence. When sync is passed in via exec
* IOCTL this is a GPU address in the VM. When sync passed in via
* VM bind IOCTL this is a user pointer. In either case, it is
* the users responsibility that this address is present and
* mapped when the user fence is signalled. Must be qword
* aligned.
*/
__u64 addr;
};
/**
* @timeline_value: Input for the timeline sync object. Needs to be
* different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
*/
__u64 timeline_value;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
*
* This is an example to use @drm_xe_exec for execution of the object
* at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
* (see example in @drm_xe_exec_queue_create). It can be synchronized
* by using the example provided for @drm_xe_sync.
*
* .. code-block:: C
*
* struct drm_xe_exec exec = {
* .exec_queue_id = exec_queue,
* .syncs = &sync,
* .num_syncs = 1,
* .address = BIND_ADDRESS,
* .num_batch_buffer = 1,
* };
* ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
*
*/
struct drm_xe_exec {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @exec_queue_id: Exec queue ID for the batch buffer */
__u32 exec_queue_id;
/** @num_syncs: Amount of struct drm_xe_sync in array. */
__u32 num_syncs;
/** @syncs: Pointer to struct drm_xe_sync array. */
__u64 syncs;
/**
* @address: address of batch buffer if num_batch_buffer == 1 or an
* array of batch buffer addresses
*/
__u64 address;
/**
* @num_batch_buffer: number of batch buffer in this exec, must match
* the width of the engine
*/
__u16 num_batch_buffer;
/** @pad: MBZ */
__u16 pad[3];
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
*
* Wait on user fence, XE will wake-up on every HW engine interrupt in the
* instances list and check if user fence is complete::
*
* (*addr & MASK) OP (VALUE & MASK)
*
* Returns to user on user fence completion or timeout.
*
* The @op can be:
* - %DRM_XE_UFENCE_WAIT_OP_EQ
* - %DRM_XE_UFENCE_WAIT_OP_NEQ
* - %DRM_XE_UFENCE_WAIT_OP_GT
* - %DRM_XE_UFENCE_WAIT_OP_GTE
* - %DRM_XE_UFENCE_WAIT_OP_LT
* - %DRM_XE_UFENCE_WAIT_OP_LTE
*
* and the @flags can be:
* - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
* - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
*
* The @mask values can be for example:
* - 0xffu for u8
* - 0xffffu for u16
* - 0xffffffffu for u32
* - 0xffffffffffffffffu for u64
*/
struct drm_xe_wait_user_fence {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/**
* @addr: user pointer address to wait on, must qword aligned
*/
__u64 addr;
#define DRM_XE_UFENCE_WAIT_OP_EQ 0x0
#define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1
#define DRM_XE_UFENCE_WAIT_OP_GT 0x2
#define DRM_XE_UFENCE_WAIT_OP_GTE 0x3
#define DRM_XE_UFENCE_WAIT_OP_LT 0x4
#define DRM_XE_UFENCE_WAIT_OP_LTE 0x5
/** @op: wait operation (type of comparison) */
__u16 op;
#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0)
/** @flags: wait flags */
__u16 flags;
/** @pad: MBZ */
__u32 pad;
/** @value: compare value */
__u64 value;
/** @mask: comparison mask */
__u64 mask;
/**
* @timeout: how long to wait before bailing, value in nanoseconds.
* Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
* it contains timeout expressed in nanoseconds to wait (fence will
* expire at now() + timeout).
* When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
* will end at timeout (uses system MONOTONIC_CLOCK).
* Passing negative timeout leads to neverending wait.
*
* On relative timeout this value is updated with timeout left
* (for restarting the call in case of signal delivery).
* On absolute timeout this value stays intact (restarted call still
* expire at the same point of time).
*/
__s64 timeout;
/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
__u32 exec_queue_id;
/** @pad2: MBZ */
__u32 pad2;
/** @reserved: Reserved */
__u64 reserved[2];
};
/**
* enum drm_xe_observation_type - Observation stream types
*/
enum drm_xe_observation_type {
/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
DRM_XE_OBSERVATION_TYPE_OA,
};
/**
* enum drm_xe_observation_op - Observation stream ops
*/
enum drm_xe_observation_op {
/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
DRM_XE_OBSERVATION_OP_STREAM_OPEN,
/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
DRM_XE_OBSERVATION_OP_ADD_CONFIG,
/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
};
/**
* struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
*
* The observation layer enables multiplexing observation streams of
* multiple types. The actual params for a particular stream operation are
* supplied via the @param pointer (use __copy_from_user to get these
* params).
*/
struct drm_xe_observation_param {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
__u64 observation_type;
/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
__u64 observation_op;
/** @param: Pointer to actual stream params */
__u64 param;
};
/**
* enum drm_xe_observation_ioctls - Observation stream fd ioctl's
*
* Information exchanged between userspace and kernel for observation fd
* ioctl's is stream type specific
*/
enum drm_xe_observation_ioctls {
/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
};
/**
* enum drm_xe_oa_unit_type - OA unit types
*/
enum drm_xe_oa_unit_type {
/**
* @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
* sub-types of OAG. For OAR/OAC, use OAG.
*/
DRM_XE_OA_UNIT_TYPE_OAG,
/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
DRM_XE_OA_UNIT_TYPE_OAM,
};
/**
* struct drm_xe_oa_unit - describe OA unit
*/
struct drm_xe_oa_unit {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @oa_unit_id: OA unit ID */
__u32 oa_unit_id;
/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
__u32 oa_unit_type;
/** @capabilities: OA capabilities bit-mask */
__u64 capabilities;
#define DRM_XE_OA_CAPS_BASE (1 << 0)
/** @oa_timestamp_freq: OA timestamp freq */
__u64 oa_timestamp_freq;
/** @reserved: MBZ */
__u64 reserved[4];
/** @num_engines: number of engines in @eci array */
__u64 num_engines;
/** @eci: engines attached to this OA unit */
struct drm_xe_engine_class_instance eci[];
};
/**
* struct drm_xe_query_oa_units - describe OA units
*
* If a query is made with a struct drm_xe_device_query where .query
* is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
* drm_xe_query_oa_units in .data.
*
* OA unit properties for all OA units can be accessed using a code block
* such as the one below:
*
* .. code-block:: C
*
* struct drm_xe_query_oa_units *qoa;
* struct drm_xe_oa_unit *oau;
* u8 *poau;
*
* // malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
* poau = (u8 *)&qoa->oa_units[0];
* for (int i = 0; i < qoa->num_oa_units; i++) {
* oau = (struct drm_xe_oa_unit *)poau;
* // Access 'struct drm_xe_oa_unit' fields here
* poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
* }
*/
struct drm_xe_query_oa_units {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @num_oa_units: number of OA units returned in oau[] */
__u32 num_oa_units;
/** @pad: MBZ */
__u32 pad;
/**
* @oa_units: struct @drm_xe_oa_unit array returned for this device.
* Written below as a u64 array to avoid problems with nested flexible
* arrays with some compilers
*/
__u64 oa_units[];
};
/**
* enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
* 52198/60942
*/
enum drm_xe_oa_format_type {
/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
DRM_XE_OA_FMT_TYPE_OAG,
/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
DRM_XE_OA_FMT_TYPE_OAR,
/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
DRM_XE_OA_FMT_TYPE_OAM,
/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
DRM_XE_OA_FMT_TYPE_OAC,
/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
DRM_XE_OA_FMT_TYPE_OAM_MPEC,
/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
DRM_XE_OA_FMT_TYPE_PEC,
};
/**
* enum drm_xe_oa_property_id - OA stream property id's
*
* Stream params are specified as a chain of @drm_xe_ext_set_property
* struct's, with @property values from enum @drm_xe_oa_property_id and
* @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
* @param field in struct @drm_xe_observation_param points to the first
* @drm_xe_ext_set_property struct.
*
* Exactly the same mechanism is also used for stream reconfiguration using the
* @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
* subset of properties below can be specified for stream reconfiguration.
*/
enum drm_xe_oa_property_id {
#define DRM_XE_OA_EXTENSION_SET_PROPERTY 0
/**
* @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
* the OA stream, see @oa_unit_id in 'struct
* drm_xe_query_oa_units'. Defaults to 0 if not provided.
*/
DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
/**
* @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
* OA unit reports or stream samples in a global buffer attached to an
* OA unit.
*/
DRM_XE_OA_PROPERTY_SAMPLE_OA,
/**
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
* reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
*/
DRM_XE_OA_PROPERTY_OA_METRIC_SET,
/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
DRM_XE_OA_PROPERTY_OA_FORMAT,
/*
* OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
* in terms of the following quantities: a. enum @drm_xe_oa_format_type
* b. Counter select c. Counter size and d. BC report. Also refer to the
* oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
*/
#define DRM_XE_OA_FORMAT_MASK_FMT_TYPE (0xffu << 0)
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL (0xffu << 8)
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE (0xffu << 16)
#define DRM_XE_OA_FORMAT_MASK_BC_REPORT (0xffu << 24)
/**
* @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
* sampling with sampling frequency proportional to 2^(period_exponent + 1)
*/
DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
/**
* @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
* stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
*/
DRM_XE_OA_PROPERTY_OA_DISABLED,
/**
* @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
* @exec_queue_id. OA queries can be executed on this exec queue.
*/
DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
/**
* @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
* pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
*/
DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
/**
* @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
* to be disabled for the stream exec queue.
*/
DRM_XE_OA_PROPERTY_NO_PREEMPT,
};
/**
* struct drm_xe_oa_config - OA metric configuration
*
* Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
* particular config can be specified when opening an OA stream using
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
*/
struct drm_xe_oa_config {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
char uuid[36];
/** @n_regs: Number of regs in @regs_ptr */
__u32 n_regs;
/**
* @regs_ptr: Pointer to (register address, value) pairs for OA config
* registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
*/
__u64 regs_ptr;
};
/**
* struct drm_xe_oa_stream_status - OA stream status returned from
* @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
* call the ioctl to query stream status in response to EIO errno from
* observation fd read().
*/
struct drm_xe_oa_stream_status {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @oa_status: OA stream status (see Bspec 46717/61226) */
__u64 oa_status;
#define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL (1 << 3)
#define DRM_XE_OASTATUS_COUNTER_OVERFLOW (1 << 2)
#define DRM_XE_OASTATUS_BUFFER_OVERFLOW (1 << 1)
#define DRM_XE_OASTATUS_REPORT_LOST (1 << 0)
/** @reserved: reserved for future use */
__u64 reserved[3];
};
/**
* struct drm_xe_oa_stream_info - OA stream info returned from
* @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
*/
struct drm_xe_oa_stream_info {
/** @extensions: Pointer to the first extension struct, if any */
__u64 extensions;
/** @oa_buf_size: OA buffer size */
__u64 oa_buf_size;
/** @reserved: reserved for future use */
__u64 reserved[3];
};
#if defined(__cplusplus)
}
#endif
#endif /* _UAPI_XE_DRM_H_ */