| /* | 
 |  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm.h" | 
 | #include "dm-uevent.h" | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/blkpg.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/wait.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | #define DM_MSG_PREFIX "core" | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | /* | 
 |  * ratelimit state to be used in DMXXX_LIMIT(). | 
 |  */ | 
 | DEFINE_RATELIMIT_STATE(dm_ratelimit_state, | 
 | 		       DEFAULT_RATELIMIT_INTERVAL, | 
 | 		       DEFAULT_RATELIMIT_BURST); | 
 | EXPORT_SYMBOL(dm_ratelimit_state); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Cookies are numeric values sent with CHANGE and REMOVE | 
 |  * uevents while resuming, removing or renaming the device. | 
 |  */ | 
 | #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" | 
 | #define DM_COOKIE_LENGTH 24 | 
 |  | 
 | static const char *_name = DM_NAME; | 
 |  | 
 | static unsigned int major = 0; | 
 | static unsigned int _major = 0; | 
 |  | 
 | static DEFINE_IDR(_minor_idr); | 
 |  | 
 | static DEFINE_SPINLOCK(_minor_lock); | 
 |  | 
 | static void do_deferred_remove(struct work_struct *w); | 
 |  | 
 | static DECLARE_WORK(deferred_remove_work, do_deferred_remove); | 
 |  | 
 | static struct workqueue_struct *deferred_remove_workqueue; | 
 |  | 
 | /* | 
 |  * For bio-based dm. | 
 |  * One of these is allocated per bio. | 
 |  */ | 
 | struct dm_io { | 
 | 	struct mapped_device *md; | 
 | 	int error; | 
 | 	atomic_t io_count; | 
 | 	struct bio *bio; | 
 | 	unsigned long start_time; | 
 | 	spinlock_t endio_lock; | 
 | 	struct dm_stats_aux stats_aux; | 
 | }; | 
 |  | 
 | /* | 
 |  * For request-based dm. | 
 |  * One of these is allocated per request. | 
 |  */ | 
 | struct dm_rq_target_io { | 
 | 	struct mapped_device *md; | 
 | 	struct dm_target *ti; | 
 | 	struct request *orig, clone; | 
 | 	int error; | 
 | 	union map_info info; | 
 | }; | 
 |  | 
 | /* | 
 |  * For request-based dm - the bio clones we allocate are embedded in these | 
 |  * structs. | 
 |  * | 
 |  * We allocate these with bio_alloc_bioset, using the front_pad parameter when | 
 |  * the bioset is created - this means the bio has to come at the end of the | 
 |  * struct. | 
 |  */ | 
 | struct dm_rq_clone_bio_info { | 
 | 	struct bio *orig; | 
 | 	struct dm_rq_target_io *tio; | 
 | 	struct bio clone; | 
 | }; | 
 |  | 
 | union map_info *dm_get_rq_mapinfo(struct request *rq) | 
 | { | 
 | 	if (rq && rq->end_io_data) | 
 | 		return &((struct dm_rq_target_io *)rq->end_io_data)->info; | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); | 
 |  | 
 | #define MINOR_ALLOCED ((void *)-1) | 
 |  | 
 | /* | 
 |  * Bits for the md->flags field. | 
 |  */ | 
 | #define DMF_BLOCK_IO_FOR_SUSPEND 0 | 
 | #define DMF_SUSPENDED 1 | 
 | #define DMF_FROZEN 2 | 
 | #define DMF_FREEING 3 | 
 | #define DMF_DELETING 4 | 
 | #define DMF_NOFLUSH_SUSPENDING 5 | 
 | #define DMF_MERGE_IS_OPTIONAL 6 | 
 | #define DMF_DEFERRED_REMOVE 7 | 
 | #define DMF_SUSPENDED_INTERNALLY 8 | 
 |  | 
 | /* | 
 |  * A dummy definition to make RCU happy. | 
 |  * struct dm_table should never be dereferenced in this file. | 
 |  */ | 
 | struct dm_table { | 
 | 	int undefined__; | 
 | }; | 
 |  | 
 | /* | 
 |  * Work processed by per-device workqueue. | 
 |  */ | 
 | struct mapped_device { | 
 | 	struct srcu_struct io_barrier; | 
 | 	struct mutex suspend_lock; | 
 | 	atomic_t holders; | 
 | 	atomic_t open_count; | 
 |  | 
 | 	/* | 
 | 	 * The current mapping. | 
 | 	 * Use dm_get_live_table{_fast} or take suspend_lock for | 
 | 	 * dereference. | 
 | 	 */ | 
 | 	struct dm_table __rcu *map; | 
 |  | 
 | 	struct list_head table_devices; | 
 | 	struct mutex table_devices_lock; | 
 |  | 
 | 	unsigned long flags; | 
 |  | 
 | 	struct request_queue *queue; | 
 | 	unsigned type; | 
 | 	/* Protect queue and type against concurrent access. */ | 
 | 	struct mutex type_lock; | 
 |  | 
 | 	struct target_type *immutable_target_type; | 
 |  | 
 | 	struct gendisk *disk; | 
 | 	char name[16]; | 
 |  | 
 | 	void *interface_ptr; | 
 |  | 
 | 	/* | 
 | 	 * A list of ios that arrived while we were suspended. | 
 | 	 */ | 
 | 	atomic_t pending[2]; | 
 | 	wait_queue_head_t wait; | 
 | 	struct work_struct work; | 
 | 	struct bio_list deferred; | 
 | 	spinlock_t deferred_lock; | 
 |  | 
 | 	/* | 
 | 	 * Processing queue (flush) | 
 | 	 */ | 
 | 	struct workqueue_struct *wq; | 
 |  | 
 | 	/* | 
 | 	 * io objects are allocated from here. | 
 | 	 */ | 
 | 	mempool_t *io_pool; | 
 |  | 
 | 	struct bio_set *bs; | 
 |  | 
 | 	/* | 
 | 	 * Event handling. | 
 | 	 */ | 
 | 	atomic_t event_nr; | 
 | 	wait_queue_head_t eventq; | 
 | 	atomic_t uevent_seq; | 
 | 	struct list_head uevent_list; | 
 | 	spinlock_t uevent_lock; /* Protect access to uevent_list */ | 
 |  | 
 | 	/* | 
 | 	 * freeze/thaw support require holding onto a super block | 
 | 	 */ | 
 | 	struct super_block *frozen_sb; | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	/* forced geometry settings */ | 
 | 	struct hd_geometry geometry; | 
 |  | 
 | 	/* kobject and completion */ | 
 | 	struct dm_kobject_holder kobj_holder; | 
 |  | 
 | 	/* zero-length flush that will be cloned and submitted to targets */ | 
 | 	struct bio flush_bio; | 
 |  | 
 | 	struct dm_stats stats; | 
 | }; | 
 |  | 
 | /* | 
 |  * For mempools pre-allocation at the table loading time. | 
 |  */ | 
 | struct dm_md_mempools { | 
 | 	mempool_t *io_pool; | 
 | 	struct bio_set *bs; | 
 | }; | 
 |  | 
 | struct table_device { | 
 | 	struct list_head list; | 
 | 	atomic_t count; | 
 | 	struct dm_dev dm_dev; | 
 | }; | 
 |  | 
 | #define RESERVED_BIO_BASED_IOS		16 | 
 | #define RESERVED_REQUEST_BASED_IOS	256 | 
 | #define RESERVED_MAX_IOS		1024 | 
 | static struct kmem_cache *_io_cache; | 
 | static struct kmem_cache *_rq_tio_cache; | 
 |  | 
 | /* | 
 |  * Bio-based DM's mempools' reserved IOs set by the user. | 
 |  */ | 
 | static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; | 
 |  | 
 | /* | 
 |  * Request-based DM's mempools' reserved IOs set by the user. | 
 |  */ | 
 | static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; | 
 |  | 
 | static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, | 
 | 				      unsigned def, unsigned max) | 
 | { | 
 | 	unsigned ios = ACCESS_ONCE(*reserved_ios); | 
 | 	unsigned modified_ios = 0; | 
 |  | 
 | 	if (!ios) | 
 | 		modified_ios = def; | 
 | 	else if (ios > max) | 
 | 		modified_ios = max; | 
 |  | 
 | 	if (modified_ios) { | 
 | 		(void)cmpxchg(reserved_ios, ios, modified_ios); | 
 | 		ios = modified_ios; | 
 | 	} | 
 |  | 
 | 	return ios; | 
 | } | 
 |  | 
 | unsigned dm_get_reserved_bio_based_ios(void) | 
 | { | 
 | 	return __dm_get_reserved_ios(&reserved_bio_based_ios, | 
 | 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); | 
 |  | 
 | unsigned dm_get_reserved_rq_based_ios(void) | 
 | { | 
 | 	return __dm_get_reserved_ios(&reserved_rq_based_ios, | 
 | 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); | 
 |  | 
 | static int __init local_init(void) | 
 | { | 
 | 	int r = -ENOMEM; | 
 |  | 
 | 	/* allocate a slab for the dm_ios */ | 
 | 	_io_cache = KMEM_CACHE(dm_io, 0); | 
 | 	if (!_io_cache) | 
 | 		return r; | 
 |  | 
 | 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); | 
 | 	if (!_rq_tio_cache) | 
 | 		goto out_free_io_cache; | 
 |  | 
 | 	r = dm_uevent_init(); | 
 | 	if (r) | 
 | 		goto out_free_rq_tio_cache; | 
 |  | 
 | 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); | 
 | 	if (!deferred_remove_workqueue) { | 
 | 		r = -ENOMEM; | 
 | 		goto out_uevent_exit; | 
 | 	} | 
 |  | 
 | 	_major = major; | 
 | 	r = register_blkdev(_major, _name); | 
 | 	if (r < 0) | 
 | 		goto out_free_workqueue; | 
 |  | 
 | 	if (!_major) | 
 | 		_major = r; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_workqueue: | 
 | 	destroy_workqueue(deferred_remove_workqueue); | 
 | out_uevent_exit: | 
 | 	dm_uevent_exit(); | 
 | out_free_rq_tio_cache: | 
 | 	kmem_cache_destroy(_rq_tio_cache); | 
 | out_free_io_cache: | 
 | 	kmem_cache_destroy(_io_cache); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void local_exit(void) | 
 | { | 
 | 	flush_scheduled_work(); | 
 | 	destroy_workqueue(deferred_remove_workqueue); | 
 |  | 
 | 	kmem_cache_destroy(_rq_tio_cache); | 
 | 	kmem_cache_destroy(_io_cache); | 
 | 	unregister_blkdev(_major, _name); | 
 | 	dm_uevent_exit(); | 
 |  | 
 | 	_major = 0; | 
 |  | 
 | 	DMINFO("cleaned up"); | 
 | } | 
 |  | 
 | static int (*_inits[])(void) __initdata = { | 
 | 	local_init, | 
 | 	dm_target_init, | 
 | 	dm_linear_init, | 
 | 	dm_stripe_init, | 
 | 	dm_io_init, | 
 | 	dm_kcopyd_init, | 
 | 	dm_interface_init, | 
 | 	dm_statistics_init, | 
 | }; | 
 |  | 
 | static void (*_exits[])(void) = { | 
 | 	local_exit, | 
 | 	dm_target_exit, | 
 | 	dm_linear_exit, | 
 | 	dm_stripe_exit, | 
 | 	dm_io_exit, | 
 | 	dm_kcopyd_exit, | 
 | 	dm_interface_exit, | 
 | 	dm_statistics_exit, | 
 | }; | 
 |  | 
 | static int __init dm_init(void) | 
 | { | 
 | 	const int count = ARRAY_SIZE(_inits); | 
 |  | 
 | 	int r, i; | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		r = _inits[i](); | 
 | 		if (r) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |       bad: | 
 | 	while (i--) | 
 | 		_exits[i](); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit dm_exit(void) | 
 | { | 
 | 	int i = ARRAY_SIZE(_exits); | 
 |  | 
 | 	while (i--) | 
 | 		_exits[i](); | 
 |  | 
 | 	/* | 
 | 	 * Should be empty by this point. | 
 | 	 */ | 
 | 	idr_destroy(&_minor_idr); | 
 | } | 
 |  | 
 | /* | 
 |  * Block device functions | 
 |  */ | 
 | int dm_deleting_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_DELETING, &md->flags); | 
 | } | 
 |  | 
 | static int dm_blk_open(struct block_device *bdev, fmode_t mode) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	md = bdev->bd_disk->private_data; | 
 | 	if (!md) | 
 | 		goto out; | 
 |  | 
 | 	if (test_bit(DMF_FREEING, &md->flags) || | 
 | 	    dm_deleting_md(md)) { | 
 | 		md = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dm_get(md); | 
 | 	atomic_inc(&md->open_count); | 
 |  | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return md ? 0 : -ENXIO; | 
 | } | 
 |  | 
 | static void dm_blk_close(struct gendisk *disk, fmode_t mode) | 
 | { | 
 | 	struct mapped_device *md = disk->private_data; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	if (atomic_dec_and_test(&md->open_count) && | 
 | 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) | 
 | 		queue_work(deferred_remove_workqueue, &deferred_remove_work); | 
 |  | 
 | 	dm_put(md); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 | } | 
 |  | 
 | int dm_open_count(struct mapped_device *md) | 
 | { | 
 | 	return atomic_read(&md->open_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Guarantees nothing is using the device before it's deleted. | 
 |  */ | 
 | int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	if (dm_open_count(md)) { | 
 | 		r = -EBUSY; | 
 | 		if (mark_deferred) | 
 | 			set_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 | 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) | 
 | 		r = -EEXIST; | 
 | 	else | 
 | 		set_bit(DMF_DELETING, &md->flags); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int dm_cancel_deferred_remove(struct mapped_device *md) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	if (test_bit(DMF_DELETING, &md->flags)) | 
 | 		r = -EBUSY; | 
 | 	else | 
 | 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void do_deferred_remove(struct work_struct *w) | 
 | { | 
 | 	dm_deferred_remove(); | 
 | } | 
 |  | 
 | sector_t dm_get_size(struct mapped_device *md) | 
 | { | 
 | 	return get_capacity(md->disk); | 
 | } | 
 |  | 
 | struct request_queue *dm_get_md_queue(struct mapped_device *md) | 
 | { | 
 | 	return md->queue; | 
 | } | 
 |  | 
 | struct dm_stats *dm_get_stats(struct mapped_device *md) | 
 | { | 
 | 	return &md->stats; | 
 | } | 
 |  | 
 | static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 |  | 
 | 	return dm_get_geometry(md, geo); | 
 | } | 
 |  | 
 | static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 			unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 | 	int srcu_idx; | 
 | 	struct dm_table *map; | 
 | 	struct dm_target *tgt; | 
 | 	int r = -ENOTTY; | 
 |  | 
 | retry: | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 |  | 
 | 	if (!map || !dm_table_get_size(map)) | 
 | 		goto out; | 
 |  | 
 | 	/* We only support devices that have a single target */ | 
 | 	if (dm_table_get_num_targets(map) != 1) | 
 | 		goto out; | 
 |  | 
 | 	tgt = dm_table_get_target(map, 0); | 
 | 	if (!tgt->type->ioctl) | 
 | 		goto out; | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		r = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = tgt->type->ioctl(tgt, cmd, arg); | 
 |  | 
 | out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 |  | 
 | 	if (r == -ENOTCONN) { | 
 | 		msleep(10); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static struct dm_io *alloc_io(struct mapped_device *md) | 
 | { | 
 | 	return mempool_alloc(md->io_pool, GFP_NOIO); | 
 | } | 
 |  | 
 | static void free_io(struct mapped_device *md, struct dm_io *io) | 
 | { | 
 | 	mempool_free(io, md->io_pool); | 
 | } | 
 |  | 
 | static void free_tio(struct mapped_device *md, struct dm_target_io *tio) | 
 | { | 
 | 	bio_put(&tio->clone); | 
 | } | 
 |  | 
 | static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, | 
 | 					    gfp_t gfp_mask) | 
 | { | 
 | 	return mempool_alloc(md->io_pool, gfp_mask); | 
 | } | 
 |  | 
 | static void free_rq_tio(struct dm_rq_target_io *tio) | 
 | { | 
 | 	mempool_free(tio, tio->md->io_pool); | 
 | } | 
 |  | 
 | static int md_in_flight(struct mapped_device *md) | 
 | { | 
 | 	return atomic_read(&md->pending[READ]) + | 
 | 	       atomic_read(&md->pending[WRITE]); | 
 | } | 
 |  | 
 | static void start_io_acct(struct dm_io *io) | 
 | { | 
 | 	struct mapped_device *md = io->md; | 
 | 	struct bio *bio = io->bio; | 
 | 	int cpu; | 
 | 	int rw = bio_data_dir(bio); | 
 |  | 
 | 	io->start_time = jiffies; | 
 |  | 
 | 	cpu = part_stat_lock(); | 
 | 	part_round_stats(cpu, &dm_disk(md)->part0); | 
 | 	part_stat_unlock(); | 
 | 	atomic_set(&dm_disk(md)->part0.in_flight[rw], | 
 | 		atomic_inc_return(&md->pending[rw])); | 
 |  | 
 | 	if (unlikely(dm_stats_used(&md->stats))) | 
 | 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, | 
 | 				    bio_sectors(bio), false, 0, &io->stats_aux); | 
 | } | 
 |  | 
 | static void end_io_acct(struct dm_io *io) | 
 | { | 
 | 	struct mapped_device *md = io->md; | 
 | 	struct bio *bio = io->bio; | 
 | 	unsigned long duration = jiffies - io->start_time; | 
 | 	int pending; | 
 | 	int rw = bio_data_dir(bio); | 
 |  | 
 | 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); | 
 |  | 
 | 	if (unlikely(dm_stats_used(&md->stats))) | 
 | 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, | 
 | 				    bio_sectors(bio), true, duration, &io->stats_aux); | 
 |  | 
 | 	/* | 
 | 	 * After this is decremented the bio must not be touched if it is | 
 | 	 * a flush. | 
 | 	 */ | 
 | 	pending = atomic_dec_return(&md->pending[rw]); | 
 | 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); | 
 | 	pending += atomic_read(&md->pending[rw^0x1]); | 
 |  | 
 | 	/* nudge anyone waiting on suspend queue */ | 
 | 	if (!pending) | 
 | 		wake_up(&md->wait); | 
 | } | 
 |  | 
 | /* | 
 |  * Add the bio to the list of deferred io. | 
 |  */ | 
 | static void queue_io(struct mapped_device *md, struct bio *bio) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&md->deferred_lock, flags); | 
 | 	bio_list_add(&md->deferred, bio); | 
 | 	spin_unlock_irqrestore(&md->deferred_lock, flags); | 
 | 	queue_work(md->wq, &md->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Everyone (including functions in this file), should use this | 
 |  * function to access the md->map field, and make sure they call | 
 |  * dm_put_live_table() when finished. | 
 |  */ | 
 | struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) | 
 | { | 
 | 	*srcu_idx = srcu_read_lock(&md->io_barrier); | 
 |  | 
 | 	return srcu_dereference(md->map, &md->io_barrier); | 
 | } | 
 |  | 
 | void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) | 
 | { | 
 | 	srcu_read_unlock(&md->io_barrier, srcu_idx); | 
 | } | 
 |  | 
 | void dm_sync_table(struct mapped_device *md) | 
 | { | 
 | 	synchronize_srcu(&md->io_barrier); | 
 | 	synchronize_rcu_expedited(); | 
 | } | 
 |  | 
 | /* | 
 |  * A fast alternative to dm_get_live_table/dm_put_live_table. | 
 |  * The caller must not block between these two functions. | 
 |  */ | 
 | static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	return rcu_dereference(md->map); | 
 | } | 
 |  | 
 | static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) | 
 | { | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Open a table device so we can use it as a map destination. | 
 |  */ | 
 | static int open_table_device(struct table_device *td, dev_t dev, | 
 | 			     struct mapped_device *md) | 
 | { | 
 | 	static char *_claim_ptr = "I belong to device-mapper"; | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	int r; | 
 |  | 
 | 	BUG_ON(td->dm_dev.bdev); | 
 |  | 
 | 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	r = bd_link_disk_holder(bdev, dm_disk(md)); | 
 | 	if (r) { | 
 | 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	td->dm_dev.bdev = bdev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Close a table device that we've been using. | 
 |  */ | 
 | static void close_table_device(struct table_device *td, struct mapped_device *md) | 
 | { | 
 | 	if (!td->dm_dev.bdev) | 
 | 		return; | 
 |  | 
 | 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); | 
 | 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); | 
 | 	td->dm_dev.bdev = NULL; | 
 | } | 
 |  | 
 | static struct table_device *find_table_device(struct list_head *l, dev_t dev, | 
 | 					      fmode_t mode) { | 
 | 	struct table_device *td; | 
 |  | 
 | 	list_for_each_entry(td, l, list) | 
 | 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) | 
 | 			return td; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, | 
 | 			struct dm_dev **result) { | 
 | 	int r; | 
 | 	struct table_device *td; | 
 |  | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	td = find_table_device(&md->table_devices, dev, mode); | 
 | 	if (!td) { | 
 | 		td = kmalloc(sizeof(*td), GFP_KERNEL); | 
 | 		if (!td) { | 
 | 			mutex_unlock(&md->table_devices_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		td->dm_dev.mode = mode; | 
 | 		td->dm_dev.bdev = NULL; | 
 |  | 
 | 		if ((r = open_table_device(td, dev, md))) { | 
 | 			mutex_unlock(&md->table_devices_lock); | 
 | 			kfree(td); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		format_dev_t(td->dm_dev.name, dev); | 
 |  | 
 | 		atomic_set(&td->count, 0); | 
 | 		list_add(&td->list, &md->table_devices); | 
 | 	} | 
 | 	atomic_inc(&td->count); | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 |  | 
 | 	*result = &td->dm_dev; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_table_device); | 
 |  | 
 | void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) | 
 | { | 
 | 	struct table_device *td = container_of(d, struct table_device, dm_dev); | 
 |  | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	if (atomic_dec_and_test(&td->count)) { | 
 | 		close_table_device(td, md); | 
 | 		list_del(&td->list); | 
 | 		kfree(td); | 
 | 	} | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 | } | 
 | EXPORT_SYMBOL(dm_put_table_device); | 
 |  | 
 | static void free_table_devices(struct list_head *devices) | 
 | { | 
 | 	struct list_head *tmp, *next; | 
 |  | 
 | 	list_for_each_safe(tmp, next, devices) { | 
 | 		struct table_device *td = list_entry(tmp, struct table_device, list); | 
 |  | 
 | 		DMWARN("dm_destroy: %s still exists with %d references", | 
 | 		       td->dm_dev.name, atomic_read(&td->count)); | 
 | 		kfree(td); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Get the geometry associated with a dm device | 
 |  */ | 
 | int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) | 
 | { | 
 | 	*geo = md->geometry; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the geometry of a device. | 
 |  */ | 
 | int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) | 
 | { | 
 | 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; | 
 |  | 
 | 	if (geo->start > sz) { | 
 | 		DMWARN("Start sector is beyond the geometry limits."); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	md->geometry = *geo; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------- | 
 |  * CRUD START: | 
 |  *   A more elegant soln is in the works that uses the queue | 
 |  *   merge fn, unfortunately there are a couple of changes to | 
 |  *   the block layer that I want to make for this.  So in the | 
 |  *   interests of getting something for people to use I give | 
 |  *   you this clearly demarcated crap. | 
 |  *---------------------------------------------------------------*/ | 
 |  | 
 | static int __noflush_suspending(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Decrements the number of outstanding ios that a bio has been | 
 |  * cloned into, completing the original io if necc. | 
 |  */ | 
 | static void dec_pending(struct dm_io *io, int error) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int io_error; | 
 | 	struct bio *bio; | 
 | 	struct mapped_device *md = io->md; | 
 |  | 
 | 	/* Push-back supersedes any I/O errors */ | 
 | 	if (unlikely(error)) { | 
 | 		spin_lock_irqsave(&io->endio_lock, flags); | 
 | 		if (!(io->error > 0 && __noflush_suspending(md))) | 
 | 			io->error = error; | 
 | 		spin_unlock_irqrestore(&io->endio_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_and_test(&io->io_count)) { | 
 | 		if (io->error == DM_ENDIO_REQUEUE) { | 
 | 			/* | 
 | 			 * Target requested pushing back the I/O. | 
 | 			 */ | 
 | 			spin_lock_irqsave(&md->deferred_lock, flags); | 
 | 			if (__noflush_suspending(md)) | 
 | 				bio_list_add_head(&md->deferred, io->bio); | 
 | 			else | 
 | 				/* noflush suspend was interrupted. */ | 
 | 				io->error = -EIO; | 
 | 			spin_unlock_irqrestore(&md->deferred_lock, flags); | 
 | 		} | 
 |  | 
 | 		io_error = io->error; | 
 | 		bio = io->bio; | 
 | 		end_io_acct(io); | 
 | 		free_io(md, io); | 
 |  | 
 | 		if (io_error == DM_ENDIO_REQUEUE) | 
 | 			return; | 
 |  | 
 | 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { | 
 | 			/* | 
 | 			 * Preflush done for flush with data, reissue | 
 | 			 * without REQ_FLUSH. | 
 | 			 */ | 
 | 			bio->bi_rw &= ~REQ_FLUSH; | 
 | 			queue_io(md, bio); | 
 | 		} else { | 
 | 			/* done with normal IO or empty flush */ | 
 | 			trace_block_bio_complete(md->queue, bio, io_error); | 
 | 			bio_endio(bio, io_error); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void disable_write_same(struct mapped_device *md) | 
 | { | 
 | 	struct queue_limits *limits = dm_get_queue_limits(md); | 
 |  | 
 | 	/* device doesn't really support WRITE SAME, disable it */ | 
 | 	limits->max_write_same_sectors = 0; | 
 | } | 
 |  | 
 | static void clone_endio(struct bio *bio, int error) | 
 | { | 
 | 	int r = error; | 
 | 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); | 
 | 	struct dm_io *io = tio->io; | 
 | 	struct mapped_device *md = tio->io->md; | 
 | 	dm_endio_fn endio = tio->ti->type->end_io; | 
 |  | 
 | 	if (!bio_flagged(bio, BIO_UPTODATE) && !error) | 
 | 		error = -EIO; | 
 |  | 
 | 	if (endio) { | 
 | 		r = endio(tio->ti, bio, error); | 
 | 		if (r < 0 || r == DM_ENDIO_REQUEUE) | 
 | 			/* | 
 | 			 * error and requeue request are handled | 
 | 			 * in dec_pending(). | 
 | 			 */ | 
 | 			error = r; | 
 | 		else if (r == DM_ENDIO_INCOMPLETE) | 
 | 			/* The target will handle the io */ | 
 | 			return; | 
 | 		else if (r) { | 
 | 			DMWARN("unimplemented target endio return value: %d", r); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && | 
 | 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) | 
 | 		disable_write_same(md); | 
 |  | 
 | 	free_tio(md, tio); | 
 | 	dec_pending(io, error); | 
 | } | 
 |  | 
 | /* | 
 |  * Partial completion handling for request-based dm | 
 |  */ | 
 | static void end_clone_bio(struct bio *clone, int error) | 
 | { | 
 | 	struct dm_rq_clone_bio_info *info = | 
 | 		container_of(clone, struct dm_rq_clone_bio_info, clone); | 
 | 	struct dm_rq_target_io *tio = info->tio; | 
 | 	struct bio *bio = info->orig; | 
 | 	unsigned int nr_bytes = info->orig->bi_iter.bi_size; | 
 |  | 
 | 	bio_put(clone); | 
 |  | 
 | 	if (tio->error) | 
 | 		/* | 
 | 		 * An error has already been detected on the request. | 
 | 		 * Once error occurred, just let clone->end_io() handle | 
 | 		 * the remainder. | 
 | 		 */ | 
 | 		return; | 
 | 	else if (error) { | 
 | 		/* | 
 | 		 * Don't notice the error to the upper layer yet. | 
 | 		 * The error handling decision is made by the target driver, | 
 | 		 * when the request is completed. | 
 | 		 */ | 
 | 		tio->error = error; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * I/O for the bio successfully completed. | 
 | 	 * Notice the data completion to the upper layer. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * bios are processed from the head of the list. | 
 | 	 * So the completing bio should always be rq->bio. | 
 | 	 * If it's not, something wrong is happening. | 
 | 	 */ | 
 | 	if (tio->orig->bio != bio) | 
 | 		DMERR("bio completion is going in the middle of the request"); | 
 |  | 
 | 	/* | 
 | 	 * Update the original request. | 
 | 	 * Do not use blk_end_request() here, because it may complete | 
 | 	 * the original request before the clone, and break the ordering. | 
 | 	 */ | 
 | 	blk_update_request(tio->orig, 0, nr_bytes); | 
 | } | 
 |  | 
 | /* | 
 |  * Don't touch any member of the md after calling this function because | 
 |  * the md may be freed in dm_put() at the end of this function. | 
 |  * Or do dm_get() before calling this function and dm_put() later. | 
 |  */ | 
 | static void rq_completed(struct mapped_device *md, int rw, int run_queue) | 
 | { | 
 | 	atomic_dec(&md->pending[rw]); | 
 |  | 
 | 	/* nudge anyone waiting on suspend queue */ | 
 | 	if (!md_in_flight(md)) | 
 | 		wake_up(&md->wait); | 
 |  | 
 | 	/* | 
 | 	 * Run this off this callpath, as drivers could invoke end_io while | 
 | 	 * inside their request_fn (and holding the queue lock). Calling | 
 | 	 * back into ->request_fn() could deadlock attempting to grab the | 
 | 	 * queue lock again. | 
 | 	 */ | 
 | 	if (run_queue) | 
 | 		blk_run_queue_async(md->queue); | 
 |  | 
 | 	/* | 
 | 	 * dm_put() must be at the end of this function. See the comment above | 
 | 	 */ | 
 | 	dm_put(md); | 
 | } | 
 |  | 
 | static void free_rq_clone(struct request *clone) | 
 | { | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 |  | 
 | 	blk_rq_unprep_clone(clone); | 
 | 	free_rq_tio(tio); | 
 | } | 
 |  | 
 | /* | 
 |  * Complete the clone and the original request. | 
 |  * Must be called without queue lock. | 
 |  */ | 
 | static void dm_end_request(struct request *clone, int error) | 
 | { | 
 | 	int rw = rq_data_dir(clone); | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 | 	struct mapped_device *md = tio->md; | 
 | 	struct request *rq = tio->orig; | 
 |  | 
 | 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { | 
 | 		rq->errors = clone->errors; | 
 | 		rq->resid_len = clone->resid_len; | 
 |  | 
 | 		if (rq->sense) | 
 | 			/* | 
 | 			 * We are using the sense buffer of the original | 
 | 			 * request. | 
 | 			 * So setting the length of the sense data is enough. | 
 | 			 */ | 
 | 			rq->sense_len = clone->sense_len; | 
 | 	} | 
 |  | 
 | 	free_rq_clone(clone); | 
 | 	blk_end_request_all(rq, error); | 
 | 	rq_completed(md, rw, true); | 
 | } | 
 |  | 
 | static void dm_unprep_request(struct request *rq) | 
 | { | 
 | 	struct request *clone = rq->special; | 
 |  | 
 | 	rq->special = NULL; | 
 | 	rq->cmd_flags &= ~REQ_DONTPREP; | 
 |  | 
 | 	free_rq_clone(clone); | 
 | } | 
 |  | 
 | /* | 
 |  * Requeue the original request of a clone. | 
 |  */ | 
 | void dm_requeue_unmapped_request(struct request *clone) | 
 | { | 
 | 	int rw = rq_data_dir(clone); | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 | 	struct mapped_device *md = tio->md; | 
 | 	struct request *rq = tio->orig; | 
 | 	struct request_queue *q = rq->q; | 
 | 	unsigned long flags; | 
 |  | 
 | 	dm_unprep_request(rq); | 
 |  | 
 | 	spin_lock_irqsave(q->queue_lock, flags); | 
 | 	blk_requeue_request(q, rq); | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 |  | 
 | 	rq_completed(md, rw, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); | 
 |  | 
 | static void __stop_queue(struct request_queue *q) | 
 | { | 
 | 	blk_stop_queue(q); | 
 | } | 
 |  | 
 | static void stop_queue(struct request_queue *q) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(q->queue_lock, flags); | 
 | 	__stop_queue(q); | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 | } | 
 |  | 
 | static void __start_queue(struct request_queue *q) | 
 | { | 
 | 	if (blk_queue_stopped(q)) | 
 | 		blk_start_queue(q); | 
 | } | 
 |  | 
 | static void start_queue(struct request_queue *q) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(q->queue_lock, flags); | 
 | 	__start_queue(q); | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 | } | 
 |  | 
 | static void dm_done(struct request *clone, int error, bool mapped) | 
 | { | 
 | 	int r = error; | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 | 	dm_request_endio_fn rq_end_io = NULL; | 
 |  | 
 | 	if (tio->ti) { | 
 | 		rq_end_io = tio->ti->type->rq_end_io; | 
 |  | 
 | 		if (mapped && rq_end_io) | 
 | 			r = rq_end_io(tio->ti, clone, error, &tio->info); | 
 | 	} | 
 |  | 
 | 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && | 
 | 		     !clone->q->limits.max_write_same_sectors)) | 
 | 		disable_write_same(tio->md); | 
 |  | 
 | 	if (r <= 0) | 
 | 		/* The target wants to complete the I/O */ | 
 | 		dm_end_request(clone, r); | 
 | 	else if (r == DM_ENDIO_INCOMPLETE) | 
 | 		/* The target will handle the I/O */ | 
 | 		return; | 
 | 	else if (r == DM_ENDIO_REQUEUE) | 
 | 		/* The target wants to requeue the I/O */ | 
 | 		dm_requeue_unmapped_request(clone); | 
 | 	else { | 
 | 		DMWARN("unimplemented target endio return value: %d", r); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Request completion handler for request-based dm | 
 |  */ | 
 | static void dm_softirq_done(struct request *rq) | 
 | { | 
 | 	bool mapped = true; | 
 | 	struct request *clone = rq->completion_data; | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 |  | 
 | 	if (rq->cmd_flags & REQ_FAILED) | 
 | 		mapped = false; | 
 |  | 
 | 	dm_done(clone, tio->error, mapped); | 
 | } | 
 |  | 
 | /* | 
 |  * Complete the clone and the original request with the error status | 
 |  * through softirq context. | 
 |  */ | 
 | static void dm_complete_request(struct request *clone, int error) | 
 | { | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 | 	struct request *rq = tio->orig; | 
 |  | 
 | 	tio->error = error; | 
 | 	rq->completion_data = clone; | 
 | 	blk_complete_request(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Complete the not-mapped clone and the original request with the error status | 
 |  * through softirq context. | 
 |  * Target's rq_end_io() function isn't called. | 
 |  * This may be used when the target's map_rq() function fails. | 
 |  */ | 
 | void dm_kill_unmapped_request(struct request *clone, int error) | 
 | { | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 | 	struct request *rq = tio->orig; | 
 |  | 
 | 	rq->cmd_flags |= REQ_FAILED; | 
 | 	dm_complete_request(clone, error); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); | 
 |  | 
 | /* | 
 |  * Called with the queue lock held | 
 |  */ | 
 | static void end_clone_request(struct request *clone, int error) | 
 | { | 
 | 	/* | 
 | 	 * For just cleaning up the information of the queue in which | 
 | 	 * the clone was dispatched. | 
 | 	 * The clone is *NOT* freed actually here because it is alloced from | 
 | 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. | 
 | 	 */ | 
 | 	__blk_put_request(clone->q, clone); | 
 |  | 
 | 	/* | 
 | 	 * Actual request completion is done in a softirq context which doesn't | 
 | 	 * hold the queue lock.  Otherwise, deadlock could occur because: | 
 | 	 *     - another request may be submitted by the upper level driver | 
 | 	 *       of the stacking during the completion | 
 | 	 *     - the submission which requires queue lock may be done | 
 | 	 *       against this queue | 
 | 	 */ | 
 | 	dm_complete_request(clone, error); | 
 | } | 
 |  | 
 | /* | 
 |  * Return maximum size of I/O possible at the supplied sector up to the current | 
 |  * target boundary. | 
 |  */ | 
 | static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) | 
 | { | 
 | 	sector_t target_offset = dm_target_offset(ti, sector); | 
 |  | 
 | 	return ti->len - target_offset; | 
 | } | 
 |  | 
 | static sector_t max_io_len(sector_t sector, struct dm_target *ti) | 
 | { | 
 | 	sector_t len = max_io_len_target_boundary(sector, ti); | 
 | 	sector_t offset, max_len; | 
 |  | 
 | 	/* | 
 | 	 * Does the target need to split even further? | 
 | 	 */ | 
 | 	if (ti->max_io_len) { | 
 | 		offset = dm_target_offset(ti, sector); | 
 | 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) | 
 | 			max_len = sector_div(offset, ti->max_io_len); | 
 | 		else | 
 | 			max_len = offset & (ti->max_io_len - 1); | 
 | 		max_len = ti->max_io_len - max_len; | 
 |  | 
 | 		if (len > max_len) | 
 | 			len = max_len; | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) | 
 | { | 
 | 	if (len > UINT_MAX) { | 
 | 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", | 
 | 		      (unsigned long long)len, UINT_MAX); | 
 | 		ti->error = "Maximum size of target IO is too large"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ti->max_io_len = (uint32_t) len; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); | 
 |  | 
 | /* | 
 |  * A target may call dm_accept_partial_bio only from the map routine.  It is | 
 |  * allowed for all bio types except REQ_FLUSH. | 
 |  * | 
 |  * dm_accept_partial_bio informs the dm that the target only wants to process | 
 |  * additional n_sectors sectors of the bio and the rest of the data should be | 
 |  * sent in a next bio. | 
 |  * | 
 |  * A diagram that explains the arithmetics: | 
 |  * +--------------------+---------------+-------+ | 
 |  * |         1          |       2       |   3   | | 
 |  * +--------------------+---------------+-------+ | 
 |  * | 
 |  * <-------------- *tio->len_ptr ---------------> | 
 |  *                      <------- bi_size -------> | 
 |  *                      <-- n_sectors --> | 
 |  * | 
 |  * Region 1 was already iterated over with bio_advance or similar function. | 
 |  *	(it may be empty if the target doesn't use bio_advance) | 
 |  * Region 2 is the remaining bio size that the target wants to process. | 
 |  *	(it may be empty if region 1 is non-empty, although there is no reason | 
 |  *	 to make it empty) | 
 |  * The target requires that region 3 is to be sent in the next bio. | 
 |  * | 
 |  * If the target wants to receive multiple copies of the bio (via num_*bios, etc), | 
 |  * the partially processed part (the sum of regions 1+2) must be the same for all | 
 |  * copies of the bio. | 
 |  */ | 
 | void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) | 
 | { | 
 | 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); | 
 | 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; | 
 | 	BUG_ON(bio->bi_rw & REQ_FLUSH); | 
 | 	BUG_ON(bi_size > *tio->len_ptr); | 
 | 	BUG_ON(n_sectors > bi_size); | 
 | 	*tio->len_ptr -= bi_size - n_sectors; | 
 | 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_accept_partial_bio); | 
 |  | 
 | static void __map_bio(struct dm_target_io *tio) | 
 | { | 
 | 	int r; | 
 | 	sector_t sector; | 
 | 	struct mapped_device *md; | 
 | 	struct bio *clone = &tio->clone; | 
 | 	struct dm_target *ti = tio->ti; | 
 |  | 
 | 	clone->bi_end_io = clone_endio; | 
 |  | 
 | 	/* | 
 | 	 * Map the clone.  If r == 0 we don't need to do | 
 | 	 * anything, the target has assumed ownership of | 
 | 	 * this io. | 
 | 	 */ | 
 | 	atomic_inc(&tio->io->io_count); | 
 | 	sector = clone->bi_iter.bi_sector; | 
 | 	r = ti->type->map(ti, clone); | 
 | 	if (r == DM_MAPIO_REMAPPED) { | 
 | 		/* the bio has been remapped so dispatch it */ | 
 |  | 
 | 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, | 
 | 				      tio->io->bio->bi_bdev->bd_dev, sector); | 
 |  | 
 | 		generic_make_request(clone); | 
 | 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) { | 
 | 		/* error the io and bail out, or requeue it if needed */ | 
 | 		md = tio->io->md; | 
 | 		dec_pending(tio->io, r); | 
 | 		free_tio(md, tio); | 
 | 	} else if (r) { | 
 | 		DMWARN("unimplemented target map return value: %d", r); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | struct clone_info { | 
 | 	struct mapped_device *md; | 
 | 	struct dm_table *map; | 
 | 	struct bio *bio; | 
 | 	struct dm_io *io; | 
 | 	sector_t sector; | 
 | 	unsigned sector_count; | 
 | }; | 
 |  | 
 | static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) | 
 | { | 
 | 	bio->bi_iter.bi_sector = sector; | 
 | 	bio->bi_iter.bi_size = to_bytes(len); | 
 | } | 
 |  | 
 | /* | 
 |  * Creates a bio that consists of range of complete bvecs. | 
 |  */ | 
 | static void clone_bio(struct dm_target_io *tio, struct bio *bio, | 
 | 		      sector_t sector, unsigned len) | 
 | { | 
 | 	struct bio *clone = &tio->clone; | 
 |  | 
 | 	__bio_clone_fast(clone, bio); | 
 |  | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_clone(clone, bio, GFP_NOIO); | 
 |  | 
 | 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); | 
 | 	clone->bi_iter.bi_size = to_bytes(len); | 
 |  | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_trim(clone, 0, len); | 
 | } | 
 |  | 
 | static struct dm_target_io *alloc_tio(struct clone_info *ci, | 
 | 				      struct dm_target *ti, | 
 | 				      unsigned target_bio_nr) | 
 | { | 
 | 	struct dm_target_io *tio; | 
 | 	struct bio *clone; | 
 |  | 
 | 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); | 
 | 	tio = container_of(clone, struct dm_target_io, clone); | 
 |  | 
 | 	tio->io = ci->io; | 
 | 	tio->ti = ti; | 
 | 	tio->target_bio_nr = target_bio_nr; | 
 |  | 
 | 	return tio; | 
 | } | 
 |  | 
 | static void __clone_and_map_simple_bio(struct clone_info *ci, | 
 | 				       struct dm_target *ti, | 
 | 				       unsigned target_bio_nr, unsigned *len) | 
 | { | 
 | 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); | 
 | 	struct bio *clone = &tio->clone; | 
 |  | 
 | 	tio->len_ptr = len; | 
 |  | 
 | 	__bio_clone_fast(clone, ci->bio); | 
 | 	if (len) | 
 | 		bio_setup_sector(clone, ci->sector, *len); | 
 |  | 
 | 	__map_bio(tio); | 
 | } | 
 |  | 
 | static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, | 
 | 				  unsigned num_bios, unsigned *len) | 
 | { | 
 | 	unsigned target_bio_nr; | 
 |  | 
 | 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) | 
 | 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len); | 
 | } | 
 |  | 
 | static int __send_empty_flush(struct clone_info *ci) | 
 | { | 
 | 	unsigned target_nr = 0; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	BUG_ON(bio_has_data(ci->bio)); | 
 | 	while ((ti = dm_table_get_target(ci->map, target_nr++))) | 
 | 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, | 
 | 				     sector_t sector, unsigned *len) | 
 | { | 
 | 	struct bio *bio = ci->bio; | 
 | 	struct dm_target_io *tio; | 
 | 	unsigned target_bio_nr; | 
 | 	unsigned num_target_bios = 1; | 
 |  | 
 | 	/* | 
 | 	 * Does the target want to receive duplicate copies of the bio? | 
 | 	 */ | 
 | 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios) | 
 | 		num_target_bios = ti->num_write_bios(ti, bio); | 
 |  | 
 | 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { | 
 | 		tio = alloc_tio(ci, ti, target_bio_nr); | 
 | 		tio->len_ptr = len; | 
 | 		clone_bio(tio, bio, sector, *len); | 
 | 		__map_bio(tio); | 
 | 	} | 
 | } | 
 |  | 
 | typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); | 
 |  | 
 | static unsigned get_num_discard_bios(struct dm_target *ti) | 
 | { | 
 | 	return ti->num_discard_bios; | 
 | } | 
 |  | 
 | static unsigned get_num_write_same_bios(struct dm_target *ti) | 
 | { | 
 | 	return ti->num_write_same_bios; | 
 | } | 
 |  | 
 | typedef bool (*is_split_required_fn)(struct dm_target *ti); | 
 |  | 
 | static bool is_split_required_for_discard(struct dm_target *ti) | 
 | { | 
 | 	return ti->split_discard_bios; | 
 | } | 
 |  | 
 | static int __send_changing_extent_only(struct clone_info *ci, | 
 | 				       get_num_bios_fn get_num_bios, | 
 | 				       is_split_required_fn is_split_required) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned len; | 
 | 	unsigned num_bios; | 
 |  | 
 | 	do { | 
 | 		ti = dm_table_find_target(ci->map, ci->sector); | 
 | 		if (!dm_target_is_valid(ti)) | 
 | 			return -EIO; | 
 |  | 
 | 		/* | 
 | 		 * Even though the device advertised support for this type of | 
 | 		 * request, that does not mean every target supports it, and | 
 | 		 * reconfiguration might also have changed that since the | 
 | 		 * check was performed. | 
 | 		 */ | 
 | 		num_bios = get_num_bios ? get_num_bios(ti) : 0; | 
 | 		if (!num_bios) | 
 | 			return -EOPNOTSUPP; | 
 |  | 
 | 		if (is_split_required && !is_split_required(ti)) | 
 | 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); | 
 | 		else | 
 | 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); | 
 |  | 
 | 		__send_duplicate_bios(ci, ti, num_bios, &len); | 
 |  | 
 | 		ci->sector += len; | 
 | 	} while (ci->sector_count -= len); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __send_discard(struct clone_info *ci) | 
 | { | 
 | 	return __send_changing_extent_only(ci, get_num_discard_bios, | 
 | 					   is_split_required_for_discard); | 
 | } | 
 |  | 
 | static int __send_write_same(struct clone_info *ci) | 
 | { | 
 | 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Select the correct strategy for processing a non-flush bio. | 
 |  */ | 
 | static int __split_and_process_non_flush(struct clone_info *ci) | 
 | { | 
 | 	struct bio *bio = ci->bio; | 
 | 	struct dm_target *ti; | 
 | 	unsigned len; | 
 |  | 
 | 	if (unlikely(bio->bi_rw & REQ_DISCARD)) | 
 | 		return __send_discard(ci); | 
 | 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) | 
 | 		return __send_write_same(ci); | 
 |  | 
 | 	ti = dm_table_find_target(ci->map, ci->sector); | 
 | 	if (!dm_target_is_valid(ti)) | 
 | 		return -EIO; | 
 |  | 
 | 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); | 
 |  | 
 | 	__clone_and_map_data_bio(ci, ti, ci->sector, &len); | 
 |  | 
 | 	ci->sector += len; | 
 | 	ci->sector_count -= len; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Entry point to split a bio into clones and submit them to the targets. | 
 |  */ | 
 | static void __split_and_process_bio(struct mapped_device *md, | 
 | 				    struct dm_table *map, struct bio *bio) | 
 | { | 
 | 	struct clone_info ci; | 
 | 	int error = 0; | 
 |  | 
 | 	if (unlikely(!map)) { | 
 | 		bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ci.map = map; | 
 | 	ci.md = md; | 
 | 	ci.io = alloc_io(md); | 
 | 	ci.io->error = 0; | 
 | 	atomic_set(&ci.io->io_count, 1); | 
 | 	ci.io->bio = bio; | 
 | 	ci.io->md = md; | 
 | 	spin_lock_init(&ci.io->endio_lock); | 
 | 	ci.sector = bio->bi_iter.bi_sector; | 
 |  | 
 | 	start_io_acct(ci.io); | 
 |  | 
 | 	if (bio->bi_rw & REQ_FLUSH) { | 
 | 		ci.bio = &ci.md->flush_bio; | 
 | 		ci.sector_count = 0; | 
 | 		error = __send_empty_flush(&ci); | 
 | 		/* dec_pending submits any data associated with flush */ | 
 | 	} else { | 
 | 		ci.bio = bio; | 
 | 		ci.sector_count = bio_sectors(bio); | 
 | 		while (ci.sector_count && !error) | 
 | 			error = __split_and_process_non_flush(&ci); | 
 | 	} | 
 |  | 
 | 	/* drop the extra reference count */ | 
 | 	dec_pending(ci.io, error); | 
 | } | 
 | /*----------------------------------------------------------------- | 
 |  * CRUD END | 
 |  *---------------------------------------------------------------*/ | 
 |  | 
 | static int dm_merge_bvec(struct request_queue *q, | 
 | 			 struct bvec_merge_data *bvm, | 
 | 			 struct bio_vec *biovec) | 
 | { | 
 | 	struct mapped_device *md = q->queuedata; | 
 | 	struct dm_table *map = dm_get_live_table_fast(md); | 
 | 	struct dm_target *ti; | 
 | 	sector_t max_sectors; | 
 | 	int max_size = 0; | 
 |  | 
 | 	if (unlikely(!map)) | 
 | 		goto out; | 
 |  | 
 | 	ti = dm_table_find_target(map, bvm->bi_sector); | 
 | 	if (!dm_target_is_valid(ti)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Find maximum amount of I/O that won't need splitting | 
 | 	 */ | 
 | 	max_sectors = min(max_io_len(bvm->bi_sector, ti), | 
 | 			  (sector_t) queue_max_sectors(q)); | 
 | 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; | 
 | 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */ | 
 | 		max_size = 0; | 
 |  | 
 | 	/* | 
 | 	 * merge_bvec_fn() returns number of bytes | 
 | 	 * it can accept at this offset | 
 | 	 * max is precomputed maximal io size | 
 | 	 */ | 
 | 	if (max_size && ti->type->merge) | 
 | 		max_size = ti->type->merge(ti, bvm, biovec, max_size); | 
 | 	/* | 
 | 	 * If the target doesn't support merge method and some of the devices | 
 | 	 * provided their merge_bvec method (we know this by looking for the | 
 | 	 * max_hw_sectors that dm_set_device_limits may set), then we can't | 
 | 	 * allow bios with multiple vector entries.  So always set max_size | 
 | 	 * to 0, and the code below allows just one page. | 
 | 	 */ | 
 | 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) | 
 | 		max_size = 0; | 
 |  | 
 | out: | 
 | 	dm_put_live_table_fast(md); | 
 | 	/* | 
 | 	 * Always allow an entire first page | 
 | 	 */ | 
 | 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) | 
 | 		max_size = biovec->bv_len; | 
 |  | 
 | 	return max_size; | 
 | } | 
 |  | 
 | /* | 
 |  * The request function that just remaps the bio built up by | 
 |  * dm_merge_bvec. | 
 |  */ | 
 | static void _dm_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	int rw = bio_data_dir(bio); | 
 | 	struct mapped_device *md = q->queuedata; | 
 | 	int srcu_idx; | 
 | 	struct dm_table *map; | 
 |  | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 |  | 
 | 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); | 
 |  | 
 | 	/* if we're suspended, we have to queue this io for later */ | 
 | 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { | 
 | 		dm_put_live_table(md, srcu_idx); | 
 |  | 
 | 		if (bio_rw(bio) != READA) | 
 | 			queue_io(md, bio); | 
 | 		else | 
 | 			bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__split_and_process_bio(md, map, bio); | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	return; | 
 | } | 
 |  | 
 | int dm_request_based(struct mapped_device *md) | 
 | { | 
 | 	return blk_queue_stackable(md->queue); | 
 | } | 
 |  | 
 | static void dm_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	struct mapped_device *md = q->queuedata; | 
 |  | 
 | 	if (dm_request_based(md)) | 
 | 		blk_queue_bio(q, bio); | 
 | 	else | 
 | 		_dm_request(q, bio); | 
 | } | 
 |  | 
 | void dm_dispatch_request(struct request *rq) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (blk_queue_io_stat(rq->q)) | 
 | 		rq->cmd_flags |= REQ_IO_STAT; | 
 |  | 
 | 	rq->start_time = jiffies; | 
 | 	r = blk_insert_cloned_request(rq->q, rq); | 
 | 	if (r) | 
 | 		dm_complete_request(rq, r); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_dispatch_request); | 
 |  | 
 | static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, | 
 | 				 void *data) | 
 | { | 
 | 	struct dm_rq_target_io *tio = data; | 
 | 	struct dm_rq_clone_bio_info *info = | 
 | 		container_of(bio, struct dm_rq_clone_bio_info, clone); | 
 |  | 
 | 	info->orig = bio_orig; | 
 | 	info->tio = tio; | 
 | 	bio->bi_end_io = end_clone_bio; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int setup_clone(struct request *clone, struct request *rq, | 
 | 		       struct dm_rq_target_io *tio) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, | 
 | 			      dm_rq_bio_constructor, tio); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	clone->cmd = rq->cmd; | 
 | 	clone->cmd_len = rq->cmd_len; | 
 | 	clone->sense = rq->sense; | 
 | 	clone->end_io = end_clone_request; | 
 | 	clone->end_io_data = tio; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct request *clone_rq(struct request *rq, struct mapped_device *md, | 
 | 				gfp_t gfp_mask) | 
 | { | 
 | 	struct request *clone; | 
 | 	struct dm_rq_target_io *tio; | 
 |  | 
 | 	tio = alloc_rq_tio(md, gfp_mask); | 
 | 	if (!tio) | 
 | 		return NULL; | 
 |  | 
 | 	tio->md = md; | 
 | 	tio->ti = NULL; | 
 | 	tio->orig = rq; | 
 | 	tio->error = 0; | 
 | 	memset(&tio->info, 0, sizeof(tio->info)); | 
 |  | 
 | 	clone = &tio->clone; | 
 | 	if (setup_clone(clone, rq, tio)) { | 
 | 		/* -ENOMEM */ | 
 | 		free_rq_tio(tio); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return clone; | 
 | } | 
 |  | 
 | /* | 
 |  * Called with the queue lock held. | 
 |  */ | 
 | static int dm_prep_fn(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct mapped_device *md = q->queuedata; | 
 | 	struct request *clone; | 
 |  | 
 | 	if (unlikely(rq->special)) { | 
 | 		DMWARN("Already has something in rq->special."); | 
 | 		return BLKPREP_KILL; | 
 | 	} | 
 |  | 
 | 	clone = clone_rq(rq, md, GFP_ATOMIC); | 
 | 	if (!clone) | 
 | 		return BLKPREP_DEFER; | 
 |  | 
 | 	rq->special = clone; | 
 | 	rq->cmd_flags |= REQ_DONTPREP; | 
 |  | 
 | 	return BLKPREP_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns: | 
 |  * 0  : the request has been processed (not requeued) | 
 |  * !0 : the request has been requeued | 
 |  */ | 
 | static int map_request(struct dm_target *ti, struct request *clone, | 
 | 		       struct mapped_device *md) | 
 | { | 
 | 	int r, requeued = 0; | 
 | 	struct dm_rq_target_io *tio = clone->end_io_data; | 
 |  | 
 | 	tio->ti = ti; | 
 | 	r = ti->type->map_rq(ti, clone, &tio->info); | 
 | 	switch (r) { | 
 | 	case DM_MAPIO_SUBMITTED: | 
 | 		/* The target has taken the I/O to submit by itself later */ | 
 | 		break; | 
 | 	case DM_MAPIO_REMAPPED: | 
 | 		/* The target has remapped the I/O so dispatch it */ | 
 | 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), | 
 | 				     blk_rq_pos(tio->orig)); | 
 | 		dm_dispatch_request(clone); | 
 | 		break; | 
 | 	case DM_MAPIO_REQUEUE: | 
 | 		/* The target wants to requeue the I/O */ | 
 | 		dm_requeue_unmapped_request(clone); | 
 | 		requeued = 1; | 
 | 		break; | 
 | 	default: | 
 | 		if (r > 0) { | 
 | 			DMWARN("unimplemented target map return value: %d", r); | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		/* The target wants to complete the I/O */ | 
 | 		dm_kill_unmapped_request(clone, r); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return requeued; | 
 | } | 
 |  | 
 | static struct request *dm_start_request(struct mapped_device *md, struct request *orig) | 
 | { | 
 | 	struct request *clone; | 
 |  | 
 | 	blk_start_request(orig); | 
 | 	clone = orig->special; | 
 | 	atomic_inc(&md->pending[rq_data_dir(clone)]); | 
 |  | 
 | 	/* | 
 | 	 * Hold the md reference here for the in-flight I/O. | 
 | 	 * We can't rely on the reference count by device opener, | 
 | 	 * because the device may be closed during the request completion | 
 | 	 * when all bios are completed. | 
 | 	 * See the comment in rq_completed() too. | 
 | 	 */ | 
 | 	dm_get(md); | 
 |  | 
 | 	return clone; | 
 | } | 
 |  | 
 | /* | 
 |  * q->request_fn for request-based dm. | 
 |  * Called with the queue lock held. | 
 |  */ | 
 | static void dm_request_fn(struct request_queue *q) | 
 | { | 
 | 	struct mapped_device *md = q->queuedata; | 
 | 	int srcu_idx; | 
 | 	struct dm_table *map = dm_get_live_table(md, &srcu_idx); | 
 | 	struct dm_target *ti; | 
 | 	struct request *rq, *clone; | 
 | 	sector_t pos; | 
 |  | 
 | 	/* | 
 | 	 * For suspend, check blk_queue_stopped() and increment | 
 | 	 * ->pending within a single queue_lock not to increment the | 
 | 	 * number of in-flight I/Os after the queue is stopped in | 
 | 	 * dm_suspend(). | 
 | 	 */ | 
 | 	while (!blk_queue_stopped(q)) { | 
 | 		rq = blk_peek_request(q); | 
 | 		if (!rq) | 
 | 			goto delay_and_out; | 
 |  | 
 | 		/* always use block 0 to find the target for flushes for now */ | 
 | 		pos = 0; | 
 | 		if (!(rq->cmd_flags & REQ_FLUSH)) | 
 | 			pos = blk_rq_pos(rq); | 
 |  | 
 | 		ti = dm_table_find_target(map, pos); | 
 | 		if (!dm_target_is_valid(ti)) { | 
 | 			/* | 
 | 			 * Must perform setup, that dm_done() requires, | 
 | 			 * before calling dm_kill_unmapped_request | 
 | 			 */ | 
 | 			DMERR_LIMIT("request attempted access beyond the end of device"); | 
 | 			clone = dm_start_request(md, rq); | 
 | 			dm_kill_unmapped_request(clone, -EIO); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ti->type->busy && ti->type->busy(ti)) | 
 | 			goto delay_and_out; | 
 |  | 
 | 		clone = dm_start_request(md, rq); | 
 |  | 
 | 		spin_unlock(q->queue_lock); | 
 | 		if (map_request(ti, clone, md)) | 
 | 			goto requeued; | 
 |  | 
 | 		BUG_ON(!irqs_disabled()); | 
 | 		spin_lock(q->queue_lock); | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | requeued: | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	spin_lock(q->queue_lock); | 
 |  | 
 | delay_and_out: | 
 | 	blk_delay_queue(q, HZ / 10); | 
 | out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | } | 
 |  | 
 | int dm_underlying_device_busy(struct request_queue *q) | 
 | { | 
 | 	return blk_lld_busy(q); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_underlying_device_busy); | 
 |  | 
 | static int dm_lld_busy(struct request_queue *q) | 
 | { | 
 | 	int r; | 
 | 	struct mapped_device *md = q->queuedata; | 
 | 	struct dm_table *map = dm_get_live_table_fast(md); | 
 |  | 
 | 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) | 
 | 		r = 1; | 
 | 	else | 
 | 		r = dm_table_any_busy_target(map); | 
 |  | 
 | 	dm_put_live_table_fast(md); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int dm_any_congested(void *congested_data, int bdi_bits) | 
 | { | 
 | 	int r = bdi_bits; | 
 | 	struct mapped_device *md = congested_data; | 
 | 	struct dm_table *map; | 
 |  | 
 | 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { | 
 | 		map = dm_get_live_table_fast(md); | 
 | 		if (map) { | 
 | 			/* | 
 | 			 * Request-based dm cares about only own queue for | 
 | 			 * the query about congestion status of request_queue | 
 | 			 */ | 
 | 			if (dm_request_based(md)) | 
 | 				r = md->queue->backing_dev_info.state & | 
 | 				    bdi_bits; | 
 | 			else | 
 | 				r = dm_table_any_congested(map, bdi_bits); | 
 | 		} | 
 | 		dm_put_live_table_fast(md); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------- | 
 |  * An IDR is used to keep track of allocated minor numbers. | 
 |  *---------------------------------------------------------------*/ | 
 | static void free_minor(int minor) | 
 | { | 
 | 	spin_lock(&_minor_lock); | 
 | 	idr_remove(&_minor_idr, minor); | 
 | 	spin_unlock(&_minor_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * See if the device with a specific minor # is free. | 
 |  */ | 
 | static int specific_minor(int minor) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (minor >= (1 << MINORBITS)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 | 	idr_preload_end(); | 
 | 	if (r < 0) | 
 | 		return r == -ENOSPC ? -EBUSY : r; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int next_free_minor(int *minor) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 | 	idr_preload_end(); | 
 | 	if (r < 0) | 
 | 		return r; | 
 | 	*minor = r; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct block_device_operations dm_blk_dops; | 
 |  | 
 | static void dm_wq_work(struct work_struct *work); | 
 |  | 
 | static void dm_init_md_queue(struct mapped_device *md) | 
 | { | 
 | 	/* | 
 | 	 * Request-based dm devices cannot be stacked on top of bio-based dm | 
 | 	 * devices.  The type of this dm device has not been decided yet. | 
 | 	 * The type is decided at the first table loading time. | 
 | 	 * To prevent problematic device stacking, clear the queue flag | 
 | 	 * for request stacking support until then. | 
 | 	 * | 
 | 	 * This queue is new, so no concurrency on the queue_flags. | 
 | 	 */ | 
 | 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); | 
 |  | 
 | 	md->queue->queuedata = md; | 
 | 	md->queue->backing_dev_info.congested_fn = dm_any_congested; | 
 | 	md->queue->backing_dev_info.congested_data = md; | 
 | 	blk_queue_make_request(md->queue, dm_request); | 
 | 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); | 
 | 	blk_queue_merge_bvec(md->queue, dm_merge_bvec); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialise a blank device with a given minor. | 
 |  */ | 
 | static struct mapped_device *alloc_dev(int minor) | 
 | { | 
 | 	int r; | 
 | 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); | 
 | 	void *old_md; | 
 |  | 
 | 	if (!md) { | 
 | 		DMWARN("unable to allocate device, out of memory."); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (!try_module_get(THIS_MODULE)) | 
 | 		goto bad_module_get; | 
 |  | 
 | 	/* get a minor number for the dev */ | 
 | 	if (minor == DM_ANY_MINOR) | 
 | 		r = next_free_minor(&minor); | 
 | 	else | 
 | 		r = specific_minor(minor); | 
 | 	if (r < 0) | 
 | 		goto bad_minor; | 
 |  | 
 | 	r = init_srcu_struct(&md->io_barrier); | 
 | 	if (r < 0) | 
 | 		goto bad_io_barrier; | 
 |  | 
 | 	md->type = DM_TYPE_NONE; | 
 | 	mutex_init(&md->suspend_lock); | 
 | 	mutex_init(&md->type_lock); | 
 | 	mutex_init(&md->table_devices_lock); | 
 | 	spin_lock_init(&md->deferred_lock); | 
 | 	atomic_set(&md->holders, 1); | 
 | 	atomic_set(&md->open_count, 0); | 
 | 	atomic_set(&md->event_nr, 0); | 
 | 	atomic_set(&md->uevent_seq, 0); | 
 | 	INIT_LIST_HEAD(&md->uevent_list); | 
 | 	INIT_LIST_HEAD(&md->table_devices); | 
 | 	spin_lock_init(&md->uevent_lock); | 
 |  | 
 | 	md->queue = blk_alloc_queue(GFP_KERNEL); | 
 | 	if (!md->queue) | 
 | 		goto bad_queue; | 
 |  | 
 | 	dm_init_md_queue(md); | 
 |  | 
 | 	md->disk = alloc_disk(1); | 
 | 	if (!md->disk) | 
 | 		goto bad_disk; | 
 |  | 
 | 	atomic_set(&md->pending[0], 0); | 
 | 	atomic_set(&md->pending[1], 0); | 
 | 	init_waitqueue_head(&md->wait); | 
 | 	INIT_WORK(&md->work, dm_wq_work); | 
 | 	init_waitqueue_head(&md->eventq); | 
 | 	init_completion(&md->kobj_holder.completion); | 
 |  | 
 | 	md->disk->major = _major; | 
 | 	md->disk->first_minor = minor; | 
 | 	md->disk->fops = &dm_blk_dops; | 
 | 	md->disk->queue = md->queue; | 
 | 	md->disk->private_data = md; | 
 | 	sprintf(md->disk->disk_name, "dm-%d", minor); | 
 | 	add_disk(md->disk); | 
 | 	format_dev_t(md->name, MKDEV(_major, minor)); | 
 |  | 
 | 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); | 
 | 	if (!md->wq) | 
 | 		goto bad_thread; | 
 |  | 
 | 	md->bdev = bdget_disk(md->disk, 0); | 
 | 	if (!md->bdev) | 
 | 		goto bad_bdev; | 
 |  | 
 | 	bio_init(&md->flush_bio); | 
 | 	md->flush_bio.bi_bdev = md->bdev; | 
 | 	md->flush_bio.bi_rw = WRITE_FLUSH; | 
 |  | 
 | 	dm_stats_init(&md->stats); | 
 |  | 
 | 	/* Populate the mapping, nobody knows we exist yet */ | 
 | 	spin_lock(&_minor_lock); | 
 | 	old_md = idr_replace(&_minor_idr, md, minor); | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	BUG_ON(old_md != MINOR_ALLOCED); | 
 |  | 
 | 	return md; | 
 |  | 
 | bad_bdev: | 
 | 	destroy_workqueue(md->wq); | 
 | bad_thread: | 
 | 	del_gendisk(md->disk); | 
 | 	put_disk(md->disk); | 
 | bad_disk: | 
 | 	blk_cleanup_queue(md->queue); | 
 | bad_queue: | 
 | 	cleanup_srcu_struct(&md->io_barrier); | 
 | bad_io_barrier: | 
 | 	free_minor(minor); | 
 | bad_minor: | 
 | 	module_put(THIS_MODULE); | 
 | bad_module_get: | 
 | 	kfree(md); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void unlock_fs(struct mapped_device *md); | 
 |  | 
 | static void free_dev(struct mapped_device *md) | 
 | { | 
 | 	int minor = MINOR(disk_devt(md->disk)); | 
 |  | 
 | 	unlock_fs(md); | 
 | 	bdput(md->bdev); | 
 | 	destroy_workqueue(md->wq); | 
 | 	if (md->io_pool) | 
 | 		mempool_destroy(md->io_pool); | 
 | 	if (md->bs) | 
 | 		bioset_free(md->bs); | 
 | 	blk_integrity_unregister(md->disk); | 
 | 	del_gendisk(md->disk); | 
 | 	cleanup_srcu_struct(&md->io_barrier); | 
 | 	free_table_devices(&md->table_devices); | 
 | 	free_minor(minor); | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 | 	md->disk->private_data = NULL; | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	put_disk(md->disk); | 
 | 	blk_cleanup_queue(md->queue); | 
 | 	dm_stats_cleanup(&md->stats); | 
 | 	module_put(THIS_MODULE); | 
 | 	kfree(md); | 
 | } | 
 |  | 
 | static void __bind_mempools(struct mapped_device *md, struct dm_table *t) | 
 | { | 
 | 	struct dm_md_mempools *p = dm_table_get_md_mempools(t); | 
 |  | 
 | 	if (md->io_pool && md->bs) { | 
 | 		/* The md already has necessary mempools. */ | 
 | 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { | 
 | 			/* | 
 | 			 * Reload bioset because front_pad may have changed | 
 | 			 * because a different table was loaded. | 
 | 			 */ | 
 | 			bioset_free(md->bs); | 
 | 			md->bs = p->bs; | 
 | 			p->bs = NULL; | 
 | 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { | 
 | 			/* | 
 | 			 * There's no need to reload with request-based dm | 
 | 			 * because the size of front_pad doesn't change. | 
 | 			 * Note for future: If you are to reload bioset, | 
 | 			 * prep-ed requests in the queue may refer | 
 | 			 * to bio from the old bioset, so you must walk | 
 | 			 * through the queue to unprep. | 
 | 			 */ | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!p || md->io_pool || md->bs); | 
 |  | 
 | 	md->io_pool = p->io_pool; | 
 | 	p->io_pool = NULL; | 
 | 	md->bs = p->bs; | 
 | 	p->bs = NULL; | 
 |  | 
 | out: | 
 | 	/* mempool bind completed, now no need any mempools in the table */ | 
 | 	dm_table_free_md_mempools(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Bind a table to the device. | 
 |  */ | 
 | static void event_callback(void *context) | 
 | { | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(uevents); | 
 | 	struct mapped_device *md = (struct mapped_device *) context; | 
 |  | 
 | 	spin_lock_irqsave(&md->uevent_lock, flags); | 
 | 	list_splice_init(&md->uevent_list, &uevents); | 
 | 	spin_unlock_irqrestore(&md->uevent_lock, flags); | 
 |  | 
 | 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); | 
 |  | 
 | 	atomic_inc(&md->event_nr); | 
 | 	wake_up(&md->eventq); | 
 | } | 
 |  | 
 | /* | 
 |  * Protected by md->suspend_lock obtained by dm_swap_table(). | 
 |  */ | 
 | static void __set_size(struct mapped_device *md, sector_t size) | 
 | { | 
 | 	set_capacity(md->disk, size); | 
 |  | 
 | 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if the queue has a compulsory merge_bvec_fn function. | 
 |  * | 
 |  * If this function returns 0, then the device is either a non-dm | 
 |  * device without a merge_bvec_fn, or it is a dm device that is | 
 |  * able to split any bios it receives that are too big. | 
 |  */ | 
 | int dm_queue_merge_is_compulsory(struct request_queue *q) | 
 | { | 
 | 	struct mapped_device *dev_md; | 
 |  | 
 | 	if (!q->merge_bvec_fn) | 
 | 		return 0; | 
 |  | 
 | 	if (q->make_request_fn == dm_request) { | 
 | 		dev_md = q->queuedata; | 
 | 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int dm_device_merge_is_compulsory(struct dm_target *ti, | 
 | 					 struct dm_dev *dev, sector_t start, | 
 | 					 sector_t len, void *data) | 
 | { | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 |  | 
 | 	return dm_queue_merge_is_compulsory(q); | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if it is acceptable to ignore merge_bvec_fn based | 
 |  * on the properties of the underlying devices. | 
 |  */ | 
 | static int dm_table_merge_is_optional(struct dm_table *table) | 
 | { | 
 | 	unsigned i = 0; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	while (i < dm_table_get_num_targets(table)) { | 
 | 		ti = dm_table_get_target(table, i++); | 
 |  | 
 | 		if (ti->type->iterate_devices && | 
 | 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns old map, which caller must destroy. | 
 |  */ | 
 | static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, | 
 | 			       struct queue_limits *limits) | 
 | { | 
 | 	struct dm_table *old_map; | 
 | 	struct request_queue *q = md->queue; | 
 | 	sector_t size; | 
 | 	int merge_is_optional; | 
 |  | 
 | 	size = dm_table_get_size(t); | 
 |  | 
 | 	/* | 
 | 	 * Wipe any geometry if the size of the table changed. | 
 | 	 */ | 
 | 	if (size != dm_get_size(md)) | 
 | 		memset(&md->geometry, 0, sizeof(md->geometry)); | 
 |  | 
 | 	__set_size(md, size); | 
 |  | 
 | 	dm_table_event_callback(t, event_callback, md); | 
 |  | 
 | 	/* | 
 | 	 * The queue hasn't been stopped yet, if the old table type wasn't | 
 | 	 * for request-based during suspension.  So stop it to prevent | 
 | 	 * I/O mapping before resume. | 
 | 	 * This must be done before setting the queue restrictions, | 
 | 	 * because request-based dm may be run just after the setting. | 
 | 	 */ | 
 | 	if (dm_table_request_based(t) && !blk_queue_stopped(q)) | 
 | 		stop_queue(q); | 
 |  | 
 | 	__bind_mempools(md, t); | 
 |  | 
 | 	merge_is_optional = dm_table_merge_is_optional(t); | 
 |  | 
 | 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 | 	rcu_assign_pointer(md->map, t); | 
 | 	md->immutable_target_type = dm_table_get_immutable_target_type(t); | 
 |  | 
 | 	dm_table_set_restrictions(t, q, limits); | 
 | 	if (merge_is_optional) | 
 | 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); | 
 | 	else | 
 | 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); | 
 | 	if (old_map) | 
 | 		dm_sync_table(md); | 
 |  | 
 | 	return old_map; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns unbound table for the caller to free. | 
 |  */ | 
 | static struct dm_table *__unbind(struct mapped_device *md) | 
 | { | 
 | 	struct dm_table *map = rcu_dereference_protected(md->map, 1); | 
 |  | 
 | 	if (!map) | 
 | 		return NULL; | 
 |  | 
 | 	dm_table_event_callback(map, NULL, NULL); | 
 | 	RCU_INIT_POINTER(md->map, NULL); | 
 | 	dm_sync_table(md); | 
 |  | 
 | 	return map; | 
 | } | 
 |  | 
 | /* | 
 |  * Constructor for a new device. | 
 |  */ | 
 | int dm_create(int minor, struct mapped_device **result) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	md = alloc_dev(minor); | 
 | 	if (!md) | 
 | 		return -ENXIO; | 
 |  | 
 | 	dm_sysfs_init(md); | 
 |  | 
 | 	*result = md; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions to manage md->type. | 
 |  * All are required to hold md->type_lock. | 
 |  */ | 
 | void dm_lock_md_type(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->type_lock); | 
 | } | 
 |  | 
 | void dm_unlock_md_type(struct mapped_device *md) | 
 | { | 
 | 	mutex_unlock(&md->type_lock); | 
 | } | 
 |  | 
 | void dm_set_md_type(struct mapped_device *md, unsigned type) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&md->type_lock)); | 
 | 	md->type = type; | 
 | } | 
 |  | 
 | unsigned dm_get_md_type(struct mapped_device *md) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&md->type_lock)); | 
 | 	return md->type; | 
 | } | 
 |  | 
 | struct target_type *dm_get_immutable_target_type(struct mapped_device *md) | 
 | { | 
 | 	return md->immutable_target_type; | 
 | } | 
 |  | 
 | /* | 
 |  * The queue_limits are only valid as long as you have a reference | 
 |  * count on 'md'. | 
 |  */ | 
 | struct queue_limits *dm_get_queue_limits(struct mapped_device *md) | 
 | { | 
 | 	BUG_ON(!atomic_read(&md->holders)); | 
 | 	return &md->queue->limits; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_queue_limits); | 
 |  | 
 | /* | 
 |  * Fully initialize a request-based queue (->elevator, ->request_fn, etc). | 
 |  */ | 
 | static int dm_init_request_based_queue(struct mapped_device *md) | 
 | { | 
 | 	struct request_queue *q = NULL; | 
 |  | 
 | 	if (md->queue->elevator) | 
 | 		return 1; | 
 |  | 
 | 	/* Fully initialize the queue */ | 
 | 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); | 
 | 	if (!q) | 
 | 		return 0; | 
 |  | 
 | 	md->queue = q; | 
 | 	dm_init_md_queue(md); | 
 | 	blk_queue_softirq_done(md->queue, dm_softirq_done); | 
 | 	blk_queue_prep_rq(md->queue, dm_prep_fn); | 
 | 	blk_queue_lld_busy(md->queue, dm_lld_busy); | 
 |  | 
 | 	elv_register_queue(md->queue); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the DM device's queue based on md's type | 
 |  */ | 
 | int dm_setup_md_queue(struct mapped_device *md) | 
 | { | 
 | 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && | 
 | 	    !dm_init_request_based_queue(md)) { | 
 | 		DMWARN("Cannot initialize queue for request-based mapped device"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct mapped_device *dm_find_md(dev_t dev) | 
 | { | 
 | 	struct mapped_device *md; | 
 | 	unsigned minor = MINOR(dev); | 
 |  | 
 | 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	md = idr_find(&_minor_idr, minor); | 
 | 	if (md && (md == MINOR_ALLOCED || | 
 | 		   (MINOR(disk_devt(dm_disk(md))) != minor) || | 
 | 		   dm_deleting_md(md) || | 
 | 		   test_bit(DMF_FREEING, &md->flags))) { | 
 | 		md = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return md; | 
 | } | 
 |  | 
 | struct mapped_device *dm_get_md(dev_t dev) | 
 | { | 
 | 	struct mapped_device *md = dm_find_md(dev); | 
 |  | 
 | 	if (md) | 
 | 		dm_get(md); | 
 |  | 
 | 	return md; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_md); | 
 |  | 
 | void *dm_get_mdptr(struct mapped_device *md) | 
 | { | 
 | 	return md->interface_ptr; | 
 | } | 
 |  | 
 | void dm_set_mdptr(struct mapped_device *md, void *ptr) | 
 | { | 
 | 	md->interface_ptr = ptr; | 
 | } | 
 |  | 
 | void dm_get(struct mapped_device *md) | 
 | { | 
 | 	atomic_inc(&md->holders); | 
 | 	BUG_ON(test_bit(DMF_FREEING, &md->flags)); | 
 | } | 
 |  | 
 | const char *dm_device_name(struct mapped_device *md) | 
 | { | 
 | 	return md->name; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_device_name); | 
 |  | 
 | static void __dm_destroy(struct mapped_device *md, bool wait) | 
 | { | 
 | 	struct dm_table *map; | 
 | 	int srcu_idx; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 | 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); | 
 | 	set_bit(DMF_FREEING, &md->flags); | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	if (!dm_suspended_md(md)) { | 
 | 		dm_table_presuspend_targets(map); | 
 | 		dm_table_postsuspend_targets(map); | 
 | 	} | 
 |  | 
 | 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */ | 
 | 	dm_put_live_table(md, srcu_idx); | 
 |  | 
 | 	/* | 
 | 	 * Rare, but there may be I/O requests still going to complete, | 
 | 	 * for example.  Wait for all references to disappear. | 
 | 	 * No one should increment the reference count of the mapped_device, | 
 | 	 * after the mapped_device state becomes DMF_FREEING. | 
 | 	 */ | 
 | 	if (wait) | 
 | 		while (atomic_read(&md->holders)) | 
 | 			msleep(1); | 
 | 	else if (atomic_read(&md->holders)) | 
 | 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", | 
 | 		       dm_device_name(md), atomic_read(&md->holders)); | 
 |  | 
 | 	dm_sysfs_exit(md); | 
 | 	dm_table_destroy(__unbind(md)); | 
 | 	free_dev(md); | 
 | } | 
 |  | 
 | void dm_destroy(struct mapped_device *md) | 
 | { | 
 | 	__dm_destroy(md, true); | 
 | } | 
 |  | 
 | void dm_destroy_immediate(struct mapped_device *md) | 
 | { | 
 | 	__dm_destroy(md, false); | 
 | } | 
 |  | 
 | void dm_put(struct mapped_device *md) | 
 | { | 
 | 	atomic_dec(&md->holders); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_put); | 
 |  | 
 | static int dm_wait_for_completion(struct mapped_device *md, int interruptible) | 
 | { | 
 | 	int r = 0; | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 	add_wait_queue(&md->wait, &wait); | 
 |  | 
 | 	while (1) { | 
 | 		set_current_state(interruptible); | 
 |  | 
 | 		if (!md_in_flight(md)) | 
 | 			break; | 
 |  | 
 | 		if (interruptible == TASK_INTERRUPTIBLE && | 
 | 		    signal_pending(current)) { | 
 | 			r = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		io_schedule(); | 
 | 	} | 
 | 	set_current_state(TASK_RUNNING); | 
 |  | 
 | 	remove_wait_queue(&md->wait, &wait); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Process the deferred bios | 
 |  */ | 
 | static void dm_wq_work(struct work_struct *work) | 
 | { | 
 | 	struct mapped_device *md = container_of(work, struct mapped_device, | 
 | 						work); | 
 | 	struct bio *c; | 
 | 	int srcu_idx; | 
 | 	struct dm_table *map; | 
 |  | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 |  | 
 | 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { | 
 | 		spin_lock_irq(&md->deferred_lock); | 
 | 		c = bio_list_pop(&md->deferred); | 
 | 		spin_unlock_irq(&md->deferred_lock); | 
 |  | 
 | 		if (!c) | 
 | 			break; | 
 |  | 
 | 		if (dm_request_based(md)) | 
 | 			generic_make_request(c); | 
 | 		else | 
 | 			__split_and_process_bio(md, map, c); | 
 | 	} | 
 |  | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | } | 
 |  | 
 | static void dm_queue_flush(struct mapped_device *md) | 
 | { | 
 | 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	queue_work(md->wq, &md->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Swap in a new table, returning the old one for the caller to destroy. | 
 |  */ | 
 | struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) | 
 | { | 
 | 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); | 
 | 	struct queue_limits limits; | 
 | 	int r; | 
 |  | 
 | 	mutex_lock(&md->suspend_lock); | 
 |  | 
 | 	/* device must be suspended */ | 
 | 	if (!dm_suspended_md(md)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the new table has no data devices, retain the existing limits. | 
 | 	 * This helps multipath with queue_if_no_path if all paths disappear, | 
 | 	 * then new I/O is queued based on these limits, and then some paths | 
 | 	 * reappear. | 
 | 	 */ | 
 | 	if (dm_table_has_no_data_devices(table)) { | 
 | 		live_map = dm_get_live_table_fast(md); | 
 | 		if (live_map) | 
 | 			limits = md->queue->limits; | 
 | 		dm_put_live_table_fast(md); | 
 | 	} | 
 |  | 
 | 	if (!live_map) { | 
 | 		r = dm_calculate_queue_limits(table, &limits); | 
 | 		if (r) { | 
 | 			map = ERR_PTR(r); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	map = __bind(md, table, &limits); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | 	return map; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions to lock and unlock any filesystem running on the | 
 |  * device. | 
 |  */ | 
 | static int lock_fs(struct mapped_device *md) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	WARN_ON(md->frozen_sb); | 
 |  | 
 | 	md->frozen_sb = freeze_bdev(md->bdev); | 
 | 	if (IS_ERR(md->frozen_sb)) { | 
 | 		r = PTR_ERR(md->frozen_sb); | 
 | 		md->frozen_sb = NULL; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	set_bit(DMF_FROZEN, &md->flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void unlock_fs(struct mapped_device *md) | 
 | { | 
 | 	if (!test_bit(DMF_FROZEN, &md->flags)) | 
 | 		return; | 
 |  | 
 | 	thaw_bdev(md->bdev, md->frozen_sb); | 
 | 	md->frozen_sb = NULL; | 
 | 	clear_bit(DMF_FROZEN, &md->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * If __dm_suspend returns 0, the device is completely quiescent | 
 |  * now. There is no request-processing activity. All new requests | 
 |  * are being added to md->deferred list. | 
 |  * | 
 |  * Caller must hold md->suspend_lock | 
 |  */ | 
 | static int __dm_suspend(struct mapped_device *md, struct dm_table *map, | 
 | 			unsigned suspend_flags, int interruptible) | 
 | { | 
 | 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; | 
 | 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. | 
 | 	 * This flag is cleared before dm_suspend returns. | 
 | 	 */ | 
 | 	if (noflush) | 
 | 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 |  | 
 | 	/* | 
 | 	 * This gets reverted if there's an error later and the targets | 
 | 	 * provide the .presuspend_undo hook. | 
 | 	 */ | 
 | 	dm_table_presuspend_targets(map); | 
 |  | 
 | 	/* | 
 | 	 * Flush I/O to the device. | 
 | 	 * Any I/O submitted after lock_fs() may not be flushed. | 
 | 	 * noflush takes precedence over do_lockfs. | 
 | 	 * (lock_fs() flushes I/Os and waits for them to complete.) | 
 | 	 */ | 
 | 	if (!noflush && do_lockfs) { | 
 | 		r = lock_fs(md); | 
 | 		if (r) { | 
 | 			dm_table_presuspend_undo_targets(map); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Here we must make sure that no processes are submitting requests | 
 | 	 * to target drivers i.e. no one may be executing | 
 | 	 * __split_and_process_bio. This is called from dm_request and | 
 | 	 * dm_wq_work. | 
 | 	 * | 
 | 	 * To get all processes out of __split_and_process_bio in dm_request, | 
 | 	 * we take the write lock. To prevent any process from reentering | 
 | 	 * __split_and_process_bio from dm_request and quiesce the thread | 
 | 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call | 
 | 	 * flush_workqueue(md->wq). | 
 | 	 */ | 
 | 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	if (map) | 
 | 		synchronize_srcu(&md->io_barrier); | 
 |  | 
 | 	/* | 
 | 	 * Stop md->queue before flushing md->wq in case request-based | 
 | 	 * dm defers requests to md->wq from md->queue. | 
 | 	 */ | 
 | 	if (dm_request_based(md)) | 
 | 		stop_queue(md->queue); | 
 |  | 
 | 	flush_workqueue(md->wq); | 
 |  | 
 | 	/* | 
 | 	 * At this point no more requests are entering target request routines. | 
 | 	 * We call dm_wait_for_completion to wait for all existing requests | 
 | 	 * to finish. | 
 | 	 */ | 
 | 	r = dm_wait_for_completion(md, interruptible); | 
 |  | 
 | 	if (noflush) | 
 | 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 | 	if (map) | 
 | 		synchronize_srcu(&md->io_barrier); | 
 |  | 
 | 	/* were we interrupted ? */ | 
 | 	if (r < 0) { | 
 | 		dm_queue_flush(md); | 
 |  | 
 | 		if (dm_request_based(md)) | 
 | 			start_queue(md->queue); | 
 |  | 
 | 		unlock_fs(md); | 
 | 		dm_table_presuspend_undo_targets(map); | 
 | 		/* pushback list is already flushed, so skip flush */ | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to be able to change a mapping table under a mounted | 
 |  * filesystem.  For example we might want to move some data in | 
 |  * the background.  Before the table can be swapped with | 
 |  * dm_bind_table, dm_suspend must be called to flush any in | 
 |  * flight bios and ensure that any further io gets deferred. | 
 |  */ | 
 | /* | 
 |  * Suspend mechanism in request-based dm. | 
 |  * | 
 |  * 1. Flush all I/Os by lock_fs() if needed. | 
 |  * 2. Stop dispatching any I/O by stopping the request_queue. | 
 |  * 3. Wait for all in-flight I/Os to be completed or requeued. | 
 |  * | 
 |  * To abort suspend, start the request_queue. | 
 |  */ | 
 | int dm_suspend(struct mapped_device *md, unsigned suspend_flags) | 
 | { | 
 | 	struct dm_table *map = NULL; | 
 | 	int r = 0; | 
 |  | 
 | retry: | 
 | 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		r = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (dm_suspended_internally_md(md)) { | 
 | 		/* already internally suspended, wait for internal resume */ | 
 | 		mutex_unlock(&md->suspend_lock); | 
 | 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); | 
 | 		if (r) | 
 | 			return r; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 |  | 
 | 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); | 
 | 	if (r) | 
 | 		goto out_unlock; | 
 |  | 
 | 	set_bit(DMF_SUSPENDED, &md->flags); | 
 |  | 
 | 	dm_table_postsuspend_targets(map); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int __dm_resume(struct mapped_device *md, struct dm_table *map) | 
 | { | 
 | 	if (map) { | 
 | 		int r = dm_table_resume_targets(map); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	dm_queue_flush(md); | 
 |  | 
 | 	/* | 
 | 	 * Flushing deferred I/Os must be done after targets are resumed | 
 | 	 * so that mapping of targets can work correctly. | 
 | 	 * Request-based dm is queueing the deferred I/Os in its request_queue. | 
 | 	 */ | 
 | 	if (dm_request_based(md)) | 
 | 		start_queue(md->queue); | 
 |  | 
 | 	unlock_fs(md); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_resume(struct mapped_device *md) | 
 | { | 
 | 	int r = -EINVAL; | 
 | 	struct dm_table *map = NULL; | 
 |  | 
 | retry: | 
 | 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	if (!dm_suspended_md(md)) | 
 | 		goto out; | 
 |  | 
 | 	if (dm_suspended_internally_md(md)) { | 
 | 		/* already internally suspended, wait for internal resume */ | 
 | 		mutex_unlock(&md->suspend_lock); | 
 | 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); | 
 | 		if (r) | 
 | 			return r; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 | 	if (!map || !dm_table_get_size(map)) | 
 | 		goto out; | 
 |  | 
 | 	r = __dm_resume(md, map); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	clear_bit(DMF_SUSPENDED, &md->flags); | 
 |  | 
 | 	r = 0; | 
 | out: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Internal suspend/resume works like userspace-driven suspend. It waits | 
 |  * until all bios finish and prevents issuing new bios to the target drivers. | 
 |  * It may be used only from the kernel. | 
 |  */ | 
 |  | 
 | static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) | 
 | { | 
 | 	struct dm_table *map = NULL; | 
 |  | 
 | 	if (dm_suspended_internally_md(md)) | 
 | 		return; /* nested internal suspend */ | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | 		return; /* nest suspend */ | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 |  | 
 | 	/* | 
 | 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is | 
 | 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend | 
 | 	 * would require changing .presuspend to return an error -- avoid this | 
 | 	 * until there is a need for more elaborate variants of internal suspend. | 
 | 	 */ | 
 | 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); | 
 |  | 
 | 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 |  | 
 | 	dm_table_postsuspend_targets(map); | 
 | } | 
 |  | 
 | static void __dm_internal_resume(struct mapped_device *md) | 
 | { | 
 | 	if (!dm_suspended_internally_md(md)) | 
 | 		return; /* resume from nested internal suspend */ | 
 |  | 
 | 	if (dm_suspended_md(md)) | 
 | 		goto done; /* resume from nested suspend */ | 
 |  | 
 | 	/* | 
 | 	 * NOTE: existing callers don't need to call dm_table_resume_targets | 
 | 	 * (which may fail -- so best to avoid it for now by passing NULL map) | 
 | 	 */ | 
 | 	(void) __dm_resume(md, NULL); | 
 |  | 
 | done: | 
 | 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); | 
 | } | 
 |  | 
 | void dm_internal_suspend_noflush(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); | 
 |  | 
 | void dm_internal_resume(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	__dm_internal_resume(md); | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_resume); | 
 |  | 
 | /* | 
 |  * Fast variants of internal suspend/resume hold md->suspend_lock, | 
 |  * which prevents interaction with userspace-driven suspend. | 
 |  */ | 
 |  | 
 | void dm_internal_suspend_fast(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	if (dm_suspended_md(md) || dm_suspended_internally_md(md)) | 
 | 		return; | 
 |  | 
 | 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	synchronize_srcu(&md->io_barrier); | 
 | 	flush_workqueue(md->wq); | 
 | 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); | 
 | } | 
 |  | 
 | void dm_internal_resume_fast(struct mapped_device *md) | 
 | { | 
 | 	if (dm_suspended_md(md) || dm_suspended_internally_md(md)) | 
 | 		goto done; | 
 |  | 
 | 	dm_queue_flush(md); | 
 |  | 
 | done: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------- | 
 |  * Event notification. | 
 |  *---------------------------------------------------------------*/ | 
 | int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, | 
 | 		       unsigned cookie) | 
 | { | 
 | 	char udev_cookie[DM_COOKIE_LENGTH]; | 
 | 	char *envp[] = { udev_cookie, NULL }; | 
 |  | 
 | 	if (!cookie) | 
 | 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); | 
 | 	else { | 
 | 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", | 
 | 			 DM_COOKIE_ENV_VAR_NAME, cookie); | 
 | 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, | 
 | 					  action, envp); | 
 | 	} | 
 | } | 
 |  | 
 | uint32_t dm_next_uevent_seq(struct mapped_device *md) | 
 | { | 
 | 	return atomic_add_return(1, &md->uevent_seq); | 
 | } | 
 |  | 
 | uint32_t dm_get_event_nr(struct mapped_device *md) | 
 | { | 
 | 	return atomic_read(&md->event_nr); | 
 | } | 
 |  | 
 | int dm_wait_event(struct mapped_device *md, int event_nr) | 
 | { | 
 | 	return wait_event_interruptible(md->eventq, | 
 | 			(event_nr != atomic_read(&md->event_nr))); | 
 | } | 
 |  | 
 | void dm_uevent_add(struct mapped_device *md, struct list_head *elist) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&md->uevent_lock, flags); | 
 | 	list_add(elist, &md->uevent_list); | 
 | 	spin_unlock_irqrestore(&md->uevent_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * The gendisk is only valid as long as you have a reference | 
 |  * count on 'md'. | 
 |  */ | 
 | struct gendisk *dm_disk(struct mapped_device *md) | 
 | { | 
 | 	return md->disk; | 
 | } | 
 |  | 
 | struct kobject *dm_kobject(struct mapped_device *md) | 
 | { | 
 | 	return &md->kobj_holder.kobj; | 
 | } | 
 |  | 
 | struct mapped_device *dm_get_from_kobject(struct kobject *kobj) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj); | 
 |  | 
 | 	if (test_bit(DMF_FREEING, &md->flags) || | 
 | 	    dm_deleting_md(md)) | 
 | 		return NULL; | 
 |  | 
 | 	dm_get(md); | 
 | 	return md; | 
 | } | 
 |  | 
 | int dm_suspended_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_SUSPENDED, &md->flags); | 
 | } | 
 |  | 
 | int dm_suspended_internally_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | } | 
 |  | 
 | int dm_test_deferred_remove_flag(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 | } | 
 |  | 
 | int dm_suspended(struct dm_target *ti) | 
 | { | 
 | 	return dm_suspended_md(dm_table_get_md(ti->table)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_suspended); | 
 |  | 
 | int dm_noflush_suspending(struct dm_target *ti) | 
 | { | 
 | 	return __noflush_suspending(dm_table_get_md(ti->table)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_noflush_suspending); | 
 |  | 
 | struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) | 
 | { | 
 | 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); | 
 | 	struct kmem_cache *cachep; | 
 | 	unsigned int pool_size; | 
 | 	unsigned int front_pad; | 
 |  | 
 | 	if (!pools) | 
 | 		return NULL; | 
 |  | 
 | 	if (type == DM_TYPE_BIO_BASED) { | 
 | 		cachep = _io_cache; | 
 | 		pool_size = dm_get_reserved_bio_based_ios(); | 
 | 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); | 
 | 	} else if (type == DM_TYPE_REQUEST_BASED) { | 
 | 		cachep = _rq_tio_cache; | 
 | 		pool_size = dm_get_reserved_rq_based_ios(); | 
 | 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone); | 
 | 		/* per_bio_data_size is not used. See __bind_mempools(). */ | 
 | 		WARN_ON(per_bio_data_size != 0); | 
 | 	} else | 
 | 		goto out; | 
 |  | 
 | 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep); | 
 | 	if (!pools->io_pool) | 
 | 		goto out; | 
 |  | 
 | 	pools->bs = bioset_create_nobvec(pool_size, front_pad); | 
 | 	if (!pools->bs) | 
 | 		goto out; | 
 |  | 
 | 	if (integrity && bioset_integrity_create(pools->bs, pool_size)) | 
 | 		goto out; | 
 |  | 
 | 	return pools; | 
 |  | 
 | out: | 
 | 	dm_free_md_mempools(pools); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void dm_free_md_mempools(struct dm_md_mempools *pools) | 
 | { | 
 | 	if (!pools) | 
 | 		return; | 
 |  | 
 | 	if (pools->io_pool) | 
 | 		mempool_destroy(pools->io_pool); | 
 |  | 
 | 	if (pools->bs) | 
 | 		bioset_free(pools->bs); | 
 |  | 
 | 	kfree(pools); | 
 | } | 
 |  | 
 | static const struct block_device_operations dm_blk_dops = { | 
 | 	.open = dm_blk_open, | 
 | 	.release = dm_blk_close, | 
 | 	.ioctl = dm_blk_ioctl, | 
 | 	.getgeo = dm_blk_getgeo, | 
 | 	.owner = THIS_MODULE | 
 | }; | 
 |  | 
 | /* | 
 |  * module hooks | 
 |  */ | 
 | module_init(dm_init); | 
 | module_exit(dm_exit); | 
 |  | 
 | module_param(major, uint, 0); | 
 | MODULE_PARM_DESC(major, "The major number of the device mapper"); | 
 |  | 
 | module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); | 
 | MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); | 
 |  | 
 | module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); | 
 | MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); | 
 |  | 
 | MODULE_DESCRIPTION(DM_NAME " driver"); | 
 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
 | MODULE_LICENSE("GPL"); |