|  | /* | 
|  | * Freescale Memory Controller kernel module | 
|  | * | 
|  | * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and | 
|  | * ARM-based Layerscape SoCs including LS2xxx. Originally split | 
|  | * out from mpc85xx_edac EDAC driver. | 
|  | * | 
|  | * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc. | 
|  | * | 
|  | * Author: Dave Jiang <djiang@mvista.com> | 
|  | * | 
|  | * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under | 
|  | * the terms of the GNU General Public License version 2. This program | 
|  | * is licensed "as is" without any warranty of any kind, whether express | 
|  | * or implied. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/edac.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_address.h> | 
|  | #include "edac_module.h" | 
|  | #include "fsl_ddr_edac.h" | 
|  |  | 
|  | #define EDAC_MOD_STR	"fsl_ddr_edac" | 
|  |  | 
|  | static int edac_mc_idx; | 
|  |  | 
|  | static u32 orig_ddr_err_disable; | 
|  | static u32 orig_ddr_err_sbe; | 
|  | static bool little_endian; | 
|  |  | 
|  | static inline u32 ddr_in32(void __iomem *addr) | 
|  | { | 
|  | return little_endian ? ioread32(addr) : ioread32be(addr); | 
|  | } | 
|  |  | 
|  | static inline void ddr_out32(void __iomem *addr, u32 value) | 
|  | { | 
|  | if (little_endian) | 
|  | iowrite32(value, addr); | 
|  | else | 
|  | iowrite32be(value, addr); | 
|  | } | 
|  |  | 
|  | /************************ MC SYSFS parts ***********************************/ | 
|  |  | 
|  | #define to_mci(k) container_of(k, struct mem_ctl_info, dev) | 
|  |  | 
|  | static ssize_t fsl_mc_inject_data_hi_show(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | char *data) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | return sprintf(data, "0x%08x", | 
|  | ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI)); | 
|  | } | 
|  |  | 
|  | static ssize_t fsl_mc_inject_data_lo_show(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | char *data) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | return sprintf(data, "0x%08x", | 
|  | ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO)); | 
|  | } | 
|  |  | 
|  | static ssize_t fsl_mc_inject_ctrl_show(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | char *data) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | return sprintf(data, "0x%08x", | 
|  | ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT)); | 
|  | } | 
|  |  | 
|  | static ssize_t fsl_mc_inject_data_hi_store(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | const char *data, size_t count) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | unsigned long val; | 
|  | int rc; | 
|  |  | 
|  | if (isdigit(*data)) { | 
|  | rc = kstrtoul(data, 0, &val); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val); | 
|  | return count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t fsl_mc_inject_data_lo_store(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | const char *data, size_t count) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | unsigned long val; | 
|  | int rc; | 
|  |  | 
|  | if (isdigit(*data)) { | 
|  | rc = kstrtoul(data, 0, &val); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val); | 
|  | return count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t fsl_mc_inject_ctrl_store(struct device *dev, | 
|  | struct device_attribute *mattr, | 
|  | const char *data, size_t count) | 
|  | { | 
|  | struct mem_ctl_info *mci = to_mci(dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | unsigned long val; | 
|  | int rc; | 
|  |  | 
|  | if (isdigit(*data)) { | 
|  | rc = kstrtoul(data, 0, &val); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val); | 
|  | return count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR, | 
|  | fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store); | 
|  | static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR, | 
|  | fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store); | 
|  | static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR, | 
|  | fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store); | 
|  |  | 
|  | static struct attribute *fsl_ddr_dev_attrs[] = { | 
|  | &dev_attr_inject_data_hi.attr, | 
|  | &dev_attr_inject_data_lo.attr, | 
|  | &dev_attr_inject_ctrl.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | ATTRIBUTE_GROUPS(fsl_ddr_dev); | 
|  |  | 
|  | /**************************** MC Err device ***************************/ | 
|  |  | 
|  | /* | 
|  | * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the | 
|  | * MPC8572 User's Manual.  Each line represents a syndrome bit column as a | 
|  | * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels | 
|  | * below correspond to Freescale's manuals. | 
|  | */ | 
|  | static unsigned int ecc_table[16] = { | 
|  | /* MSB           LSB */ | 
|  | /* [0:31]    [32:63] */ | 
|  | 0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */ | 
|  | 0x00ff00ff, 0x00fff0ff, | 
|  | 0x0f0f0f0f, 0x0f0fff00, | 
|  | 0x11113333, 0x7777000f, | 
|  | 0x22224444, 0x8888222f, | 
|  | 0x44448888, 0xffff4441, | 
|  | 0x8888ffff, 0x11118882, | 
|  | 0xffff1111, 0x22221114,	/* Syndrome bit 0 */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Calculate the correct ECC value for a 64-bit value specified by high:low | 
|  | */ | 
|  | static u8 calculate_ecc(u32 high, u32 low) | 
|  | { | 
|  | u32 mask_low; | 
|  | u32 mask_high; | 
|  | int bit_cnt; | 
|  | u8 ecc = 0; | 
|  | int i; | 
|  | int j; | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | mask_high = ecc_table[i * 2]; | 
|  | mask_low = ecc_table[i * 2 + 1]; | 
|  | bit_cnt = 0; | 
|  |  | 
|  | for (j = 0; j < 32; j++) { | 
|  | if ((mask_high >> j) & 1) | 
|  | bit_cnt ^= (high >> j) & 1; | 
|  | if ((mask_low >> j) & 1) | 
|  | bit_cnt ^= (low >> j) & 1; | 
|  | } | 
|  |  | 
|  | ecc |= bit_cnt << i; | 
|  | } | 
|  |  | 
|  | return ecc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the syndrome code which is generated if the data line specified by | 
|  | * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641 | 
|  | * User's Manual and 9-61 in the MPC8572 User's Manual. | 
|  | */ | 
|  | static u8 syndrome_from_bit(unsigned int bit) { | 
|  | int i; | 
|  | u8 syndrome = 0; | 
|  |  | 
|  | /* | 
|  | * Cycle through the upper or lower 32-bit portion of each value in | 
|  | * ecc_table depending on if 'bit' is in the upper or lower half of | 
|  | * 64-bit data. | 
|  | */ | 
|  | for (i = bit < 32; i < 16; i += 2) | 
|  | syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2); | 
|  |  | 
|  | return syndrome; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode data and ecc syndrome to determine what went wrong | 
|  | * Note: This can only decode single-bit errors | 
|  | */ | 
|  | static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc, | 
|  | int *bad_data_bit, int *bad_ecc_bit) | 
|  | { | 
|  | int i; | 
|  | u8 syndrome; | 
|  |  | 
|  | *bad_data_bit = -1; | 
|  | *bad_ecc_bit = -1; | 
|  |  | 
|  | /* | 
|  | * Calculate the ECC of the captured data and XOR it with the captured | 
|  | * ECC to find an ECC syndrome value we can search for | 
|  | */ | 
|  | syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc; | 
|  |  | 
|  | /* Check if a data line is stuck... */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | if (syndrome == syndrome_from_bit(i)) { | 
|  | *bad_data_bit = i; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If data is correct, check ECC bits for errors... */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | if ((syndrome >> i) & 0x1) { | 
|  | *bad_ecc_bit = i; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define make64(high, low) (((u64)(high) << 32) | (low)) | 
|  |  | 
|  | static void fsl_mc_check(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | struct csrow_info *csrow; | 
|  | u32 bus_width; | 
|  | u32 err_detect; | 
|  | u32 syndrome; | 
|  | u64 err_addr; | 
|  | u32 pfn; | 
|  | int row_index; | 
|  | u32 cap_high; | 
|  | u32 cap_low; | 
|  | int bad_data_bit; | 
|  | int bad_ecc_bit; | 
|  |  | 
|  | err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); | 
|  | if (!err_detect) | 
|  | return; | 
|  |  | 
|  | fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n", | 
|  | err_detect); | 
|  |  | 
|  | /* no more processing if not ECC bit errors */ | 
|  | if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) { | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); | 
|  | return; | 
|  | } | 
|  |  | 
|  | syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC); | 
|  |  | 
|  | /* Mask off appropriate bits of syndrome based on bus width */ | 
|  | bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) & | 
|  | DSC_DBW_MASK) ? 32 : 64; | 
|  | if (bus_width == 64) | 
|  | syndrome &= 0xff; | 
|  | else | 
|  | syndrome &= 0xffff; | 
|  |  | 
|  | err_addr = make64( | 
|  | ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS), | 
|  | ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS)); | 
|  | pfn = err_addr >> PAGE_SHIFT; | 
|  |  | 
|  | for (row_index = 0; row_index < mci->nr_csrows; row_index++) { | 
|  | csrow = mci->csrows[row_index]; | 
|  | if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI); | 
|  | cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO); | 
|  |  | 
|  | /* | 
|  | * Analyze single-bit errors on 64-bit wide buses | 
|  | * TODO: Add support for 32-bit wide buses | 
|  | */ | 
|  | if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) { | 
|  | sbe_ecc_decode(cap_high, cap_low, syndrome, | 
|  | &bad_data_bit, &bad_ecc_bit); | 
|  |  | 
|  | if (bad_data_bit != -1) | 
|  | fsl_mc_printk(mci, KERN_ERR, | 
|  | "Faulty Data bit: %d\n", bad_data_bit); | 
|  | if (bad_ecc_bit != -1) | 
|  | fsl_mc_printk(mci, KERN_ERR, | 
|  | "Faulty ECC bit: %d\n", bad_ecc_bit); | 
|  |  | 
|  | fsl_mc_printk(mci, KERN_ERR, | 
|  | "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n", | 
|  | cap_high ^ (1 << (bad_data_bit - 32)), | 
|  | cap_low ^ (1 << bad_data_bit), | 
|  | syndrome ^ (1 << bad_ecc_bit)); | 
|  | } | 
|  |  | 
|  | fsl_mc_printk(mci, KERN_ERR, | 
|  | "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n", | 
|  | cap_high, cap_low, syndrome); | 
|  | fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr); | 
|  | fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn); | 
|  |  | 
|  | /* we are out of range */ | 
|  | if (row_index == mci->nr_csrows) | 
|  | fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n"); | 
|  |  | 
|  | if (err_detect & DDR_EDE_SBE) | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, | 
|  | pfn, err_addr & ~PAGE_MASK, syndrome, | 
|  | row_index, 0, -1, | 
|  | mci->ctl_name, ""); | 
|  |  | 
|  | if (err_detect & DDR_EDE_MBE) | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, | 
|  | pfn, err_addr & ~PAGE_MASK, syndrome, | 
|  | row_index, 0, -1, | 
|  | mci->ctl_name, ""); | 
|  |  | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); | 
|  | } | 
|  |  | 
|  | static irqreturn_t fsl_mc_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct mem_ctl_info *mci = dev_id; | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | u32 err_detect; | 
|  |  | 
|  | err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); | 
|  | if (!err_detect) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | fsl_mc_check(mci); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void fsl_ddr_init_csrows(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  | struct csrow_info *csrow; | 
|  | struct dimm_info *dimm; | 
|  | u32 sdram_ctl; | 
|  | u32 sdtype; | 
|  | enum mem_type mtype; | 
|  | u32 cs_bnds; | 
|  | int index; | 
|  |  | 
|  | sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); | 
|  |  | 
|  | sdtype = sdram_ctl & DSC_SDTYPE_MASK; | 
|  | if (sdram_ctl & DSC_RD_EN) { | 
|  | switch (sdtype) { | 
|  | case 0x02000000: | 
|  | mtype = MEM_RDDR; | 
|  | break; | 
|  | case 0x03000000: | 
|  | mtype = MEM_RDDR2; | 
|  | break; | 
|  | case 0x07000000: | 
|  | mtype = MEM_RDDR3; | 
|  | break; | 
|  | case 0x05000000: | 
|  | mtype = MEM_RDDR4; | 
|  | break; | 
|  | default: | 
|  | mtype = MEM_UNKNOWN; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (sdtype) { | 
|  | case 0x02000000: | 
|  | mtype = MEM_DDR; | 
|  | break; | 
|  | case 0x03000000: | 
|  | mtype = MEM_DDR2; | 
|  | break; | 
|  | case 0x07000000: | 
|  | mtype = MEM_DDR3; | 
|  | break; | 
|  | case 0x05000000: | 
|  | mtype = MEM_DDR4; | 
|  | break; | 
|  | default: | 
|  | mtype = MEM_UNKNOWN; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (index = 0; index < mci->nr_csrows; index++) { | 
|  | u32 start; | 
|  | u32 end; | 
|  |  | 
|  | csrow = mci->csrows[index]; | 
|  | dimm = csrow->channels[0]->dimm; | 
|  |  | 
|  | cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 + | 
|  | (index * FSL_MC_CS_BNDS_OFS)); | 
|  |  | 
|  | start = (cs_bnds & 0xffff0000) >> 16; | 
|  | end   = (cs_bnds & 0x0000ffff); | 
|  |  | 
|  | if (start == end) | 
|  | continue;	/* not populated */ | 
|  |  | 
|  | start <<= (24 - PAGE_SHIFT); | 
|  | end   <<= (24 - PAGE_SHIFT); | 
|  | end    |= (1 << (24 - PAGE_SHIFT)) - 1; | 
|  |  | 
|  | csrow->first_page = start; | 
|  | csrow->last_page = end; | 
|  |  | 
|  | dimm->nr_pages = end + 1 - start; | 
|  | dimm->grain = 8; | 
|  | dimm->mtype = mtype; | 
|  | dimm->dtype = DEV_UNKNOWN; | 
|  | if (sdram_ctl & DSC_X32_EN) | 
|  | dimm->dtype = DEV_X32; | 
|  | dimm->edac_mode = EDAC_SECDED; | 
|  | } | 
|  | } | 
|  |  | 
|  | int fsl_mc_err_probe(struct platform_device *op) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct edac_mc_layer layers[2]; | 
|  | struct fsl_mc_pdata *pdata; | 
|  | struct resource r; | 
|  | u32 sdram_ctl; | 
|  | int res; | 
|  |  | 
|  | if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | 
|  | layers[0].size = 4; | 
|  | layers[0].is_virt_csrow = true; | 
|  | layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[1].size = 1; | 
|  | layers[1].is_virt_csrow = false; | 
|  | mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers, | 
|  | sizeof(*pdata)); | 
|  | if (!mci) { | 
|  | devres_release_group(&op->dev, fsl_mc_err_probe); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pdata = mci->pvt_info; | 
|  | pdata->name = "fsl_mc_err"; | 
|  | mci->pdev = &op->dev; | 
|  | pdata->edac_idx = edac_mc_idx++; | 
|  | dev_set_drvdata(mci->pdev, mci); | 
|  | mci->ctl_name = pdata->name; | 
|  | mci->dev_name = pdata->name; | 
|  |  | 
|  | /* | 
|  | * Get the endianness of DDR controller registers. | 
|  | * Default is big endian. | 
|  | */ | 
|  | little_endian = of_property_read_bool(op->dev.of_node, "little-endian"); | 
|  |  | 
|  | res = of_address_to_resource(op->dev.of_node, 0, &r); | 
|  | if (res) { | 
|  | pr_err("%s: Unable to get resource for MC err regs\n", | 
|  | __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r), | 
|  | pdata->name)) { | 
|  | pr_err("%s: Error while requesting mem region\n", | 
|  | __func__); | 
|  | res = -EBUSY; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r)); | 
|  | if (!pdata->mc_vbase) { | 
|  | pr_err("%s: Unable to setup MC err regs\n", __func__); | 
|  | res = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); | 
|  | if (!(sdram_ctl & DSC_ECC_EN)) { | 
|  | /* no ECC */ | 
|  | pr_warn("%s: No ECC DIMMs discovered\n", __func__); | 
|  | res = -ENODEV; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | edac_dbg(3, "init mci\n"); | 
|  | mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR | | 
|  | MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 | | 
|  | MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 | | 
|  | MEM_FLAG_DDR4 | MEM_FLAG_RDDR4; | 
|  | mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; | 
|  | mci->edac_cap = EDAC_FLAG_SECDED; | 
|  | mci->mod_name = EDAC_MOD_STR; | 
|  |  | 
|  | if (edac_op_state == EDAC_OPSTATE_POLL) | 
|  | mci->edac_check = fsl_mc_check; | 
|  |  | 
|  | mci->ctl_page_to_phys = NULL; | 
|  |  | 
|  | mci->scrub_mode = SCRUB_SW_SRC; | 
|  |  | 
|  | fsl_ddr_init_csrows(mci); | 
|  |  | 
|  | /* store the original error disable bits */ | 
|  | orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE); | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0); | 
|  |  | 
|  | /* clear all error bits */ | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0); | 
|  |  | 
|  | res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups); | 
|  | if (res) { | 
|  | edac_dbg(3, "failed edac_mc_add_mc()\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (edac_op_state == EDAC_OPSTATE_INT) { | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, | 
|  | DDR_EIE_MBEE | DDR_EIE_SBEE); | 
|  |  | 
|  | /* store the original error management threshold */ | 
|  | orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase + | 
|  | FSL_MC_ERR_SBE) & 0xff0000; | 
|  |  | 
|  | /* set threshold to 1 error per interrupt */ | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000); | 
|  |  | 
|  | /* register interrupts */ | 
|  | pdata->irq = platform_get_irq(op, 0); | 
|  | res = devm_request_irq(&op->dev, pdata->irq, | 
|  | fsl_mc_isr, | 
|  | IRQF_SHARED, | 
|  | "[EDAC] MC err", mci); | 
|  | if (res < 0) { | 
|  | pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n", | 
|  | __func__, pdata->irq); | 
|  | res = -ENODEV; | 
|  | goto err2; | 
|  | } | 
|  |  | 
|  | pr_info(EDAC_MOD_STR " acquired irq %d for MC\n", | 
|  | pdata->irq); | 
|  | } | 
|  |  | 
|  | devres_remove_group(&op->dev, fsl_mc_err_probe); | 
|  | edac_dbg(3, "success\n"); | 
|  | pr_info(EDAC_MOD_STR " MC err registered\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | edac_mc_del_mc(&op->dev); | 
|  | err: | 
|  | devres_release_group(&op->dev, fsl_mc_err_probe); | 
|  | edac_mc_free(mci); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int fsl_mc_err_remove(struct platform_device *op) | 
|  | { | 
|  | struct mem_ctl_info *mci = dev_get_drvdata(&op->dev); | 
|  | struct fsl_mc_pdata *pdata = mci->pvt_info; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  |  | 
|  | if (edac_op_state == EDAC_OPSTATE_INT) { | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0); | 
|  | } | 
|  |  | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, | 
|  | orig_ddr_err_disable); | 
|  | ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe); | 
|  |  | 
|  | edac_mc_del_mc(&op->dev); | 
|  | edac_mc_free(mci); | 
|  | return 0; | 
|  | } |