| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/mhi.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/wait.h> |
| #include "internal.h" |
| |
| /* |
| * Not all MHI state transitions are synchronous. Transitions like Linkdown, |
| * SYS_ERR, and shutdown can happen anytime asynchronously. This function will |
| * transition to a new state only if we're allowed to. |
| * |
| * Priority increases as we go down. For instance, from any state in L0, the |
| * transition can be made to states in L1, L2 and L3. A notable exception to |
| * this rule is state DISABLE. From DISABLE state we can only transition to |
| * POR state. Also, while in L2 state, user cannot jump back to previous |
| * L1 or L0 states. |
| * |
| * Valid transitions: |
| * L0: DISABLE <--> POR |
| * POR <--> POR |
| * POR -> M0 -> M2 --> M0 |
| * POR -> FW_DL_ERR |
| * FW_DL_ERR <--> FW_DL_ERR |
| * M0 <--> M0 |
| * M0 -> FW_DL_ERR |
| * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0 |
| * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR |
| * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT |
| * SHUTDOWN_PROCESS -> DISABLE |
| * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT |
| * LD_ERR_FATAL_DETECT -> DISABLE |
| */ |
| static const struct mhi_pm_transitions dev_state_transitions[] = { |
| /* L0 States */ |
| { |
| MHI_PM_DISABLE, |
| MHI_PM_POR |
| }, |
| { |
| MHI_PM_POR, |
| MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 | |
| MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR |
| }, |
| { |
| MHI_PM_M0, |
| MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER | |
| MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR |
| }, |
| { |
| MHI_PM_M2, |
| MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| { |
| MHI_PM_M3_ENTER, |
| MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| { |
| MHI_PM_M3, |
| MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| { |
| MHI_PM_M3_EXIT, |
| MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| { |
| MHI_PM_FW_DL_ERR, |
| MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT | |
| MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| /* L1 States */ |
| { |
| MHI_PM_SYS_ERR_DETECT, |
| MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| { |
| MHI_PM_SYS_ERR_PROCESS, |
| MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS | |
| MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| /* L2 States */ |
| { |
| MHI_PM_SHUTDOWN_PROCESS, |
| MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT |
| }, |
| /* L3 States */ |
| { |
| MHI_PM_LD_ERR_FATAL_DETECT, |
| MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE |
| }, |
| }; |
| |
| enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl, |
| enum mhi_pm_state state) |
| { |
| unsigned long cur_state = mhi_cntrl->pm_state; |
| int index = find_last_bit(&cur_state, 32); |
| |
| if (unlikely(index >= ARRAY_SIZE(dev_state_transitions))) |
| return cur_state; |
| |
| if (unlikely(dev_state_transitions[index].from_state != cur_state)) |
| return cur_state; |
| |
| if (unlikely(!(dev_state_transitions[index].to_states & state))) |
| return cur_state; |
| |
| mhi_cntrl->pm_state = state; |
| return mhi_cntrl->pm_state; |
| } |
| |
| void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret; |
| |
| if (state == MHI_STATE_RESET) { |
| ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, |
| MHICTRL_RESET_MASK, 1); |
| } else { |
| ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, |
| MHICTRL_MHISTATE_MASK, state); |
| } |
| |
| if (ret) |
| dev_err(dev, "Failed to set MHI state to: %s\n", |
| mhi_state_str(state)); |
| } |
| |
| /* NOP for backward compatibility, host allowed to ring DB in M2 state */ |
| static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl) |
| { |
| } |
| |
| static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl) |
| { |
| mhi_cntrl->wake_get(mhi_cntrl, false); |
| mhi_cntrl->wake_put(mhi_cntrl, true); |
| } |
| |
| /* Handle device ready state transition */ |
| int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl) |
| { |
| struct mhi_event *mhi_event; |
| enum mhi_pm_state cur_state; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| u32 interval_us = 25000; /* poll register field every 25 milliseconds */ |
| u32 timeout_ms; |
| int ret, i; |
| |
| /* Check if device entered error state */ |
| if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { |
| dev_err(dev, "Device link is not accessible\n"); |
| return -EIO; |
| } |
| |
| /* Wait for RESET to be cleared and READY bit to be set by the device */ |
| ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, |
| MHICTRL_RESET_MASK, 0, interval_us, |
| mhi_cntrl->timeout_ms); |
| if (ret) { |
| dev_err(dev, "Device failed to clear MHI Reset\n"); |
| return ret; |
| } |
| |
| timeout_ms = mhi_cntrl->ready_timeout_ms ? |
| mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms; |
| ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, |
| MHISTATUS_READY_MASK, 1, interval_us, |
| timeout_ms); |
| if (ret) { |
| dev_err(dev, "Device failed to enter MHI Ready\n"); |
| return ret; |
| } |
| |
| dev_dbg(dev, "Device in READY State\n"); |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); |
| mhi_cntrl->dev_state = MHI_STATE_READY; |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| if (cur_state != MHI_PM_POR) { |
| dev_err(dev, "Error moving to state %s from %s\n", |
| to_mhi_pm_state_str(MHI_PM_POR), |
| to_mhi_pm_state_str(cur_state)); |
| return -EIO; |
| } |
| |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { |
| dev_err(dev, "Device registers not accessible\n"); |
| goto error_mmio; |
| } |
| |
| /* Configure MMIO registers */ |
| ret = mhi_init_mmio(mhi_cntrl); |
| if (ret) { |
| dev_err(dev, "Error configuring MMIO registers\n"); |
| goto error_mmio; |
| } |
| |
| /* Add elements to all SW event rings */ |
| mhi_event = mhi_cntrl->mhi_event; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| struct mhi_ring *ring = &mhi_event->ring; |
| |
| /* Skip if this is an offload or HW event */ |
| if (mhi_event->offload_ev || mhi_event->hw_ring) |
| continue; |
| |
| ring->wp = ring->base + ring->len - ring->el_size; |
| *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); |
| /* Update all cores */ |
| smp_wmb(); |
| |
| /* Ring the event ring db */ |
| spin_lock_irq(&mhi_event->lock); |
| mhi_ring_er_db(mhi_event); |
| spin_unlock_irq(&mhi_event->lock); |
| } |
| |
| /* Set MHI to M0 state */ |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| return 0; |
| |
| error_mmio: |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| return -EIO; |
| } |
| |
| int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl) |
| { |
| enum mhi_pm_state cur_state; |
| struct mhi_chan *mhi_chan; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int i; |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| mhi_cntrl->dev_state = MHI_STATE_M0; |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| if (unlikely(cur_state != MHI_PM_M0)) { |
| dev_err(dev, "Unable to transition to M0 state\n"); |
| return -EIO; |
| } |
| mhi_cntrl->M0++; |
| |
| /* Wake up the device */ |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| mhi_cntrl->wake_get(mhi_cntrl, true); |
| |
| /* Ring all event rings and CMD ring only if we're in mission mode */ |
| if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) { |
| struct mhi_event *mhi_event = mhi_cntrl->mhi_event; |
| struct mhi_cmd *mhi_cmd = |
| &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; |
| |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| if (mhi_event->offload_ev) |
| continue; |
| |
| spin_lock_irq(&mhi_event->lock); |
| mhi_ring_er_db(mhi_event); |
| spin_unlock_irq(&mhi_event->lock); |
| } |
| |
| /* Only ring primary cmd ring if ring is not empty */ |
| spin_lock_irq(&mhi_cmd->lock); |
| if (mhi_cmd->ring.rp != mhi_cmd->ring.wp) |
| mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); |
| spin_unlock_irq(&mhi_cmd->lock); |
| } |
| |
| /* Ring channel DB registers */ |
| mhi_chan = mhi_cntrl->mhi_chan; |
| for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { |
| struct mhi_ring *tre_ring = &mhi_chan->tre_ring; |
| |
| if (mhi_chan->db_cfg.reset_req) { |
| write_lock_irq(&mhi_chan->lock); |
| mhi_chan->db_cfg.db_mode = true; |
| write_unlock_irq(&mhi_chan->lock); |
| } |
| |
| read_lock_irq(&mhi_chan->lock); |
| |
| /* Only ring DB if ring is not empty */ |
| if (tre_ring->base && tre_ring->wp != tre_ring->rp && |
| mhi_chan->ch_state == MHI_CH_STATE_ENABLED) |
| mhi_ring_chan_db(mhi_cntrl, mhi_chan); |
| read_unlock_irq(&mhi_chan->lock); |
| } |
| |
| mhi_cntrl->wake_put(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| return 0; |
| } |
| |
| /* |
| * After receiving the MHI state change event from the device indicating the |
| * transition to M1 state, the host can transition the device to M2 state |
| * for keeping it in low power state. |
| */ |
| void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl) |
| { |
| enum mhi_pm_state state; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2); |
| if (state == MHI_PM_M2) { |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2); |
| mhi_cntrl->dev_state = MHI_STATE_M2; |
| |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| mhi_cntrl->M2++; |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| /* If there are any pending resources, exit M2 immediately */ |
| if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) || |
| atomic_read(&mhi_cntrl->dev_wake))) { |
| dev_dbg(dev, |
| "Exiting M2, pending_pkts: %d dev_wake: %d\n", |
| atomic_read(&mhi_cntrl->pending_pkts), |
| atomic_read(&mhi_cntrl->dev_wake)); |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| mhi_cntrl->wake_get(mhi_cntrl, true); |
| mhi_cntrl->wake_put(mhi_cntrl, true); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| } else { |
| mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE); |
| } |
| } else { |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| } |
| } |
| |
| /* MHI M3 completion handler */ |
| int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl) |
| { |
| enum mhi_pm_state state; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| mhi_cntrl->dev_state = MHI_STATE_M3; |
| state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| if (state != MHI_PM_M3) { |
| dev_err(dev, "Unable to transition to M3 state\n"); |
| return -EIO; |
| } |
| |
| mhi_cntrl->M3++; |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| return 0; |
| } |
| |
| /* Handle device Mission Mode transition */ |
| static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl) |
| { |
| struct mhi_event *mhi_event; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee; |
| int i, ret; |
| |
| dev_dbg(dev, "Processing Mission Mode transition\n"); |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) |
| ee = mhi_get_exec_env(mhi_cntrl); |
| |
| if (!MHI_IN_MISSION_MODE(ee)) { |
| mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| wake_up_all(&mhi_cntrl->state_event); |
| return -EIO; |
| } |
| mhi_cntrl->ee = ee; |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| device_for_each_child(&mhi_cntrl->mhi_dev->dev, ¤t_ee, |
| mhi_destroy_device); |
| mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE); |
| |
| /* Force MHI to be in M0 state before continuing */ |
| ret = __mhi_device_get_sync(mhi_cntrl); |
| if (ret) |
| return ret; |
| |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| |
| if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| ret = -EIO; |
| goto error_mission_mode; |
| } |
| |
| /* Add elements to all HW event rings */ |
| mhi_event = mhi_cntrl->mhi_event; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| struct mhi_ring *ring = &mhi_event->ring; |
| |
| if (mhi_event->offload_ev || !mhi_event->hw_ring) |
| continue; |
| |
| ring->wp = ring->base + ring->len - ring->el_size; |
| *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); |
| /* Update to all cores */ |
| smp_wmb(); |
| |
| spin_lock_irq(&mhi_event->lock); |
| if (MHI_DB_ACCESS_VALID(mhi_cntrl)) |
| mhi_ring_er_db(mhi_event); |
| spin_unlock_irq(&mhi_event->lock); |
| } |
| |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| /* |
| * The MHI devices are only created when the client device switches its |
| * Execution Environment (EE) to either SBL or AMSS states |
| */ |
| mhi_create_devices(mhi_cntrl); |
| |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| |
| error_mission_mode: |
| mhi_cntrl->wake_put(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| return ret; |
| } |
| |
| /* Handle shutdown transitions */ |
| static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl) |
| { |
| enum mhi_pm_state cur_state; |
| struct mhi_event *mhi_event; |
| struct mhi_cmd_ctxt *cmd_ctxt; |
| struct mhi_cmd *mhi_cmd; |
| struct mhi_event_ctxt *er_ctxt; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret, i; |
| |
| dev_dbg(dev, "Processing disable transition with PM state: %s\n", |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| |
| /* Trigger MHI RESET so that the device will not access host memory */ |
| if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { |
| /* Skip MHI RESET if in RDDM state */ |
| if (mhi_cntrl->rddm_image && mhi_get_exec_env(mhi_cntrl) == MHI_EE_RDDM) |
| goto skip_mhi_reset; |
| |
| dev_dbg(dev, "Triggering MHI Reset in device\n"); |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); |
| |
| /* Wait for the reset bit to be cleared by the device */ |
| ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, |
| MHICTRL_RESET_MASK, 0, 25000, mhi_cntrl->timeout_ms); |
| if (ret) |
| dev_err(dev, "Device failed to clear MHI Reset\n"); |
| |
| /* |
| * Device will clear BHI_INTVEC as a part of RESET processing, |
| * hence re-program it |
| */ |
| mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); |
| |
| if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { |
| /* wait for ready to be set */ |
| ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, |
| MHISTATUS, MHISTATUS_READY_MASK, |
| 1, 25000, mhi_cntrl->timeout_ms); |
| if (ret) |
| dev_err(dev, "Device failed to enter READY state\n"); |
| } |
| } |
| |
| skip_mhi_reset: |
| dev_dbg(dev, |
| "Waiting for all pending event ring processing to complete\n"); |
| mhi_event = mhi_cntrl->mhi_event; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| if (mhi_event->offload_ev) |
| continue; |
| disable_irq(mhi_cntrl->irq[mhi_event->irq]); |
| tasklet_kill(&mhi_event->task); |
| } |
| |
| /* Release lock and wait for all pending threads to complete */ |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| dev_dbg(dev, "Waiting for all pending threads to complete\n"); |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); |
| device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| |
| WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); |
| WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); |
| |
| /* Reset the ev rings and cmd rings */ |
| dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); |
| mhi_cmd = mhi_cntrl->mhi_cmd; |
| cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; |
| for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { |
| struct mhi_ring *ring = &mhi_cmd->ring; |
| |
| ring->rp = ring->base; |
| ring->wp = ring->base; |
| cmd_ctxt->rp = cmd_ctxt->rbase; |
| cmd_ctxt->wp = cmd_ctxt->rbase; |
| } |
| |
| mhi_event = mhi_cntrl->mhi_event; |
| er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, |
| mhi_event++) { |
| struct mhi_ring *ring = &mhi_event->ring; |
| |
| /* Skip offload events */ |
| if (mhi_event->offload_ev) |
| continue; |
| |
| ring->rp = ring->base; |
| ring->wp = ring->base; |
| er_ctxt->rp = er_ctxt->rbase; |
| er_ctxt->wp = er_ctxt->rbase; |
| } |
| |
| /* Move to disable state */ |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| if (unlikely(cur_state != MHI_PM_DISABLE)) |
| dev_err(dev, "Error moving from PM state: %s to: %s\n", |
| to_mhi_pm_state_str(cur_state), |
| to_mhi_pm_state_str(MHI_PM_DISABLE)); |
| |
| dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", |
| to_mhi_pm_state_str(mhi_cntrl->pm_state), |
| mhi_state_str(mhi_cntrl->dev_state)); |
| |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| } |
| |
| /* Handle system error transitions */ |
| static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl) |
| { |
| enum mhi_pm_state cur_state, prev_state; |
| enum dev_st_transition next_state; |
| struct mhi_event *mhi_event; |
| struct mhi_cmd_ctxt *cmd_ctxt; |
| struct mhi_cmd *mhi_cmd; |
| struct mhi_event_ctxt *er_ctxt; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret, i; |
| |
| dev_dbg(dev, "Transitioning from PM state: %s to: %s\n", |
| to_mhi_pm_state_str(mhi_cntrl->pm_state), |
| to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); |
| |
| /* We must notify MHI control driver so it can clean up first */ |
| mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR); |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| prev_state = mhi_cntrl->pm_state; |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| if (cur_state != MHI_PM_SYS_ERR_PROCESS) { |
| dev_err(dev, "Failed to transition from PM state: %s to: %s\n", |
| to_mhi_pm_state_str(cur_state), |
| to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); |
| goto exit_sys_error_transition; |
| } |
| |
| mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; |
| mhi_cntrl->dev_state = MHI_STATE_RESET; |
| |
| /* Wake up threads waiting for state transition */ |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| /* Trigger MHI RESET so that the device will not access host memory */ |
| if (MHI_REG_ACCESS_VALID(prev_state)) { |
| u32 in_reset = -1; |
| unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms); |
| |
| dev_dbg(dev, "Triggering MHI Reset in device\n"); |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); |
| |
| /* Wait for the reset bit to be cleared by the device */ |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_read_reg_field(mhi_cntrl, |
| mhi_cntrl->regs, |
| MHICTRL, |
| MHICTRL_RESET_MASK, |
| &in_reset) || |
| !in_reset, timeout); |
| if (!ret || in_reset) { |
| dev_err(dev, "Device failed to exit MHI Reset state\n"); |
| goto exit_sys_error_transition; |
| } |
| |
| /* |
| * Device will clear BHI_INTVEC as a part of RESET processing, |
| * hence re-program it |
| */ |
| mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); |
| } |
| |
| dev_dbg(dev, |
| "Waiting for all pending event ring processing to complete\n"); |
| mhi_event = mhi_cntrl->mhi_event; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| if (mhi_event->offload_ev) |
| continue; |
| tasklet_kill(&mhi_event->task); |
| } |
| |
| /* Release lock and wait for all pending threads to complete */ |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| dev_dbg(dev, "Waiting for all pending threads to complete\n"); |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); |
| device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| |
| WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); |
| WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); |
| |
| /* Reset the ev rings and cmd rings */ |
| dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); |
| mhi_cmd = mhi_cntrl->mhi_cmd; |
| cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; |
| for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { |
| struct mhi_ring *ring = &mhi_cmd->ring; |
| |
| ring->rp = ring->base; |
| ring->wp = ring->base; |
| cmd_ctxt->rp = cmd_ctxt->rbase; |
| cmd_ctxt->wp = cmd_ctxt->rbase; |
| } |
| |
| mhi_event = mhi_cntrl->mhi_event; |
| er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, |
| mhi_event++) { |
| struct mhi_ring *ring = &mhi_event->ring; |
| |
| /* Skip offload events */ |
| if (mhi_event->offload_ev) |
| continue; |
| |
| ring->rp = ring->base; |
| ring->wp = ring->base; |
| er_ctxt->rp = er_ctxt->rbase; |
| er_ctxt->wp = er_ctxt->rbase; |
| } |
| |
| /* Transition to next state */ |
| if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| if (cur_state != MHI_PM_POR) { |
| dev_err(dev, "Error moving to state %s from %s\n", |
| to_mhi_pm_state_str(MHI_PM_POR), |
| to_mhi_pm_state_str(cur_state)); |
| goto exit_sys_error_transition; |
| } |
| next_state = DEV_ST_TRANSITION_PBL; |
| } else { |
| next_state = DEV_ST_TRANSITION_READY; |
| } |
| |
| mhi_queue_state_transition(mhi_cntrl, next_state); |
| |
| exit_sys_error_transition: |
| dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", |
| to_mhi_pm_state_str(mhi_cntrl->pm_state), |
| mhi_state_str(mhi_cntrl->dev_state)); |
| |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| } |
| |
| /* Queue a new work item and schedule work */ |
| int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl, |
| enum dev_st_transition state) |
| { |
| struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC); |
| unsigned long flags; |
| |
| if (!item) |
| return -ENOMEM; |
| |
| item->state = state; |
| spin_lock_irqsave(&mhi_cntrl->transition_lock, flags); |
| list_add_tail(&item->node, &mhi_cntrl->transition_list); |
| spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags); |
| |
| queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker); |
| |
| return 0; |
| } |
| |
| /* SYS_ERR worker */ |
| void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| |
| /* skip if controller supports RDDM */ |
| if (mhi_cntrl->rddm_image) { |
| dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n"); |
| return; |
| } |
| |
| mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR); |
| } |
| |
| /* Device State Transition worker */ |
| void mhi_pm_st_worker(struct work_struct *work) |
| { |
| struct state_transition *itr, *tmp; |
| LIST_HEAD(head); |
| struct mhi_controller *mhi_cntrl = container_of(work, |
| struct mhi_controller, |
| st_worker); |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| |
| spin_lock_irq(&mhi_cntrl->transition_lock); |
| list_splice_tail_init(&mhi_cntrl->transition_list, &head); |
| spin_unlock_irq(&mhi_cntrl->transition_lock); |
| |
| list_for_each_entry_safe(itr, tmp, &head, node) { |
| list_del(&itr->node); |
| dev_dbg(dev, "Handling state transition: %s\n", |
| TO_DEV_STATE_TRANS_STR(itr->state)); |
| |
| switch (itr->state) { |
| case DEV_ST_TRANSITION_PBL: |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) |
| mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| mhi_fw_load_handler(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_SBL: |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| mhi_cntrl->ee = MHI_EE_SBL; |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| /* |
| * The MHI devices are only created when the client |
| * device switches its Execution Environment (EE) to |
| * either SBL or AMSS states |
| */ |
| mhi_create_devices(mhi_cntrl); |
| if (mhi_cntrl->fbc_download) |
| mhi_download_amss_image(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_MISSION_MODE: |
| mhi_pm_mission_mode_transition(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_FP: |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| mhi_cntrl->ee = MHI_EE_FP; |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| mhi_create_devices(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_READY: |
| mhi_ready_state_transition(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_SYS_ERR: |
| mhi_pm_sys_error_transition(mhi_cntrl); |
| break; |
| case DEV_ST_TRANSITION_DISABLE: |
| mhi_pm_disable_transition(mhi_cntrl); |
| break; |
| default: |
| break; |
| } |
| kfree(itr); |
| } |
| } |
| |
| int mhi_pm_suspend(struct mhi_controller *mhi_cntrl) |
| { |
| struct mhi_chan *itr, *tmp; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| enum mhi_pm_state new_state; |
| int ret; |
| |
| if (mhi_cntrl->pm_state == MHI_PM_DISABLE) |
| return -EINVAL; |
| |
| if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) |
| return -EIO; |
| |
| /* Return busy if there are any pending resources */ |
| if (atomic_read(&mhi_cntrl->dev_wake) || |
| atomic_read(&mhi_cntrl->pending_pkts)) |
| return -EBUSY; |
| |
| /* Take MHI out of M2 state */ |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| mhi_cntrl->wake_get(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_cntrl->dev_state == MHI_STATE_M0 || |
| mhi_cntrl->dev_state == MHI_STATE_M1 || |
| MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), |
| msecs_to_jiffies(mhi_cntrl->timeout_ms)); |
| |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| mhi_cntrl->wake_put(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| dev_err(dev, |
| "Could not enter M0/M1 state"); |
| return -EIO; |
| } |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| |
| if (atomic_read(&mhi_cntrl->dev_wake) || |
| atomic_read(&mhi_cntrl->pending_pkts)) { |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| return -EBUSY; |
| } |
| |
| dev_dbg(dev, "Allowing M3 transition\n"); |
| new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER); |
| if (new_state != MHI_PM_M3_ENTER) { |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| dev_err(dev, |
| "Error setting to PM state: %s from: %s\n", |
| to_mhi_pm_state_str(MHI_PM_M3_ENTER), |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| return -EIO; |
| } |
| |
| /* Set MHI to M3 and wait for completion */ |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| dev_dbg(dev, "Waiting for M3 completion\n"); |
| |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_cntrl->dev_state == MHI_STATE_M3 || |
| MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), |
| msecs_to_jiffies(mhi_cntrl->timeout_ms)); |
| |
| if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| dev_err(dev, |
| "Did not enter M3 state, MHI state: %s, PM state: %s\n", |
| mhi_state_str(mhi_cntrl->dev_state), |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| return -EIO; |
| } |
| |
| /* Notify clients about entering LPM */ |
| list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { |
| mutex_lock(&itr->mutex); |
| if (itr->mhi_dev) |
| mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER); |
| mutex_unlock(&itr->mutex); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mhi_pm_suspend); |
| |
| static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force) |
| { |
| struct mhi_chan *itr, *tmp; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| enum mhi_pm_state cur_state; |
| int ret; |
| |
| dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n", |
| to_mhi_pm_state_str(mhi_cntrl->pm_state), |
| mhi_state_str(mhi_cntrl->dev_state)); |
| |
| if (mhi_cntrl->pm_state == MHI_PM_DISABLE) |
| return 0; |
| |
| if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) |
| return -EIO; |
| |
| if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) { |
| dev_warn(dev, "Resuming from non M3 state (%s)\n", |
| mhi_state_str(mhi_get_mhi_state(mhi_cntrl))); |
| if (!force) |
| return -EINVAL; |
| } |
| |
| /* Notify clients about exiting LPM */ |
| list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { |
| mutex_lock(&itr->mutex); |
| if (itr->mhi_dev) |
| mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT); |
| mutex_unlock(&itr->mutex); |
| } |
| |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT); |
| if (cur_state != MHI_PM_M3_EXIT) { |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| dev_info(dev, |
| "Error setting to PM state: %s from: %s\n", |
| to_mhi_pm_state_str(MHI_PM_M3_EXIT), |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| return -EIO; |
| } |
| |
| /* Set MHI to M0 and wait for completion */ |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_cntrl->dev_state == MHI_STATE_M0 || |
| mhi_cntrl->dev_state == MHI_STATE_M2 || |
| MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), |
| msecs_to_jiffies(mhi_cntrl->timeout_ms)); |
| |
| if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| dev_err(dev, |
| "Did not enter M0 state, MHI state: %s, PM state: %s\n", |
| mhi_state_str(mhi_cntrl->dev_state), |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| int mhi_pm_resume(struct mhi_controller *mhi_cntrl) |
| { |
| return __mhi_pm_resume(mhi_cntrl, false); |
| } |
| EXPORT_SYMBOL_GPL(mhi_pm_resume); |
| |
| int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl) |
| { |
| return __mhi_pm_resume(mhi_cntrl, true); |
| } |
| EXPORT_SYMBOL_GPL(mhi_pm_resume_force); |
| |
| int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl) |
| { |
| int ret; |
| |
| /* Wake up the device */ |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| return -EIO; |
| } |
| mhi_cntrl->wake_get(mhi_cntrl, true); |
| if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) |
| mhi_trigger_resume(mhi_cntrl); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_cntrl->pm_state == MHI_PM_M0 || |
| MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), |
| msecs_to_jiffies(mhi_cntrl->timeout_ms)); |
| |
| if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| mhi_cntrl->wake_put(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Assert device wake db */ |
| static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force) |
| { |
| unsigned long flags; |
| |
| /* |
| * If force flag is set, then increment the wake count value and |
| * ring wake db |
| */ |
| if (unlikely(force)) { |
| spin_lock_irqsave(&mhi_cntrl->wlock, flags); |
| atomic_inc(&mhi_cntrl->dev_wake); |
| if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) && |
| !mhi_cntrl->wake_set) { |
| mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); |
| mhi_cntrl->wake_set = true; |
| } |
| spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); |
| } else { |
| /* |
| * If resources are already requested, then just increment |
| * the wake count value and return |
| */ |
| if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0))) |
| return; |
| |
| spin_lock_irqsave(&mhi_cntrl->wlock, flags); |
| if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) && |
| MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) && |
| !mhi_cntrl->wake_set) { |
| mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); |
| mhi_cntrl->wake_set = true; |
| } |
| spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); |
| } |
| } |
| |
| /* De-assert device wake db */ |
| static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl, |
| bool override) |
| { |
| unsigned long flags; |
| |
| /* |
| * Only continue if there is a single resource, else just decrement |
| * and return |
| */ |
| if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1))) |
| return; |
| |
| spin_lock_irqsave(&mhi_cntrl->wlock, flags); |
| if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) && |
| MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override && |
| mhi_cntrl->wake_set) { |
| mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0); |
| mhi_cntrl->wake_set = false; |
| } |
| spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); |
| } |
| |
| int mhi_async_power_up(struct mhi_controller *mhi_cntrl) |
| { |
| struct mhi_event *mhi_event = mhi_cntrl->mhi_event; |
| enum mhi_state state; |
| enum mhi_ee_type current_ee; |
| enum dev_st_transition next_state; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| u32 interval_us = 25000; /* poll register field every 25 milliseconds */ |
| int ret, i; |
| |
| dev_info(dev, "Requested to power ON\n"); |
| |
| /* Supply default wake routines if not provided by controller driver */ |
| if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put || |
| !mhi_cntrl->wake_toggle) { |
| mhi_cntrl->wake_get = mhi_assert_dev_wake; |
| mhi_cntrl->wake_put = mhi_deassert_dev_wake; |
| mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ? |
| mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake; |
| } |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| mhi_cntrl->pm_state = MHI_PM_DISABLE; |
| |
| /* Setup BHI INTVEC */ |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); |
| mhi_cntrl->pm_state = MHI_PM_POR; |
| mhi_cntrl->ee = MHI_EE_MAX; |
| current_ee = mhi_get_exec_env(mhi_cntrl); |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| |
| /* Confirm that the device is in valid exec env */ |
| if (!MHI_POWER_UP_CAPABLE(current_ee)) { |
| dev_err(dev, "%s is not a valid EE for power on\n", |
| TO_MHI_EXEC_STR(current_ee)); |
| ret = -EIO; |
| goto error_exit; |
| } |
| |
| state = mhi_get_mhi_state(mhi_cntrl); |
| dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n", |
| TO_MHI_EXEC_STR(current_ee), mhi_state_str(state)); |
| |
| if (state == MHI_STATE_SYS_ERR) { |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); |
| ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, |
| MHICTRL_RESET_MASK, 0, interval_us, |
| mhi_cntrl->timeout_ms); |
| if (ret) { |
| dev_info(dev, "Failed to reset MHI due to syserr state\n"); |
| goto error_exit; |
| } |
| |
| /* |
| * device cleares INTVEC as part of RESET processing, |
| * re-program it |
| */ |
| mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); |
| } |
| |
| /* IRQs have been requested during probe, so we just need to enable them. */ |
| enable_irq(mhi_cntrl->irq[0]); |
| |
| for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { |
| if (mhi_event->offload_ev) |
| continue; |
| |
| enable_irq(mhi_cntrl->irq[mhi_event->irq]); |
| } |
| |
| /* Transition to next state */ |
| next_state = MHI_IN_PBL(current_ee) ? |
| DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY; |
| |
| mhi_queue_state_transition(mhi_cntrl, next_state); |
| |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| |
| dev_info(dev, "Power on setup success\n"); |
| |
| return 0; |
| |
| error_exit: |
| mhi_cntrl->pm_state = MHI_PM_DISABLE; |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_async_power_up); |
| |
| void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful) |
| { |
| enum mhi_pm_state cur_state, transition_state; |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| |
| mutex_lock(&mhi_cntrl->pm_mutex); |
| write_lock_irq(&mhi_cntrl->pm_lock); |
| cur_state = mhi_cntrl->pm_state; |
| if (cur_state == MHI_PM_DISABLE) { |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| return; /* Already powered down */ |
| } |
| |
| /* If it's not a graceful shutdown, force MHI to linkdown state */ |
| transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS : |
| MHI_PM_LD_ERR_FATAL_DETECT; |
| |
| cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state); |
| if (cur_state != transition_state) { |
| dev_err(dev, "Failed to move to state: %s from: %s\n", |
| to_mhi_pm_state_str(transition_state), |
| to_mhi_pm_state_str(mhi_cntrl->pm_state)); |
| /* Force link down or error fatal detected state */ |
| mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; |
| } |
| |
| /* mark device inactive to avoid any further host processing */ |
| mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; |
| mhi_cntrl->dev_state = MHI_STATE_RESET; |
| |
| wake_up_all(&mhi_cntrl->state_event); |
| |
| write_unlock_irq(&mhi_cntrl->pm_lock); |
| mutex_unlock(&mhi_cntrl->pm_mutex); |
| |
| mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE); |
| |
| /* Wait for shutdown to complete */ |
| flush_work(&mhi_cntrl->st_worker); |
| |
| disable_irq(mhi_cntrl->irq[0]); |
| } |
| EXPORT_SYMBOL_GPL(mhi_power_down); |
| |
| int mhi_sync_power_up(struct mhi_controller *mhi_cntrl) |
| { |
| int ret = mhi_async_power_up(mhi_cntrl); |
| u32 timeout_ms; |
| |
| if (ret) |
| return ret; |
| |
| /* Some devices need more time to set ready during power up */ |
| timeout_ms = mhi_cntrl->ready_timeout_ms ? |
| mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms; |
| wait_event_timeout(mhi_cntrl->state_event, |
| MHI_IN_MISSION_MODE(mhi_cntrl->ee) || |
| MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), |
| msecs_to_jiffies(timeout_ms)); |
| |
| ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT; |
| if (ret) |
| mhi_power_down(mhi_cntrl, false); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mhi_sync_power_up); |
| |
| int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl) |
| { |
| struct device *dev = &mhi_cntrl->mhi_dev->dev; |
| int ret; |
| |
| /* Check if device is already in RDDM */ |
| if (mhi_cntrl->ee == MHI_EE_RDDM) |
| return 0; |
| |
| dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n"); |
| mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); |
| |
| /* Wait for RDDM event */ |
| ret = wait_event_timeout(mhi_cntrl->state_event, |
| mhi_cntrl->ee == MHI_EE_RDDM, |
| msecs_to_jiffies(mhi_cntrl->timeout_ms)); |
| ret = ret ? 0 : -EIO; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_force_rddm_mode); |
| |
| void mhi_device_get(struct mhi_device *mhi_dev) |
| { |
| struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; |
| |
| mhi_dev->dev_wake++; |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) |
| mhi_trigger_resume(mhi_cntrl); |
| |
| mhi_cntrl->wake_get(mhi_cntrl, true); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| } |
| EXPORT_SYMBOL_GPL(mhi_device_get); |
| |
| int mhi_device_get_sync(struct mhi_device *mhi_dev) |
| { |
| struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; |
| int ret; |
| |
| ret = __mhi_device_get_sync(mhi_cntrl); |
| if (!ret) |
| mhi_dev->dev_wake++; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mhi_device_get_sync); |
| |
| void mhi_device_put(struct mhi_device *mhi_dev) |
| { |
| struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; |
| |
| mhi_dev->dev_wake--; |
| read_lock_bh(&mhi_cntrl->pm_lock); |
| if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) |
| mhi_trigger_resume(mhi_cntrl); |
| |
| mhi_cntrl->wake_put(mhi_cntrl, false); |
| read_unlock_bh(&mhi_cntrl->pm_lock); |
| } |
| EXPORT_SYMBOL_GPL(mhi_device_put); |