| /* |
| * |
| * device driver for Conexant 2388x based TV cards |
| * driver core |
| * |
| * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs] |
| * |
| * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org> |
| * - Multituner support |
| * - video_ioctl2 conversion |
| * - PAL/M fixes |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/kmod.h> |
| #include <linux/sound.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/videodev2.h> |
| #include <linux/mutex.h> |
| |
| #include "cx88.h" |
| #include <media/v4l2-common.h> |
| |
| MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards"); |
| MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]"); |
| MODULE_LICENSE("GPL"); |
| |
| /* ------------------------------------------------------------------ */ |
| |
| static unsigned int core_debug = 0; |
| module_param(core_debug,int,0644); |
| MODULE_PARM_DESC(core_debug,"enable debug messages [core]"); |
| |
| static unsigned int nicam = 0; |
| module_param(nicam,int,0644); |
| MODULE_PARM_DESC(nicam,"tv audio is nicam"); |
| |
| static unsigned int nocomb = 0; |
| module_param(nocomb,int,0644); |
| MODULE_PARM_DESC(nocomb,"disable comb filter"); |
| |
| #define dprintk(level,fmt, arg...) if (core_debug >= level) \ |
| printk(KERN_DEBUG "%s: " fmt, core->name , ## arg) |
| |
| static unsigned int cx88_devcount; |
| static LIST_HEAD(cx88_devlist); |
| static DEFINE_MUTEX(devlist); |
| |
| #define NO_SYNC_LINE (-1U) |
| |
| /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be |
| generated _after_ lpi lines are transferred. */ |
| static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist, |
| unsigned int offset, u32 sync_line, |
| unsigned int bpl, unsigned int padding, |
| unsigned int lines, unsigned int lpi) |
| { |
| struct scatterlist *sg; |
| unsigned int line,todo,sol; |
| |
| /* sync instruction */ |
| if (sync_line != NO_SYNC_LINE) |
| *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line); |
| |
| /* scan lines */ |
| sg = sglist; |
| for (line = 0; line < lines; line++) { |
| while (offset && offset >= sg_dma_len(sg)) { |
| offset -= sg_dma_len(sg); |
| sg++; |
| } |
| if (lpi && line>0 && !(line % lpi)) |
| sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC; |
| else |
| sol = RISC_SOL; |
| if (bpl <= sg_dma_len(sg)-offset) { |
| /* fits into current chunk */ |
| *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl); |
| *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset); |
| offset+=bpl; |
| } else { |
| /* scanline needs to be split */ |
| todo = bpl; |
| *(rp++)=cpu_to_le32(RISC_WRITE|sol| |
| (sg_dma_len(sg)-offset)); |
| *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset); |
| todo -= (sg_dma_len(sg)-offset); |
| offset = 0; |
| sg++; |
| while (todo > sg_dma_len(sg)) { |
| *(rp++)=cpu_to_le32(RISC_WRITE| |
| sg_dma_len(sg)); |
| *(rp++)=cpu_to_le32(sg_dma_address(sg)); |
| todo -= sg_dma_len(sg); |
| sg++; |
| } |
| *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo); |
| *(rp++)=cpu_to_le32(sg_dma_address(sg)); |
| offset += todo; |
| } |
| offset += padding; |
| } |
| |
| return rp; |
| } |
| |
| int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc, |
| struct scatterlist *sglist, |
| unsigned int top_offset, unsigned int bottom_offset, |
| unsigned int bpl, unsigned int padding, unsigned int lines) |
| { |
| u32 instructions,fields; |
| u32 *rp; |
| int rc; |
| |
| fields = 0; |
| if (UNSET != top_offset) |
| fields++; |
| if (UNSET != bottom_offset) |
| fields++; |
| |
| /* estimate risc mem: worst case is one write per page border + |
| one write per scan line + syncs + jump (all 2 dwords). Padding |
| can cause next bpl to start close to a page border. First DMA |
| region may be smaller than PAGE_SIZE */ |
| instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines); |
| instructions += 2; |
| if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0) |
| return rc; |
| |
| /* write risc instructions */ |
| rp = risc->cpu; |
| if (UNSET != top_offset) |
| rp = cx88_risc_field(rp, sglist, top_offset, 0, |
| bpl, padding, lines, 0); |
| if (UNSET != bottom_offset) |
| rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200, |
| bpl, padding, lines, 0); |
| |
| /* save pointer to jmp instruction address */ |
| risc->jmp = rp; |
| BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size); |
| return 0; |
| } |
| |
| int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc, |
| struct scatterlist *sglist, unsigned int bpl, |
| unsigned int lines, unsigned int lpi) |
| { |
| u32 instructions; |
| u32 *rp; |
| int rc; |
| |
| /* estimate risc mem: worst case is one write per page border + |
| one write per scan line + syncs + jump (all 2 dwords). Here |
| there is no padding and no sync. First DMA region may be smaller |
| than PAGE_SIZE */ |
| instructions = 1 + (bpl * lines) / PAGE_SIZE + lines; |
| instructions += 1; |
| if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0) |
| return rc; |
| |
| /* write risc instructions */ |
| rp = risc->cpu; |
| rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi); |
| |
| /* save pointer to jmp instruction address */ |
| risc->jmp = rp; |
| BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size); |
| return 0; |
| } |
| |
| int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc, |
| u32 reg, u32 mask, u32 value) |
| { |
| u32 *rp; |
| int rc; |
| |
| if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0) |
| return rc; |
| |
| /* write risc instructions */ |
| rp = risc->cpu; |
| *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM); |
| *(rp++) = cpu_to_le32(reg); |
| *(rp++) = cpu_to_le32(value); |
| *(rp++) = cpu_to_le32(mask); |
| *(rp++) = cpu_to_le32(RISC_JUMP); |
| *(rp++) = cpu_to_le32(risc->dma); |
| return 0; |
| } |
| |
| void |
| cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf) |
| { |
| struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb); |
| |
| BUG_ON(in_interrupt()); |
| videobuf_waiton(&buf->vb,0,0); |
| videobuf_dma_unmap(q, dma); |
| videobuf_dma_free(dma); |
| btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc); |
| buf->vb.state = STATE_NEEDS_INIT; |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| /* our SRAM memory layout */ |
| |
| /* we are going to put all thr risc programs into host memory, so we |
| * can use the whole SDRAM for the DMA fifos. To simplify things, we |
| * use a static memory layout. That surely will waste memory in case |
| * we don't use all DMA channels at the same time (which will be the |
| * case most of the time). But that still gives us enougth FIFO space |
| * to be able to deal with insane long pci latencies ... |
| * |
| * FIFO space allocations: |
| * channel 21 (y video) - 10.0k |
| * channel 22 (u video) - 2.0k |
| * channel 23 (v video) - 2.0k |
| * channel 24 (vbi) - 4.0k |
| * channels 25+26 (audio) - 4.0k |
| * channel 28 (mpeg) - 4.0k |
| * TOTAL = 29.0k |
| * |
| * Every channel has 160 bytes control data (64 bytes instruction |
| * queue and 6 CDT entries), which is close to 2k total. |
| * |
| * Address layout: |
| * 0x0000 - 0x03ff CMDs / reserved |
| * 0x0400 - 0x0bff instruction queues + CDs |
| * 0x0c00 - FIFOs |
| */ |
| |
| struct sram_channel cx88_sram_channels[] = { |
| [SRAM_CH21] = { |
| .name = "video y / packed", |
| .cmds_start = 0x180040, |
| .ctrl_start = 0x180400, |
| .cdt = 0x180400 + 64, |
| .fifo_start = 0x180c00, |
| .fifo_size = 0x002800, |
| .ptr1_reg = MO_DMA21_PTR1, |
| .ptr2_reg = MO_DMA21_PTR2, |
| .cnt1_reg = MO_DMA21_CNT1, |
| .cnt2_reg = MO_DMA21_CNT2, |
| }, |
| [SRAM_CH22] = { |
| .name = "video u", |
| .cmds_start = 0x180080, |
| .ctrl_start = 0x1804a0, |
| .cdt = 0x1804a0 + 64, |
| .fifo_start = 0x183400, |
| .fifo_size = 0x000800, |
| .ptr1_reg = MO_DMA22_PTR1, |
| .ptr2_reg = MO_DMA22_PTR2, |
| .cnt1_reg = MO_DMA22_CNT1, |
| .cnt2_reg = MO_DMA22_CNT2, |
| }, |
| [SRAM_CH23] = { |
| .name = "video v", |
| .cmds_start = 0x1800c0, |
| .ctrl_start = 0x180540, |
| .cdt = 0x180540 + 64, |
| .fifo_start = 0x183c00, |
| .fifo_size = 0x000800, |
| .ptr1_reg = MO_DMA23_PTR1, |
| .ptr2_reg = MO_DMA23_PTR2, |
| .cnt1_reg = MO_DMA23_CNT1, |
| .cnt2_reg = MO_DMA23_CNT2, |
| }, |
| [SRAM_CH24] = { |
| .name = "vbi", |
| .cmds_start = 0x180100, |
| .ctrl_start = 0x1805e0, |
| .cdt = 0x1805e0 + 64, |
| .fifo_start = 0x184400, |
| .fifo_size = 0x001000, |
| .ptr1_reg = MO_DMA24_PTR1, |
| .ptr2_reg = MO_DMA24_PTR2, |
| .cnt1_reg = MO_DMA24_CNT1, |
| .cnt2_reg = MO_DMA24_CNT2, |
| }, |
| [SRAM_CH25] = { |
| .name = "audio from", |
| .cmds_start = 0x180140, |
| .ctrl_start = 0x180680, |
| .cdt = 0x180680 + 64, |
| .fifo_start = 0x185400, |
| .fifo_size = 0x001000, |
| .ptr1_reg = MO_DMA25_PTR1, |
| .ptr2_reg = MO_DMA25_PTR2, |
| .cnt1_reg = MO_DMA25_CNT1, |
| .cnt2_reg = MO_DMA25_CNT2, |
| }, |
| [SRAM_CH26] = { |
| .name = "audio to", |
| .cmds_start = 0x180180, |
| .ctrl_start = 0x180720, |
| .cdt = 0x180680 + 64, /* same as audio IN */ |
| .fifo_start = 0x185400, /* same as audio IN */ |
| .fifo_size = 0x001000, /* same as audio IN */ |
| .ptr1_reg = MO_DMA26_PTR1, |
| .ptr2_reg = MO_DMA26_PTR2, |
| .cnt1_reg = MO_DMA26_CNT1, |
| .cnt2_reg = MO_DMA26_CNT2, |
| }, |
| [SRAM_CH28] = { |
| .name = "mpeg", |
| .cmds_start = 0x180200, |
| .ctrl_start = 0x1807C0, |
| .cdt = 0x1807C0 + 64, |
| .fifo_start = 0x186400, |
| .fifo_size = 0x001000, |
| .ptr1_reg = MO_DMA28_PTR1, |
| .ptr2_reg = MO_DMA28_PTR2, |
| .cnt1_reg = MO_DMA28_CNT1, |
| .cnt2_reg = MO_DMA28_CNT2, |
| }, |
| }; |
| |
| int cx88_sram_channel_setup(struct cx88_core *core, |
| struct sram_channel *ch, |
| unsigned int bpl, u32 risc) |
| { |
| unsigned int i,lines; |
| u32 cdt; |
| |
| bpl = (bpl + 7) & ~7; /* alignment */ |
| cdt = ch->cdt; |
| lines = ch->fifo_size / bpl; |
| if (lines > 6) |
| lines = 6; |
| BUG_ON(lines < 2); |
| |
| /* write CDT */ |
| for (i = 0; i < lines; i++) |
| cx_write(cdt + 16*i, ch->fifo_start + bpl*i); |
| |
| /* write CMDS */ |
| cx_write(ch->cmds_start + 0, risc); |
| cx_write(ch->cmds_start + 4, cdt); |
| cx_write(ch->cmds_start + 8, (lines*16) >> 3); |
| cx_write(ch->cmds_start + 12, ch->ctrl_start); |
| cx_write(ch->cmds_start + 16, 64 >> 2); |
| for (i = 20; i < 64; i += 4) |
| cx_write(ch->cmds_start + i, 0); |
| |
| /* fill registers */ |
| cx_write(ch->ptr1_reg, ch->fifo_start); |
| cx_write(ch->ptr2_reg, cdt); |
| cx_write(ch->cnt1_reg, (bpl >> 3) -1); |
| cx_write(ch->cnt2_reg, (lines*16) >> 3); |
| |
| dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines); |
| return 0; |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| /* debug helper code */ |
| |
| static int cx88_risc_decode(u32 risc) |
| { |
| static char *instr[16] = { |
| [ RISC_SYNC >> 28 ] = "sync", |
| [ RISC_WRITE >> 28 ] = "write", |
| [ RISC_WRITEC >> 28 ] = "writec", |
| [ RISC_READ >> 28 ] = "read", |
| [ RISC_READC >> 28 ] = "readc", |
| [ RISC_JUMP >> 28 ] = "jump", |
| [ RISC_SKIP >> 28 ] = "skip", |
| [ RISC_WRITERM >> 28 ] = "writerm", |
| [ RISC_WRITECM >> 28 ] = "writecm", |
| [ RISC_WRITECR >> 28 ] = "writecr", |
| }; |
| static int incr[16] = { |
| [ RISC_WRITE >> 28 ] = 2, |
| [ RISC_JUMP >> 28 ] = 2, |
| [ RISC_WRITERM >> 28 ] = 3, |
| [ RISC_WRITECM >> 28 ] = 3, |
| [ RISC_WRITECR >> 28 ] = 4, |
| }; |
| static char *bits[] = { |
| "12", "13", "14", "resync", |
| "cnt0", "cnt1", "18", "19", |
| "20", "21", "22", "23", |
| "irq1", "irq2", "eol", "sol", |
| }; |
| int i; |
| |
| printk("0x%08x [ %s", risc, |
| instr[risc >> 28] ? instr[risc >> 28] : "INVALID"); |
| for (i = ARRAY_SIZE(bits)-1; i >= 0; i--) |
| if (risc & (1 << (i + 12))) |
| printk(" %s",bits[i]); |
| printk(" count=%d ]\n", risc & 0xfff); |
| return incr[risc >> 28] ? incr[risc >> 28] : 1; |
| } |
| |
| |
| void cx88_sram_channel_dump(struct cx88_core *core, |
| struct sram_channel *ch) |
| { |
| static char *name[] = { |
| "initial risc", |
| "cdt base", |
| "cdt size", |
| "iq base", |
| "iq size", |
| "risc pc", |
| "iq wr ptr", |
| "iq rd ptr", |
| "cdt current", |
| "pci target", |
| "line / byte", |
| }; |
| u32 risc; |
| unsigned int i,j,n; |
| |
| printk("%s: %s - dma channel status dump\n", |
| core->name,ch->name); |
| for (i = 0; i < ARRAY_SIZE(name); i++) |
| printk("%s: cmds: %-12s: 0x%08x\n", |
| core->name,name[i], |
| cx_read(ch->cmds_start + 4*i)); |
| for (n = 1, i = 0; i < 4; i++) { |
| risc = cx_read(ch->cmds_start + 4 * (i+11)); |
| printk("%s: risc%d: ", core->name, i); |
| if (--n) |
| printk("0x%08x [ arg #%d ]\n", risc, n); |
| else |
| n = cx88_risc_decode(risc); |
| } |
| for (i = 0; i < 16; i += n) { |
| risc = cx_read(ch->ctrl_start + 4 * i); |
| printk("%s: iq %x: ", core->name, i); |
| n = cx88_risc_decode(risc); |
| for (j = 1; j < n; j++) { |
| risc = cx_read(ch->ctrl_start + 4 * (i+j)); |
| printk("%s: iq %x: 0x%08x [ arg #%d ]\n", |
| core->name, i+j, risc, j); |
| } |
| } |
| |
| printk("%s: fifo: 0x%08x -> 0x%x\n", |
| core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size); |
| printk("%s: ctrl: 0x%08x -> 0x%x\n", |
| core->name, ch->ctrl_start, ch->ctrl_start+6*16); |
| printk("%s: ptr1_reg: 0x%08x\n", |
| core->name,cx_read(ch->ptr1_reg)); |
| printk("%s: ptr2_reg: 0x%08x\n", |
| core->name,cx_read(ch->ptr2_reg)); |
| printk("%s: cnt1_reg: 0x%08x\n", |
| core->name,cx_read(ch->cnt1_reg)); |
| printk("%s: cnt2_reg: 0x%08x\n", |
| core->name,cx_read(ch->cnt2_reg)); |
| } |
| |
| static char *cx88_pci_irqs[32] = { |
| "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1", |
| "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err", |
| "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err", |
| "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1" |
| }; |
| |
| void cx88_print_irqbits(char *name, char *tag, char **strings, |
| int len, u32 bits, u32 mask) |
| { |
| unsigned int i; |
| |
| printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits); |
| for (i = 0; i < len; i++) { |
| if (!(bits & (1 << i))) |
| continue; |
| if (strings[i]) |
| printk(" %s", strings[i]); |
| else |
| printk(" %d", i); |
| if (!(mask & (1 << i))) |
| continue; |
| printk("*"); |
| } |
| printk("\n"); |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| |
| int cx88_core_irq(struct cx88_core *core, u32 status) |
| { |
| int handled = 0; |
| |
| if (status & PCI_INT_IR_SMPINT) { |
| cx88_ir_irq(core); |
| handled++; |
| } |
| if (!handled) |
| cx88_print_irqbits(core->name, "irq pci", |
| cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs), |
| status, core->pci_irqmask); |
| return handled; |
| } |
| |
| void cx88_wakeup(struct cx88_core *core, |
| struct cx88_dmaqueue *q, u32 count) |
| { |
| struct cx88_buffer *buf; |
| int bc; |
| |
| for (bc = 0;; bc++) { |
| if (list_empty(&q->active)) |
| break; |
| buf = list_entry(q->active.next, |
| struct cx88_buffer, vb.queue); |
| /* count comes from the hw and is is 16bit wide -- |
| * this trick handles wrap-arounds correctly for |
| * up to 32767 buffers in flight... */ |
| if ((s16) (count - buf->count) < 0) |
| break; |
| do_gettimeofday(&buf->vb.ts); |
| dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i, |
| count, buf->count); |
| buf->vb.state = STATE_DONE; |
| list_del(&buf->vb.queue); |
| wake_up(&buf->vb.done); |
| } |
| if (list_empty(&q->active)) { |
| del_timer(&q->timeout); |
| } else { |
| mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT); |
| } |
| if (bc != 1) |
| printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc); |
| } |
| |
| void cx88_shutdown(struct cx88_core *core) |
| { |
| /* disable RISC controller + IRQs */ |
| cx_write(MO_DEV_CNTRL2, 0); |
| |
| /* stop dma transfers */ |
| cx_write(MO_VID_DMACNTRL, 0x0); |
| cx_write(MO_AUD_DMACNTRL, 0x0); |
| cx_write(MO_TS_DMACNTRL, 0x0); |
| cx_write(MO_VIP_DMACNTRL, 0x0); |
| cx_write(MO_GPHST_DMACNTRL, 0x0); |
| |
| /* stop interrupts */ |
| cx_write(MO_PCI_INTMSK, 0x0); |
| cx_write(MO_VID_INTMSK, 0x0); |
| cx_write(MO_AUD_INTMSK, 0x0); |
| cx_write(MO_TS_INTMSK, 0x0); |
| cx_write(MO_VIP_INTMSK, 0x0); |
| cx_write(MO_GPHST_INTMSK, 0x0); |
| |
| /* stop capturing */ |
| cx_write(VID_CAPTURE_CONTROL, 0); |
| } |
| |
| int cx88_reset(struct cx88_core *core) |
| { |
| dprintk(1,"%s\n",__FUNCTION__); |
| cx88_shutdown(core); |
| |
| /* clear irq status */ |
| cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int |
| cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int |
| cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int |
| |
| /* wait a bit */ |
| msleep(100); |
| |
| /* init sram */ |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0); |
| |
| /* misc init ... */ |
| cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable |
| (1 << 12) | // agc gain |
| (1 << 11) | // adaptibe agc |
| (0 << 10) | // chroma agc |
| (0 << 9) | // ckillen |
| (7))); |
| |
| /* setup image format */ |
| cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000); |
| |
| /* setup FIFO Threshholds */ |
| cx_write(MO_PDMA_STHRSH, 0x0807); |
| cx_write(MO_PDMA_DTHRSH, 0x0807); |
| |
| /* fixes flashing of image */ |
| cx_write(MO_AGC_SYNC_TIP1, 0x0380000F); |
| cx_write(MO_AGC_BACK_VBI, 0x00E00555); |
| |
| cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int |
| cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int |
| cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int |
| |
| /* Reset on-board parts */ |
| cx_write(MO_SRST_IO, 0); |
| msleep(10); |
| cx_write(MO_SRST_IO, 1); |
| |
| return 0; |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| |
| static unsigned int inline norm_swidth(v4l2_std_id norm) |
| { |
| return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922; |
| } |
| |
| static unsigned int inline norm_hdelay(v4l2_std_id norm) |
| { |
| return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186; |
| } |
| |
| static unsigned int inline norm_vdelay(v4l2_std_id norm) |
| { |
| return (norm & V4L2_STD_625_50) ? 0x24 : 0x18; |
| } |
| |
| static unsigned int inline norm_fsc8(v4l2_std_id norm) |
| { |
| if (norm & V4L2_STD_PAL_M) |
| return 28604892; // 3.575611 MHz |
| |
| if (norm & (V4L2_STD_PAL_Nc)) |
| return 28656448; // 3.582056 MHz |
| |
| if (norm & V4L2_STD_NTSC) // All NTSC/M and variants |
| return 28636360; // 3.57954545 MHz +/- 10 Hz |
| |
| /* SECAM have also different sub carrier for chroma, |
| but step_db and step_dr, at cx88_set_tvnorm already handles that. |
| |
| The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N |
| */ |
| |
| return 35468950; // 4.43361875 MHz +/- 5 Hz |
| } |
| |
| static unsigned int inline norm_htotal(v4l2_std_id norm) |
| { |
| |
| unsigned int fsc4=norm_fsc8(norm)/2; |
| |
| /* returns 4*FSC / vtotal / frames per seconds */ |
| return (norm & V4L2_STD_625_50) ? |
| ((fsc4+312)/625+12)/25 : |
| ((fsc4+262)/525*1001+15000)/30000; |
| } |
| |
| static unsigned int inline norm_vbipack(v4l2_std_id norm) |
| { |
| return (norm & V4L2_STD_625_50) ? 511 : 400; |
| } |
| |
| int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height, |
| enum v4l2_field field) |
| { |
| unsigned int swidth = norm_swidth(core->tvnorm); |
| unsigned int sheight = norm_maxh(core->tvnorm); |
| u32 value; |
| |
| dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height, |
| V4L2_FIELD_HAS_TOP(field) ? "T" : "", |
| V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", |
| v4l2_norm_to_name(core->tvnorm)); |
| if (!V4L2_FIELD_HAS_BOTH(field)) |
| height *= 2; |
| |
| // recalc H delay and scale registers |
| value = (width * norm_hdelay(core->tvnorm)) / swidth; |
| value &= 0x3fe; |
| cx_write(MO_HDELAY_EVEN, value); |
| cx_write(MO_HDELAY_ODD, value); |
| dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth); |
| |
| value = (swidth * 4096 / width) - 4096; |
| cx_write(MO_HSCALE_EVEN, value); |
| cx_write(MO_HSCALE_ODD, value); |
| dprintk(1,"set_scale: hscale 0x%04x\n", value); |
| |
| cx_write(MO_HACTIVE_EVEN, width); |
| cx_write(MO_HACTIVE_ODD, width); |
| dprintk(1,"set_scale: hactive 0x%04x\n", width); |
| |
| // recalc V scale Register (delay is constant) |
| cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm)); |
| cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm)); |
| dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm)); |
| |
| value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff; |
| cx_write(MO_VSCALE_EVEN, value); |
| cx_write(MO_VSCALE_ODD, value); |
| dprintk(1,"set_scale: vscale 0x%04x\n", value); |
| |
| cx_write(MO_VACTIVE_EVEN, sheight); |
| cx_write(MO_VACTIVE_ODD, sheight); |
| dprintk(1,"set_scale: vactive 0x%04x\n", sheight); |
| |
| // setup filters |
| value = 0; |
| value |= (1 << 19); // CFILT (default) |
| if (core->tvnorm & V4L2_STD_SECAM) { |
| value |= (1 << 15); |
| value |= (1 << 16); |
| } |
| if (INPUT(core->input).type == CX88_VMUX_SVIDEO) |
| value |= (1 << 13) | (1 << 5); |
| if (V4L2_FIELD_INTERLACED == field) |
| value |= (1 << 3); // VINT (interlaced vertical scaling) |
| if (width < 385) |
| value |= (1 << 0); // 3-tap interpolation |
| if (width < 193) |
| value |= (1 << 1); // 5-tap interpolation |
| if (nocomb) |
| value |= (3 << 5); // disable comb filter |
| |
| cx_write(MO_FILTER_EVEN, value); |
| cx_write(MO_FILTER_ODD, value); |
| dprintk(1,"set_scale: filter 0x%04x\n", value); |
| |
| return 0; |
| } |
| |
| static const u32 xtal = 28636363; |
| |
| static int set_pll(struct cx88_core *core, int prescale, u32 ofreq) |
| { |
| static u32 pre[] = { 0, 0, 0, 3, 2, 1 }; |
| u64 pll; |
| u32 reg; |
| int i; |
| |
| if (prescale < 2) |
| prescale = 2; |
| if (prescale > 5) |
| prescale = 5; |
| |
| pll = ofreq * 8 * prescale * (u64)(1 << 20); |
| do_div(pll,xtal); |
| reg = (pll & 0x3ffffff) | (pre[prescale] << 26); |
| if (((reg >> 20) & 0x3f) < 14) { |
| printk("%s/0: pll out of range\n",core->name); |
| return -1; |
| } |
| |
| dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n", |
| reg, cx_read(MO_PLL_REG), ofreq); |
| cx_write(MO_PLL_REG, reg); |
| for (i = 0; i < 100; i++) { |
| reg = cx_read(MO_DEVICE_STATUS); |
| if (reg & (1<<2)) { |
| dprintk(1,"pll locked [pre=%d,ofreq=%d]\n", |
| prescale,ofreq); |
| return 0; |
| } |
| dprintk(1,"pll not locked yet, waiting ...\n"); |
| msleep(10); |
| } |
| dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq); |
| return -1; |
| } |
| |
| int cx88_start_audio_dma(struct cx88_core *core) |
| { |
| /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */ |
| int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4; |
| |
| /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ |
| if (cx_read(MO_AUD_DMACNTRL) & 0x10) |
| return 0; |
| |
| /* setup fifo + format */ |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0); |
| cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0); |
| |
| cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */ |
| cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */ |
| |
| /* start dma */ |
| cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */ |
| |
| return 0; |
| } |
| |
| int cx88_stop_audio_dma(struct cx88_core *core) |
| { |
| /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ |
| if (cx_read(MO_AUD_DMACNTRL) & 0x10) |
| return 0; |
| |
| /* stop dma */ |
| cx_write(MO_AUD_DMACNTRL, 0x0000); |
| |
| return 0; |
| } |
| |
| static int set_tvaudio(struct cx88_core *core) |
| { |
| v4l2_std_id norm = core->tvnorm; |
| |
| if (CX88_VMUX_TELEVISION != INPUT(core->input).type) |
| return 0; |
| |
| if (V4L2_STD_PAL_BG & norm) { |
| core->tvaudio = WW_BG; |
| |
| } else if (V4L2_STD_PAL_DK & norm) { |
| core->tvaudio = WW_DK; |
| |
| } else if (V4L2_STD_PAL_I & norm) { |
| core->tvaudio = WW_I; |
| |
| } else if (V4L2_STD_SECAM_L & norm) { |
| core->tvaudio = WW_L; |
| |
| } else if (V4L2_STD_SECAM_DK & norm) { |
| core->tvaudio = WW_DK; |
| |
| } else if ((V4L2_STD_NTSC_M & norm) || |
| (V4L2_STD_PAL_M & norm)) { |
| core->tvaudio = WW_BTSC; |
| |
| } else if (V4L2_STD_NTSC_M_JP & norm) { |
| core->tvaudio = WW_EIAJ; |
| |
| } else { |
| printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n", |
| core->name, v4l2_norm_to_name(core->tvnorm)); |
| core->tvaudio = 0; |
| return 0; |
| } |
| |
| cx_andor(MO_AFECFG_IO, 0x1f, 0x0); |
| cx88_set_tvaudio(core); |
| /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */ |
| |
| /* |
| This should be needed only on cx88-alsa. It seems that some cx88 chips have |
| bugs and does require DMA enabled for it to work. |
| */ |
| cx88_start_audio_dma(core); |
| return 0; |
| } |
| |
| |
| |
| int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm) |
| { |
| u32 fsc8; |
| u32 adc_clock; |
| u32 vdec_clock; |
| u32 step_db,step_dr; |
| u64 tmp64; |
| u32 bdelay,agcdelay,htotal; |
| u32 cxiformat, cxoformat; |
| |
| core->tvnorm = norm; |
| fsc8 = norm_fsc8(norm); |
| adc_clock = xtal; |
| vdec_clock = fsc8; |
| step_db = fsc8; |
| step_dr = fsc8; |
| |
| if (norm & V4L2_STD_NTSC_M_JP) { |
| cxiformat = VideoFormatNTSCJapan; |
| cxoformat = 0x181f0008; |
| } else if (norm & V4L2_STD_NTSC_443) { |
| cxiformat = VideoFormatNTSC443; |
| cxoformat = 0x181f0008; |
| } else if (norm & V4L2_STD_PAL_M) { |
| cxiformat = VideoFormatPALM; |
| cxoformat = 0x1c1f0008; |
| } else if (norm & V4L2_STD_PAL_N) { |
| cxiformat = VideoFormatPALN; |
| cxoformat = 0x1c1f0008; |
| } else if (norm & V4L2_STD_PAL_Nc) { |
| cxiformat = VideoFormatPALNC; |
| cxoformat = 0x1c1f0008; |
| } else if (norm & V4L2_STD_PAL_60) { |
| cxiformat = VideoFormatPAL60; |
| cxoformat = 0x181f0008; |
| } else if (norm & V4L2_STD_NTSC) { |
| cxiformat = VideoFormatNTSC; |
| cxoformat = 0x181f0008; |
| } else if (norm & V4L2_STD_SECAM) { |
| step_db = 4250000 * 8; |
| step_dr = 4406250 * 8; |
| |
| cxiformat = VideoFormatSECAM; |
| cxoformat = 0x181f0008; |
| } else { /* PAL */ |
| cxiformat = VideoFormatPAL; |
| cxoformat = 0x181f0008; |
| } |
| |
| dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n", |
| v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock, |
| step_db, step_dr); |
| set_pll(core,2,vdec_clock); |
| |
| dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n", |
| cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f); |
| cx_andor(MO_INPUT_FORMAT, 0xf, cxiformat); |
| |
| // FIXME: as-is from DScaler |
| dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n", |
| cxoformat, cx_read(MO_OUTPUT_FORMAT)); |
| cx_write(MO_OUTPUT_FORMAT, cxoformat); |
| |
| // MO_SCONV_REG = adc clock / video dec clock * 2^17 |
| tmp64 = adc_clock * (u64)(1 << 17); |
| do_div(tmp64, vdec_clock); |
| dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n", |
| (u32)tmp64, cx_read(MO_SCONV_REG)); |
| cx_write(MO_SCONV_REG, (u32)tmp64); |
| |
| // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22 |
| tmp64 = step_db * (u64)(1 << 22); |
| do_div(tmp64, vdec_clock); |
| dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n", |
| (u32)tmp64, cx_read(MO_SUB_STEP)); |
| cx_write(MO_SUB_STEP, (u32)tmp64); |
| |
| // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22 |
| tmp64 = step_dr * (u64)(1 << 22); |
| do_div(tmp64, vdec_clock); |
| dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n", |
| (u32)tmp64, cx_read(MO_SUB_STEP_DR)); |
| cx_write(MO_SUB_STEP_DR, (u32)tmp64); |
| |
| // bdelay + agcdelay |
| bdelay = vdec_clock * 65 / 20000000 + 21; |
| agcdelay = vdec_clock * 68 / 20000000 + 15; |
| dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n", |
| (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay); |
| cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay); |
| |
| // htotal |
| tmp64 = norm_htotal(norm) * (u64)vdec_clock; |
| do_div(tmp64, fsc8); |
| htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11); |
| dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n", |
| htotal, cx_read(MO_HTOTAL), (u32)tmp64); |
| cx_write(MO_HTOTAL, htotal); |
| |
| // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes |
| // the effective vbi offset ~244 samples, the same as the Bt8x8 |
| cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm)); |
| |
| // this is needed as well to set all tvnorm parameter |
| cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED); |
| |
| // audio |
| set_tvaudio(core); |
| |
| // tell i2c chips |
| cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm); |
| |
| // done |
| return 0; |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| |
| struct video_device *cx88_vdev_init(struct cx88_core *core, |
| struct pci_dev *pci, |
| struct video_device *template, |
| char *type) |
| { |
| struct video_device *vfd; |
| |
| vfd = video_device_alloc(); |
| if (NULL == vfd) |
| return NULL; |
| *vfd = *template; |
| vfd->minor = -1; |
| vfd->dev = &pci->dev; |
| vfd->release = video_device_release; |
| snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)", |
| core->name, type, core->board.name); |
| return vfd; |
| } |
| |
| struct cx88_core* cx88_core_get(struct pci_dev *pci) |
| { |
| struct cx88_core *core; |
| |
| mutex_lock(&devlist); |
| list_for_each_entry(core, &cx88_devlist, devlist) { |
| if (pci->bus->number != core->pci_bus) |
| continue; |
| if (PCI_SLOT(pci->devfn) != core->pci_slot) |
| continue; |
| |
| if (0 != cx88_get_resources(core, pci)) { |
| mutex_unlock(&devlist); |
| return NULL; |
| } |
| atomic_inc(&core->refcount); |
| mutex_unlock(&devlist); |
| return core; |
| } |
| |
| core = cx88_core_create(pci, cx88_devcount); |
| if (NULL != core) { |
| cx88_devcount++; |
| list_add_tail(&core->devlist, &cx88_devlist); |
| } |
| |
| mutex_unlock(&devlist); |
| return core; |
| } |
| |
| void cx88_core_put(struct cx88_core *core, struct pci_dev *pci) |
| { |
| release_mem_region(pci_resource_start(pci,0), |
| pci_resource_len(pci,0)); |
| |
| if (!atomic_dec_and_test(&core->refcount)) |
| return; |
| |
| mutex_lock(&devlist); |
| cx88_ir_fini(core); |
| if (0 == core->i2c_rc) |
| i2c_del_adapter(&core->i2c_adap); |
| list_del(&core->devlist); |
| iounmap(core->lmmio); |
| cx88_devcount--; |
| mutex_unlock(&devlist); |
| kfree(core); |
| } |
| |
| /* ------------------------------------------------------------------ */ |
| |
| EXPORT_SYMBOL(cx88_print_irqbits); |
| |
| EXPORT_SYMBOL(cx88_core_irq); |
| EXPORT_SYMBOL(cx88_wakeup); |
| EXPORT_SYMBOL(cx88_reset); |
| EXPORT_SYMBOL(cx88_shutdown); |
| |
| EXPORT_SYMBOL(cx88_risc_buffer); |
| EXPORT_SYMBOL(cx88_risc_databuffer); |
| EXPORT_SYMBOL(cx88_risc_stopper); |
| EXPORT_SYMBOL(cx88_free_buffer); |
| |
| EXPORT_SYMBOL(cx88_sram_channels); |
| EXPORT_SYMBOL(cx88_sram_channel_setup); |
| EXPORT_SYMBOL(cx88_sram_channel_dump); |
| |
| EXPORT_SYMBOL(cx88_set_tvnorm); |
| EXPORT_SYMBOL(cx88_set_scale); |
| |
| EXPORT_SYMBOL(cx88_vdev_init); |
| EXPORT_SYMBOL(cx88_core_get); |
| EXPORT_SYMBOL(cx88_core_put); |
| |
| EXPORT_SYMBOL(cx88_ir_start); |
| EXPORT_SYMBOL(cx88_ir_stop); |
| |
| /* |
| * Local variables: |
| * c-basic-offset: 8 |
| * End: |
| * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off |
| */ |