| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #ifndef __ARM64_KVM_MMU_H__ |
| #define __ARM64_KVM_MMU_H__ |
| |
| #include <asm/page.h> |
| #include <asm/memory.h> |
| #include <asm/cpufeature.h> |
| |
| /* |
| * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express |
| * "negative" addresses. This makes it impossible to directly share |
| * mappings with the kernel. |
| * |
| * Instead, give the HYP mode its own VA region at a fixed offset from |
| * the kernel by just masking the top bits (which are all ones for a |
| * kernel address). We need to find out how many bits to mask. |
| * |
| * We want to build a set of page tables that cover both parts of the |
| * idmap (the trampoline page used to initialize EL2), and our normal |
| * runtime VA space, at the same time. |
| * |
| * Given that the kernel uses VA_BITS for its entire address space, |
| * and that half of that space (VA_BITS - 1) is used for the linear |
| * mapping, we can also limit the EL2 space to (VA_BITS - 1). |
| * |
| * The main question is "Within the VA_BITS space, does EL2 use the |
| * top or the bottom half of that space to shadow the kernel's linear |
| * mapping?". As we need to idmap the trampoline page, this is |
| * determined by the range in which this page lives. |
| * |
| * If the page is in the bottom half, we have to use the top half. If |
| * the page is in the top half, we have to use the bottom half: |
| * |
| * T = __pa_symbol(__hyp_idmap_text_start) |
| * if (T & BIT(VA_BITS - 1)) |
| * HYP_VA_MIN = 0 //idmap in upper half |
| * else |
| * HYP_VA_MIN = 1 << (VA_BITS - 1) |
| * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 |
| * |
| * This of course assumes that the trampoline page exists within the |
| * VA_BITS range. If it doesn't, then it means we're in the odd case |
| * where the kernel idmap (as well as HYP) uses more levels than the |
| * kernel runtime page tables (as seen when the kernel is configured |
| * for 4k pages, 39bits VA, and yet memory lives just above that |
| * limit, forcing the idmap to use 4 levels of page tables while the |
| * kernel itself only uses 3). In this particular case, it doesn't |
| * matter which side of VA_BITS we use, as we're guaranteed not to |
| * conflict with anything. |
| * |
| * When using VHE, there are no separate hyp mappings and all KVM |
| * functionality is already mapped as part of the main kernel |
| * mappings, and none of this applies in that case. |
| */ |
| |
| #ifdef __ASSEMBLY__ |
| |
| #include <asm/alternative.h> |
| |
| /* |
| * Convert a kernel VA into a HYP VA. |
| * reg: VA to be converted. |
| * |
| * The actual code generation takes place in kvm_update_va_mask, and |
| * the instructions below are only there to reserve the space and |
| * perform the register allocation (kvm_update_va_mask uses the |
| * specific registers encoded in the instructions). |
| */ |
| .macro kern_hyp_va reg |
| alternative_cb kvm_update_va_mask |
| and \reg, \reg, #1 /* mask with va_mask */ |
| ror \reg, \reg, #1 /* rotate to the first tag bit */ |
| add \reg, \reg, #0 /* insert the low 12 bits of the tag */ |
| add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ |
| ror \reg, \reg, #63 /* rotate back */ |
| alternative_cb_end |
| .endm |
| |
| #else |
| |
| #include <asm/pgalloc.h> |
| #include <asm/cache.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| |
| void kvm_update_va_mask(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst); |
| void kvm_compute_layout(void); |
| |
| static __always_inline unsigned long __kern_hyp_va(unsigned long v) |
| { |
| asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" |
| "ror %0, %0, #1\n" |
| "add %0, %0, #0\n" |
| "add %0, %0, #0, lsl 12\n" |
| "ror %0, %0, #63\n", |
| kvm_update_va_mask) |
| : "+r" (v)); |
| return v; |
| } |
| |
| #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) |
| |
| /* |
| * Obtain the PC-relative address of a kernel symbol |
| * s: symbol |
| * |
| * The goal of this macro is to return a symbol's address based on a |
| * PC-relative computation, as opposed to a loading the VA from a |
| * constant pool or something similar. This works well for HYP, as an |
| * absolute VA is guaranteed to be wrong. Only use this if trying to |
| * obtain the address of a symbol (i.e. not something you obtained by |
| * following a pointer). |
| */ |
| #define hyp_symbol_addr(s) \ |
| ({ \ |
| typeof(s) *addr; \ |
| asm("adrp %0, %1\n" \ |
| "add %0, %0, :lo12:%1\n" \ |
| : "=r" (addr) : "S" (&s)); \ |
| addr; \ |
| }) |
| |
| /* |
| * We currently support using a VM-specified IPA size. For backward |
| * compatibility, the default IPA size is fixed to 40bits. |
| */ |
| #define KVM_PHYS_SHIFT (40) |
| |
| #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) |
| #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) |
| #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) |
| |
| static inline bool kvm_page_empty(void *ptr) |
| { |
| struct page *ptr_page = virt_to_page(ptr); |
| return page_count(ptr_page) == 1; |
| } |
| |
| #include <asm/stage2_pgtable.h> |
| |
| int create_hyp_mappings(void *from, void *to, pgprot_t prot); |
| int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| void __iomem **kaddr, |
| void __iomem **haddr); |
| int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| void **haddr); |
| void free_hyp_pgds(void); |
| |
| void stage2_unmap_vm(struct kvm *kvm); |
| int kvm_alloc_stage2_pgd(struct kvm *kvm); |
| void kvm_free_stage2_pgd(struct kvm *kvm); |
| int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| phys_addr_t pa, unsigned long size, bool writable); |
| |
| int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); |
| |
| void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); |
| |
| phys_addr_t kvm_mmu_get_httbr(void); |
| phys_addr_t kvm_get_idmap_vector(void); |
| int kvm_mmu_init(void); |
| void kvm_clear_hyp_idmap(void); |
| |
| #define kvm_mk_pmd(ptep) \ |
| __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) |
| #define kvm_mk_pud(pmdp) \ |
| __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) |
| #define kvm_mk_pgd(pudp) \ |
| __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) |
| |
| #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) |
| |
| #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) |
| #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) |
| #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) |
| |
| #define kvm_pud_pfn(pud) pud_pfn(pud) |
| |
| #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) |
| #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) |
| |
| static inline pte_t kvm_s2pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= PTE_S2_RDWR; |
| return pte; |
| } |
| |
| static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) |
| { |
| pmd_val(pmd) |= PMD_S2_RDWR; |
| return pmd; |
| } |
| |
| static inline pud_t kvm_s2pud_mkwrite(pud_t pud) |
| { |
| pud_val(pud) |= PUD_S2_RDWR; |
| return pud; |
| } |
| |
| static inline pte_t kvm_s2pte_mkexec(pte_t pte) |
| { |
| pte_val(pte) &= ~PTE_S2_XN; |
| return pte; |
| } |
| |
| static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) |
| { |
| pmd_val(pmd) &= ~PMD_S2_XN; |
| return pmd; |
| } |
| |
| static inline pud_t kvm_s2pud_mkexec(pud_t pud) |
| { |
| pud_val(pud) &= ~PUD_S2_XN; |
| return pud; |
| } |
| |
| static inline void kvm_set_s2pte_readonly(pte_t *ptep) |
| { |
| pteval_t old_pteval, pteval; |
| |
| pteval = READ_ONCE(pte_val(*ptep)); |
| do { |
| old_pteval = pteval; |
| pteval &= ~PTE_S2_RDWR; |
| pteval |= PTE_S2_RDONLY; |
| pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); |
| } while (pteval != old_pteval); |
| } |
| |
| static inline bool kvm_s2pte_readonly(pte_t *ptep) |
| { |
| return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; |
| } |
| |
| static inline bool kvm_s2pte_exec(pte_t *ptep) |
| { |
| return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); |
| } |
| |
| static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) |
| { |
| kvm_set_s2pte_readonly((pte_t *)pmdp); |
| } |
| |
| static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) |
| { |
| return kvm_s2pte_readonly((pte_t *)pmdp); |
| } |
| |
| static inline bool kvm_s2pmd_exec(pmd_t *pmdp) |
| { |
| return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); |
| } |
| |
| static inline void kvm_set_s2pud_readonly(pud_t *pudp) |
| { |
| kvm_set_s2pte_readonly((pte_t *)pudp); |
| } |
| |
| static inline bool kvm_s2pud_readonly(pud_t *pudp) |
| { |
| return kvm_s2pte_readonly((pte_t *)pudp); |
| } |
| |
| static inline bool kvm_s2pud_exec(pud_t *pudp) |
| { |
| return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); |
| } |
| |
| static inline pud_t kvm_s2pud_mkyoung(pud_t pud) |
| { |
| return pud_mkyoung(pud); |
| } |
| |
| static inline bool kvm_s2pud_young(pud_t pud) |
| { |
| return pud_young(pud); |
| } |
| |
| #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| #define hyp_pmd_table_empty(pmdp) (0) |
| #else |
| #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) |
| #endif |
| |
| #ifdef __PAGETABLE_PUD_FOLDED |
| #define hyp_pud_table_empty(pudp) (0) |
| #else |
| #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) |
| #endif |
| |
| struct kvm; |
| |
| #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) |
| |
| static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; |
| } |
| |
| static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) |
| { |
| void *va = page_address(pfn_to_page(pfn)); |
| |
| /* |
| * With FWB, we ensure that the guest always accesses memory using |
| * cacheable attributes, and we don't have to clean to PoC when |
| * faulting in pages. Furthermore, FWB implies IDC, so cleaning to |
| * PoU is not required either in this case. |
| */ |
| if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| return; |
| |
| kvm_flush_dcache_to_poc(va, size); |
| } |
| |
| static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, |
| unsigned long size) |
| { |
| if (icache_is_aliasing()) { |
| /* any kind of VIPT cache */ |
| __flush_icache_all(); |
| } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { |
| /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ |
| void *va = page_address(pfn_to_page(pfn)); |
| |
| invalidate_icache_range((unsigned long)va, |
| (unsigned long)va + size); |
| } |
| } |
| |
| static inline void __kvm_flush_dcache_pte(pte_t pte) |
| { |
| if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| struct page *page = pte_page(pte); |
| kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); |
| } |
| } |
| |
| static inline void __kvm_flush_dcache_pmd(pmd_t pmd) |
| { |
| if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| struct page *page = pmd_page(pmd); |
| kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); |
| } |
| } |
| |
| static inline void __kvm_flush_dcache_pud(pud_t pud) |
| { |
| if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| struct page *page = pud_page(pud); |
| kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); |
| } |
| } |
| |
| #define kvm_virt_to_phys(x) __pa_symbol(x) |
| |
| void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
| void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); |
| |
| static inline bool __kvm_cpu_uses_extended_idmap(void) |
| { |
| return __cpu_uses_extended_idmap_level(); |
| } |
| |
| static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) |
| { |
| return idmap_ptrs_per_pgd; |
| } |
| |
| /* |
| * Can't use pgd_populate here, because the extended idmap adds an extra level |
| * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended |
| * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. |
| */ |
| static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, |
| pgd_t *hyp_pgd, |
| pgd_t *merged_hyp_pgd, |
| unsigned long hyp_idmap_start) |
| { |
| int idmap_idx; |
| u64 pgd_addr; |
| |
| /* |
| * Use the first entry to access the HYP mappings. It is |
| * guaranteed to be free, otherwise we wouldn't use an |
| * extended idmap. |
| */ |
| VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); |
| pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); |
| merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); |
| |
| /* |
| * Create another extended level entry that points to the boot HYP map, |
| * which contains an ID mapping of the HYP init code. We essentially |
| * merge the boot and runtime HYP maps by doing so, but they don't |
| * overlap anyway, so this is fine. |
| */ |
| idmap_idx = hyp_idmap_start >> VA_BITS; |
| VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); |
| pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); |
| merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); |
| } |
| |
| static inline unsigned int kvm_get_vmid_bits(void) |
| { |
| int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| |
| return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; |
| } |
| |
| /* |
| * We are not in the kvm->srcu critical section most of the time, so we take |
| * the SRCU read lock here. Since we copy the data from the user page, we |
| * can immediately drop the lock again. |
| */ |
| static inline int kvm_read_guest_lock(struct kvm *kvm, |
| gpa_t gpa, void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_read_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
| const void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_write_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_KVM_INDIRECT_VECTORS |
| /* |
| * EL2 vectors can be mapped and rerouted in a number of ways, |
| * depending on the kernel configuration and CPU present: |
| * |
| * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the |
| * hardening sequence is placed in one of the vector slots, which is |
| * executed before jumping to the real vectors. |
| * |
| * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the |
| * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the |
| * hardening sequence is mapped next to the idmap page, and executed |
| * before jumping to the real vectors. |
| * |
| * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an |
| * empty slot is selected, mapped next to the idmap page, and |
| * executed before jumping to the real vectors. |
| * |
| * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with |
| * VHE, as we don't have hypervisor-specific mappings. If the system |
| * is VHE and yet selects this capability, it will be ignored. |
| */ |
| #include <asm/mmu.h> |
| |
| extern void *__kvm_bp_vect_base; |
| extern int __kvm_harden_el2_vector_slot; |
| |
| /* This is only called on a VHE system */ |
| static inline void *kvm_get_hyp_vector(void) |
| { |
| struct bp_hardening_data *data = arm64_get_bp_hardening_data(); |
| void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| int slot = -1; |
| |
| if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { |
| vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); |
| slot = data->hyp_vectors_slot; |
| } |
| |
| if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { |
| vect = __kvm_bp_vect_base; |
| if (slot == -1) |
| slot = __kvm_harden_el2_vector_slot; |
| } |
| |
| if (slot != -1) |
| vect += slot * SZ_2K; |
| |
| return vect; |
| } |
| |
| /* This is only called on a !VHE system */ |
| static inline int kvm_map_vectors(void) |
| { |
| /* |
| * HBP = ARM64_HARDEN_BRANCH_PREDICTOR |
| * HEL2 = ARM64_HARDEN_EL2_VECTORS |
| * |
| * !HBP + !HEL2 -> use direct vectors |
| * HBP + !HEL2 -> use hardened vectors in place |
| * !HBP + HEL2 -> allocate one vector slot and use exec mapping |
| * HBP + HEL2 -> use hardened vertors and use exec mapping |
| */ |
| if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { |
| __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs); |
| __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); |
| } |
| |
| if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { |
| phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs); |
| unsigned long size = __BP_HARDEN_HYP_VECS_SZ; |
| |
| /* |
| * Always allocate a spare vector slot, as we don't |
| * know yet which CPUs have a BP hardening slot that |
| * we can reuse. |
| */ |
| __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); |
| BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); |
| return create_hyp_exec_mappings(vect_pa, size, |
| &__kvm_bp_vect_base); |
| } |
| |
| return 0; |
| } |
| #else |
| static inline void *kvm_get_hyp_vector(void) |
| { |
| return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| } |
| |
| static inline int kvm_map_vectors(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM64_SSBD |
| DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); |
| |
| static inline int hyp_map_aux_data(void) |
| { |
| int cpu, err; |
| |
| for_each_possible_cpu(cpu) { |
| u64 *ptr; |
| |
| ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); |
| err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| #else |
| static inline int hyp_map_aux_data(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) |
| |
| /* |
| * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. |
| * With v8.2 LVA extensions, 'x' should be a minimum of 6 with |
| * 52bit IPS. |
| */ |
| static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) |
| { |
| int x = ARM64_VTTBR_X(ipa_shift, levels); |
| |
| return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; |
| } |
| |
| static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) |
| { |
| unsigned int x = arm64_vttbr_x(ipa_shift, levels); |
| |
| return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); |
| } |
| |
| static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) |
| { |
| return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); |
| } |
| |
| static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) |
| { |
| struct kvm_vmid *vmid = &kvm->arch.vmid; |
| u64 vmid_field, baddr; |
| u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; |
| |
| baddr = kvm->arch.pgd_phys; |
| vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; |
| return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* __ARM64_KVM_MMU_H__ */ |