blob: c4978177ef88c2b03e68dc40010adca958ade70d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/**
* SDHCI Controller driver for TI's OMAP SoCs
*
* Copyright (C) 2017 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/delay.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/sys_soc.h>
#include <linux/thermal.h>
#include "sdhci-pltfm.h"
#define SDHCI_OMAP_CON 0x12c
#define CON_DW8 BIT(5)
#define CON_DMA_MASTER BIT(20)
#define CON_DDR BIT(19)
#define CON_CLKEXTFREE BIT(16)
#define CON_PADEN BIT(15)
#define CON_CTPL BIT(11)
#define CON_INIT BIT(1)
#define CON_OD BIT(0)
#define SDHCI_OMAP_DLL 0x0134
#define DLL_SWT BIT(20)
#define DLL_FORCE_SR_C_SHIFT 13
#define DLL_FORCE_SR_C_MASK (0x7f << DLL_FORCE_SR_C_SHIFT)
#define DLL_FORCE_VALUE BIT(12)
#define DLL_CALIB BIT(1)
#define SDHCI_OMAP_CMD 0x20c
#define SDHCI_OMAP_PSTATE 0x0224
#define PSTATE_DLEV_DAT0 BIT(20)
#define PSTATE_DATI BIT(1)
#define SDHCI_OMAP_HCTL 0x228
#define HCTL_SDBP BIT(8)
#define HCTL_SDVS_SHIFT 9
#define HCTL_SDVS_MASK (0x7 << HCTL_SDVS_SHIFT)
#define HCTL_SDVS_33 (0x7 << HCTL_SDVS_SHIFT)
#define HCTL_SDVS_30 (0x6 << HCTL_SDVS_SHIFT)
#define HCTL_SDVS_18 (0x5 << HCTL_SDVS_SHIFT)
#define SDHCI_OMAP_SYSCTL 0x22c
#define SYSCTL_CEN BIT(2)
#define SYSCTL_CLKD_SHIFT 6
#define SYSCTL_CLKD_MASK 0x3ff
#define SDHCI_OMAP_STAT 0x230
#define SDHCI_OMAP_IE 0x234
#define INT_CC_EN BIT(0)
#define SDHCI_OMAP_AC12 0x23c
#define AC12_V1V8_SIGEN BIT(19)
#define AC12_SCLK_SEL BIT(23)
#define SDHCI_OMAP_CAPA 0x240
#define CAPA_VS33 BIT(24)
#define CAPA_VS30 BIT(25)
#define CAPA_VS18 BIT(26)
#define SDHCI_OMAP_CAPA2 0x0244
#define CAPA2_TSDR50 BIT(13)
#define SDHCI_OMAP_TIMEOUT 1 /* 1 msec */
#define SYSCTL_CLKD_MAX 0x3FF
#define IOV_1V8 1800000 /* 180000 uV */
#define IOV_3V0 3000000 /* 300000 uV */
#define IOV_3V3 3300000 /* 330000 uV */
#define MAX_PHASE_DELAY 0x7C
/* sdhci-omap controller flags */
#define SDHCI_OMAP_REQUIRE_IODELAY BIT(0)
#define SDHCI_OMAP_SPECIAL_RESET BIT(1)
struct sdhci_omap_data {
u32 offset;
u8 flags;
};
struct sdhci_omap_host {
char *version;
void __iomem *base;
struct device *dev;
struct regulator *pbias;
bool pbias_enabled;
struct sdhci_host *host;
u8 bus_mode;
u8 power_mode;
u8 timing;
u8 flags;
struct pinctrl *pinctrl;
struct pinctrl_state **pinctrl_state;
bool is_tuning;
};
static void sdhci_omap_start_clock(struct sdhci_omap_host *omap_host);
static void sdhci_omap_stop_clock(struct sdhci_omap_host *omap_host);
static inline u32 sdhci_omap_readl(struct sdhci_omap_host *host,
unsigned int offset)
{
return readl(host->base + offset);
}
static inline void sdhci_omap_writel(struct sdhci_omap_host *host,
unsigned int offset, u32 data)
{
writel(data, host->base + offset);
}
static int sdhci_omap_set_pbias(struct sdhci_omap_host *omap_host,
bool power_on, unsigned int iov)
{
int ret;
struct device *dev = omap_host->dev;
if (IS_ERR(omap_host->pbias))
return 0;
if (power_on) {
ret = regulator_set_voltage(omap_host->pbias, iov, iov);
if (ret) {
dev_err(dev, "pbias set voltage failed\n");
return ret;
}
if (omap_host->pbias_enabled)
return 0;
ret = regulator_enable(omap_host->pbias);
if (ret) {
dev_err(dev, "pbias reg enable fail\n");
return ret;
}
omap_host->pbias_enabled = true;
} else {
if (!omap_host->pbias_enabled)
return 0;
ret = regulator_disable(omap_host->pbias);
if (ret) {
dev_err(dev, "pbias reg disable fail\n");
return ret;
}
omap_host->pbias_enabled = false;
}
return 0;
}
static int sdhci_omap_enable_iov(struct sdhci_omap_host *omap_host,
unsigned int iov)
{
int ret;
struct sdhci_host *host = omap_host->host;
struct mmc_host *mmc = host->mmc;
ret = sdhci_omap_set_pbias(omap_host, false, 0);
if (ret)
return ret;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_set_voltage(mmc->supply.vqmmc, iov, iov);
if (ret) {
dev_err(mmc_dev(mmc), "vqmmc set voltage failed\n");
return ret;
}
}
ret = sdhci_omap_set_pbias(omap_host, true, iov);
if (ret)
return ret;
return 0;
}
static void sdhci_omap_conf_bus_power(struct sdhci_omap_host *omap_host,
unsigned char signal_voltage)
{
u32 reg;
ktime_t timeout;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_HCTL);
reg &= ~HCTL_SDVS_MASK;
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
reg |= HCTL_SDVS_33;
else
reg |= HCTL_SDVS_18;
sdhci_omap_writel(omap_host, SDHCI_OMAP_HCTL, reg);
reg |= HCTL_SDBP;
sdhci_omap_writel(omap_host, SDHCI_OMAP_HCTL, reg);
/* wait 1ms */
timeout = ktime_add_ms(ktime_get(), SDHCI_OMAP_TIMEOUT);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_omap_readl(omap_host, SDHCI_OMAP_HCTL) & HCTL_SDBP)
break;
if (WARN_ON(timedout))
return;
usleep_range(5, 10);
}
}
static void sdhci_omap_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
if (enable)
reg |= (CON_CTPL | CON_CLKEXTFREE);
else
reg &= ~(CON_CTPL | CON_CLKEXTFREE);
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_enable_sdio_irq(mmc, enable);
}
static inline void sdhci_omap_set_dll(struct sdhci_omap_host *omap_host,
int count)
{
int i;
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_DLL);
reg |= DLL_FORCE_VALUE;
reg &= ~DLL_FORCE_SR_C_MASK;
reg |= (count << DLL_FORCE_SR_C_SHIFT);
sdhci_omap_writel(omap_host, SDHCI_OMAP_DLL, reg);
reg |= DLL_CALIB;
sdhci_omap_writel(omap_host, SDHCI_OMAP_DLL, reg);
for (i = 0; i < 1000; i++) {
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_DLL);
if (reg & DLL_CALIB)
break;
}
reg &= ~DLL_CALIB;
sdhci_omap_writel(omap_host, SDHCI_OMAP_DLL, reg);
}
static void sdhci_omap_disable_tuning(struct sdhci_omap_host *omap_host)
{
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_AC12);
reg &= ~AC12_SCLK_SEL;
sdhci_omap_writel(omap_host, SDHCI_OMAP_AC12, reg);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_DLL);
reg &= ~(DLL_FORCE_VALUE | DLL_SWT);
sdhci_omap_writel(omap_host, SDHCI_OMAP_DLL, reg);
}
static int sdhci_omap_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
struct thermal_zone_device *thermal_dev;
struct device *dev = omap_host->dev;
struct mmc_ios *ios = &mmc->ios;
u32 start_window = 0, max_window = 0;
bool single_point_failure = false;
bool dcrc_was_enabled = false;
u8 cur_match, prev_match = 0;
u32 length = 0, max_len = 0;
u32 phase_delay = 0;
int temperature;
int ret = 0;
u32 reg;
int i;
/* clock tuning is not needed for upto 52MHz */
if (ios->clock <= 52000000)
return 0;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CAPA2);
if (ios->timing == MMC_TIMING_UHS_SDR50 && !(reg & CAPA2_TSDR50))
return 0;
thermal_dev = thermal_zone_get_zone_by_name("cpu_thermal");
if (IS_ERR(thermal_dev)) {
dev_err(dev, "Unable to get thermal zone for tuning\n");
return PTR_ERR(thermal_dev);
}
ret = thermal_zone_get_temp(thermal_dev, &temperature);
if (ret)
return ret;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_DLL);
reg |= DLL_SWT;
sdhci_omap_writel(omap_host, SDHCI_OMAP_DLL, reg);
/*
* OMAP5/DRA74X/DRA72x Errata i802:
* DCRC error interrupts (MMCHS_STAT[21] DCRC=0x1) can occur
* during the tuning procedure. So disable it during the
* tuning procedure.
*/
if (host->ier & SDHCI_INT_DATA_CRC) {
host->ier &= ~SDHCI_INT_DATA_CRC;
dcrc_was_enabled = true;
}
omap_host->is_tuning = true;
/*
* Stage 1: Search for a maximum pass window ignoring any
* any single point failures. If the tuning value ends up
* near it, move away from it in stage 2 below
*/
while (phase_delay <= MAX_PHASE_DELAY) {
sdhci_omap_set_dll(omap_host, phase_delay);
cur_match = !mmc_send_tuning(mmc, opcode, NULL);
if (cur_match) {
if (prev_match) {
length++;
} else if (single_point_failure) {
/* ignore single point failure */
length++;
} else {
start_window = phase_delay;
length = 1;
}
} else {
single_point_failure = prev_match;
}
if (length > max_len) {
max_window = start_window;
max_len = length;
}
prev_match = cur_match;
phase_delay += 4;
}
if (!max_len) {
dev_err(dev, "Unable to find match\n");
ret = -EIO;
goto tuning_error;
}
/*
* Assign tuning value as a ratio of maximum pass window based
* on temperature
*/
if (temperature < -20000)
phase_delay = min(max_window + 4 * (max_len - 1) - 24,
max_window +
DIV_ROUND_UP(13 * max_len, 16) * 4);
else if (temperature < 20000)
phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
else if (temperature < 40000)
phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
else if (temperature < 70000)
phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
else if (temperature < 90000)
phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
else if (temperature < 120000)
phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
else
phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
/*
* Stage 2: Search for a single point failure near the chosen tuning
* value in two steps. First in the +3 to +10 range and then in the
* +2 to -10 range. If found, move away from it in the appropriate
* direction by the appropriate amount depending on the temperature.
*/
for (i = 3; i <= 10; i++) {
sdhci_omap_set_dll(omap_host, phase_delay + i);
if (mmc_send_tuning(mmc, opcode, NULL)) {
if (temperature < 10000)
phase_delay += i + 6;
else if (temperature < 20000)
phase_delay += i - 12;
else if (temperature < 70000)
phase_delay += i - 8;
else
phase_delay += i - 6;
goto single_failure_found;
}
}
for (i = 2; i >= -10; i--) {
sdhci_omap_set_dll(omap_host, phase_delay + i);
if (mmc_send_tuning(mmc, opcode, NULL)) {
if (temperature < 10000)
phase_delay += i + 12;
else if (temperature < 20000)
phase_delay += i + 8;
else if (temperature < 70000)
phase_delay += i + 8;
else if (temperature < 90000)
phase_delay += i + 10;
else
phase_delay += i + 12;
goto single_failure_found;
}
}
single_failure_found:
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_AC12);
if (!(reg & AC12_SCLK_SEL)) {
ret = -EIO;
goto tuning_error;
}
sdhci_omap_set_dll(omap_host, phase_delay);
omap_host->is_tuning = false;
goto ret;
tuning_error:
omap_host->is_tuning = false;
dev_err(dev, "Tuning failed\n");
sdhci_omap_disable_tuning(omap_host);
ret:
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
/* Reenable forbidden interrupt */
if (dcrc_was_enabled)
host->ier |= SDHCI_INT_DATA_CRC;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
return ret;
}
static int sdhci_omap_card_busy(struct mmc_host *mmc)
{
u32 reg, ac12;
int ret = false;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_omap_host *omap_host;
u32 ier = host->ier;
pltfm_host = sdhci_priv(host);
omap_host = sdhci_pltfm_priv(pltfm_host);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
ac12 = sdhci_omap_readl(omap_host, SDHCI_OMAP_AC12);
reg &= ~CON_CLKEXTFREE;
if (ac12 & AC12_V1V8_SIGEN)
reg |= CON_CLKEXTFREE;
reg |= CON_PADEN;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
disable_irq(host->irq);
ier |= SDHCI_INT_CARD_INT;
sdhci_writel(host, ier, SDHCI_INT_ENABLE);
sdhci_writel(host, ier, SDHCI_SIGNAL_ENABLE);
/*
* Delay is required for PSTATE to correctly reflect
* DLEV/CLEV values after PADEN is set.
*/
usleep_range(50, 100);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_PSTATE);
if ((reg & PSTATE_DATI) || !(reg & PSTATE_DLEV_DAT0))
ret = true;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
reg &= ~(CON_CLKEXTFREE | CON_PADEN);
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
enable_irq(host->irq);
return ret;
}
static int sdhci_omap_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
u32 reg;
int ret;
unsigned int iov;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_omap_host *omap_host;
struct device *dev;
pltfm_host = sdhci_priv(host);
omap_host = sdhci_pltfm_priv(pltfm_host);
dev = omap_host->dev;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CAPA);
if (!(reg & CAPA_VS33))
return -EOPNOTSUPP;
sdhci_omap_conf_bus_power(omap_host, ios->signal_voltage);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_AC12);
reg &= ~AC12_V1V8_SIGEN;
sdhci_omap_writel(omap_host, SDHCI_OMAP_AC12, reg);
iov = IOV_3V3;
} else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CAPA);
if (!(reg & CAPA_VS18))
return -EOPNOTSUPP;
sdhci_omap_conf_bus_power(omap_host, ios->signal_voltage);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_AC12);
reg |= AC12_V1V8_SIGEN;
sdhci_omap_writel(omap_host, SDHCI_OMAP_AC12, reg);
iov = IOV_1V8;
} else {
return -EOPNOTSUPP;
}
ret = sdhci_omap_enable_iov(omap_host, iov);
if (ret) {
dev_err(dev, "failed to switch IO voltage to %dmV\n", iov);
return ret;
}
dev_dbg(dev, "IO voltage switched to %dmV\n", iov);
return 0;
}
static void sdhci_omap_set_timing(struct sdhci_omap_host *omap_host, u8 timing)
{
int ret;
struct pinctrl_state *pinctrl_state;
struct device *dev = omap_host->dev;
if (!(omap_host->flags & SDHCI_OMAP_REQUIRE_IODELAY))
return;
if (omap_host->timing == timing)
return;
sdhci_omap_stop_clock(omap_host);
pinctrl_state = omap_host->pinctrl_state[timing];
ret = pinctrl_select_state(omap_host->pinctrl, pinctrl_state);
if (ret) {
dev_err(dev, "failed to select pinctrl state\n");
return;
}
sdhci_omap_start_clock(omap_host);
omap_host->timing = timing;
}
static void sdhci_omap_set_power_mode(struct sdhci_omap_host *omap_host,
u8 power_mode)
{
if (omap_host->bus_mode == MMC_POWER_OFF)
sdhci_omap_disable_tuning(omap_host);
omap_host->power_mode = power_mode;
}
static void sdhci_omap_set_bus_mode(struct sdhci_omap_host *omap_host,
unsigned int mode)
{
u32 reg;
if (omap_host->bus_mode == mode)
return;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
if (mode == MMC_BUSMODE_OPENDRAIN)
reg |= CON_OD;
else
reg &= ~CON_OD;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
omap_host->bus_mode = mode;
}
static void sdhci_omap_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_omap_host *omap_host;
pltfm_host = sdhci_priv(host);
omap_host = sdhci_pltfm_priv(pltfm_host);
sdhci_omap_set_bus_mode(omap_host, ios->bus_mode);
sdhci_omap_set_timing(omap_host, ios->timing);
sdhci_set_ios(mmc, ios);
sdhci_omap_set_power_mode(omap_host, ios->power_mode);
}
static u16 sdhci_omap_calc_divisor(struct sdhci_pltfm_host *host,
unsigned int clock)
{
u16 dsor;
dsor = DIV_ROUND_UP(clk_get_rate(host->clk), clock);
if (dsor > SYSCTL_CLKD_MAX)
dsor = SYSCTL_CLKD_MAX;
return dsor;
}
static void sdhci_omap_start_clock(struct sdhci_omap_host *omap_host)
{
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_SYSCTL);
reg |= SYSCTL_CEN;
sdhci_omap_writel(omap_host, SDHCI_OMAP_SYSCTL, reg);
}
static void sdhci_omap_stop_clock(struct sdhci_omap_host *omap_host)
{
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_SYSCTL);
reg &= ~SYSCTL_CEN;
sdhci_omap_writel(omap_host, SDHCI_OMAP_SYSCTL, reg);
}
static void sdhci_omap_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
unsigned long clkdiv;
sdhci_omap_stop_clock(omap_host);
if (!clock)
return;
clkdiv = sdhci_omap_calc_divisor(pltfm_host, clock);
clkdiv = (clkdiv & SYSCTL_CLKD_MASK) << SYSCTL_CLKD_SHIFT;
sdhci_enable_clk(host, clkdiv);
sdhci_omap_start_clock(omap_host);
}
static void sdhci_omap_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
}
static int sdhci_omap_enable_dma(struct sdhci_host *host)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
reg &= ~CON_DMA_MASTER;
/* Switch to DMA slave mode when using external DMA */
if (!host->use_external_dma)
reg |= CON_DMA_MASTER;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
return 0;
}
static unsigned int sdhci_omap_get_min_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_get_rate(pltfm_host->clk) / SYSCTL_CLKD_MAX;
}
static void sdhci_omap_set_bus_width(struct sdhci_host *host, int width)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
u32 reg;
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
if (width == MMC_BUS_WIDTH_8)
reg |= CON_DW8;
else
reg &= ~CON_DW8;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_set_bus_width(host, width);
}
static void sdhci_omap_init_74_clocks(struct sdhci_host *host, u8 power_mode)
{
u32 reg;
ktime_t timeout;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
if (omap_host->power_mode == power_mode)
return;
if (power_mode != MMC_POWER_ON)
return;
disable_irq(host->irq);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
reg |= CON_INIT;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_omap_writel(omap_host, SDHCI_OMAP_CMD, 0x0);
/* wait 1ms */
timeout = ktime_add_ms(ktime_get(), SDHCI_OMAP_TIMEOUT);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_omap_readl(omap_host, SDHCI_OMAP_STAT) & INT_CC_EN)
break;
if (WARN_ON(timedout))
return;
usleep_range(5, 10);
}
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
reg &= ~CON_INIT;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_omap_writel(omap_host, SDHCI_OMAP_STAT, INT_CC_EN);
enable_irq(host->irq);
}
static void sdhci_omap_set_uhs_signaling(struct sdhci_host *host,
unsigned int timing)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
sdhci_omap_stop_clock(omap_host);
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CON);
if (timing == MMC_TIMING_UHS_DDR50 || timing == MMC_TIMING_MMC_DDR52)
reg |= CON_DDR;
else
reg &= ~CON_DDR;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CON, reg);
sdhci_set_uhs_signaling(host, timing);
sdhci_omap_start_clock(omap_host);
}
#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
static void sdhci_omap_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
unsigned long limit = MMC_TIMEOUT_US;
unsigned long i = 0;
/* Don't reset data lines during tuning operation */
if (omap_host->is_tuning)
mask &= ~SDHCI_RESET_DATA;
if (omap_host->flags & SDHCI_OMAP_SPECIAL_RESET) {
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
while ((!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask)) &&
(i++ < limit))
udelay(1);
i = 0;
while ((sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) &&
(i++ < limit))
udelay(1);
if (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask)
dev_err(mmc_dev(host->mmc),
"Timeout waiting on controller reset in %s\n",
__func__);
return;
}
sdhci_reset(host, mask);
}
#define CMD_ERR_MASK (SDHCI_INT_CRC | SDHCI_INT_END_BIT | SDHCI_INT_INDEX |\
SDHCI_INT_TIMEOUT)
#define CMD_MASK (CMD_ERR_MASK | SDHCI_INT_RESPONSE)
static u32 sdhci_omap_irq(struct sdhci_host *host, u32 intmask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_omap_host *omap_host = sdhci_pltfm_priv(pltfm_host);
if (omap_host->is_tuning && host->cmd && !host->data_early &&
(intmask & CMD_ERR_MASK)) {
/*
* Since we are not resetting data lines during tuning
* operation, data error or data complete interrupts
* might still arrive. Mark this request as a failure
* but still wait for the data interrupt
*/
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else
host->cmd->error = -EILSEQ;
host->cmd = NULL;
/*
* Sometimes command error interrupts and command complete
* interrupt will arrive together. Clear all command related
* interrupts here.
*/
sdhci_writel(host, intmask & CMD_MASK, SDHCI_INT_STATUS);
intmask &= ~CMD_MASK;
}
return intmask;
}
static void sdhci_omap_set_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
if (cmd->opcode == MMC_ERASE)
sdhci_set_data_timeout_irq(host, false);
__sdhci_set_timeout(host, cmd);
}
static struct sdhci_ops sdhci_omap_ops = {
.set_clock = sdhci_omap_set_clock,
.set_power = sdhci_omap_set_power,
.enable_dma = sdhci_omap_enable_dma,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_min_clock = sdhci_omap_get_min_clock,
.set_bus_width = sdhci_omap_set_bus_width,
.platform_send_init_74_clocks = sdhci_omap_init_74_clocks,
.reset = sdhci_omap_reset,
.set_uhs_signaling = sdhci_omap_set_uhs_signaling,
.irq = sdhci_omap_irq,
.set_timeout = sdhci_omap_set_timeout,
};
static int sdhci_omap_set_capabilities(struct sdhci_omap_host *omap_host)
{
u32 reg;
int ret = 0;
struct device *dev = omap_host->dev;
struct regulator *vqmmc;
vqmmc = regulator_get(dev, "vqmmc");
if (IS_ERR(vqmmc)) {
ret = PTR_ERR(vqmmc);
goto reg_put;
}
/* voltage capabilities might be set by boot loader, clear it */
reg = sdhci_omap_readl(omap_host, SDHCI_OMAP_CAPA);
reg &= ~(CAPA_VS18 | CAPA_VS30 | CAPA_VS33);
if (regulator_is_supported_voltage(vqmmc, IOV_3V3, IOV_3V3))
reg |= CAPA_VS33;
if (regulator_is_supported_voltage(vqmmc, IOV_1V8, IOV_1V8))
reg |= CAPA_VS18;
sdhci_omap_writel(omap_host, SDHCI_OMAP_CAPA, reg);
reg_put:
regulator_put(vqmmc);
return ret;
}
static const struct sdhci_pltfm_data sdhci_omap_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC,
.quirks2 = SDHCI_QUIRK2_ACMD23_BROKEN |
SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_RSP_136_HAS_CRC |
SDHCI_QUIRK2_DISABLE_HW_TIMEOUT,
.ops = &sdhci_omap_ops,
};
static const struct sdhci_omap_data k2g_data = {
.offset = 0x200,
};
static const struct sdhci_omap_data am335_data = {
.offset = 0x200,
.flags = SDHCI_OMAP_SPECIAL_RESET,
};
static const struct sdhci_omap_data am437_data = {
.offset = 0x200,
.flags = SDHCI_OMAP_SPECIAL_RESET,
};
static const struct sdhci_omap_data dra7_data = {
.offset = 0x200,
.flags = SDHCI_OMAP_REQUIRE_IODELAY,
};
static const struct of_device_id omap_sdhci_match[] = {
{ .compatible = "ti,dra7-sdhci", .data = &dra7_data },
{ .compatible = "ti,k2g-sdhci", .data = &k2g_data },
{ .compatible = "ti,am335-sdhci", .data = &am335_data },
{ .compatible = "ti,am437-sdhci", .data = &am437_data },
{},
};
MODULE_DEVICE_TABLE(of, omap_sdhci_match);
static struct pinctrl_state
*sdhci_omap_iodelay_pinctrl_state(struct sdhci_omap_host *omap_host, char *mode,
u32 *caps, u32 capmask)
{
struct device *dev = omap_host->dev;
char *version = omap_host->version;
struct pinctrl_state *pinctrl_state = ERR_PTR(-ENODEV);
char str[20];
if (!(*caps & capmask))
goto ret;
if (version) {
snprintf(str, 20, "%s-%s", mode, version);
pinctrl_state = pinctrl_lookup_state(omap_host->pinctrl, str);
}
if (IS_ERR(pinctrl_state))
pinctrl_state = pinctrl_lookup_state(omap_host->pinctrl, mode);
if (IS_ERR(pinctrl_state)) {
dev_err(dev, "no pinctrl state for %s mode", mode);
*caps &= ~capmask;
}
ret:
return pinctrl_state;
}
static int sdhci_omap_config_iodelay_pinctrl_state(struct sdhci_omap_host
*omap_host)
{
struct device *dev = omap_host->dev;
struct sdhci_host *host = omap_host->host;
struct mmc_host *mmc = host->mmc;
u32 *caps = &mmc->caps;
u32 *caps2 = &mmc->caps2;
struct pinctrl_state *state;
struct pinctrl_state **pinctrl_state;
if (!(omap_host->flags & SDHCI_OMAP_REQUIRE_IODELAY))
return 0;
pinctrl_state = devm_kcalloc(dev,
MMC_TIMING_MMC_HS200 + 1,
sizeof(*pinctrl_state),
GFP_KERNEL);
if (!pinctrl_state)
return -ENOMEM;
omap_host->pinctrl = devm_pinctrl_get(omap_host->dev);
if (IS_ERR(omap_host->pinctrl)) {
dev_err(dev, "Cannot get pinctrl\n");
return PTR_ERR(omap_host->pinctrl);
}
state = pinctrl_lookup_state(omap_host->pinctrl, "default");
if (IS_ERR(state)) {
dev_err(dev, "no pinctrl state for default mode\n");
return PTR_ERR(state);
}
pinctrl_state[MMC_TIMING_LEGACY] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "sdr104", caps,
MMC_CAP_UHS_SDR104);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_UHS_SDR104] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "ddr50", caps,
MMC_CAP_UHS_DDR50);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_UHS_DDR50] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "sdr50", caps,
MMC_CAP_UHS_SDR50);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_UHS_SDR50] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "sdr25", caps,
MMC_CAP_UHS_SDR25);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_UHS_SDR25] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "sdr12", caps,
MMC_CAP_UHS_SDR12);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_UHS_SDR12] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "ddr_1_8v", caps,
MMC_CAP_1_8V_DDR);
if (!IS_ERR(state)) {
pinctrl_state[MMC_TIMING_MMC_DDR52] = state;
} else {
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "ddr_3_3v",
caps,
MMC_CAP_3_3V_DDR);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_MMC_DDR52] = state;
}
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "hs", caps,
MMC_CAP_SD_HIGHSPEED);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_SD_HS] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "hs", caps,
MMC_CAP_MMC_HIGHSPEED);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_MMC_HS] = state;
state = sdhci_omap_iodelay_pinctrl_state(omap_host, "hs200_1_8v", caps2,
MMC_CAP2_HS200_1_8V_SDR);
if (!IS_ERR(state))
pinctrl_state[MMC_TIMING_MMC_HS200] = state;
omap_host->pinctrl_state = pinctrl_state;
return 0;
}
static const struct soc_device_attribute sdhci_omap_soc_devices[] = {
{
.machine = "DRA7[45]*",
.revision = "ES1.[01]",
},
{
/* sentinel */
}
};
static int sdhci_omap_probe(struct platform_device *pdev)
{
int ret;
u32 offset;
struct device *dev = &pdev->dev;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_omap_host *omap_host;
struct mmc_host *mmc;
const struct of_device_id *match;
struct sdhci_omap_data *data;
const struct soc_device_attribute *soc;
struct resource *regs;
match = of_match_device(omap_sdhci_match, dev);
if (!match)
return -EINVAL;
data = (struct sdhci_omap_data *)match->data;
if (!data) {
dev_err(dev, "no sdhci omap data\n");
return -EINVAL;
}
offset = data->offset;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
host = sdhci_pltfm_init(pdev, &sdhci_omap_pdata,
sizeof(*omap_host));
if (IS_ERR(host)) {
dev_err(dev, "Failed sdhci_pltfm_init\n");
return PTR_ERR(host);
}
pltfm_host = sdhci_priv(host);
omap_host = sdhci_pltfm_priv(pltfm_host);
omap_host->host = host;
omap_host->base = host->ioaddr;
omap_host->dev = dev;
omap_host->power_mode = MMC_POWER_UNDEFINED;
omap_host->timing = MMC_TIMING_LEGACY;
omap_host->flags = data->flags;
host->ioaddr += offset;
host->mapbase = regs->start + offset;
mmc = host->mmc;
sdhci_get_of_property(pdev);
ret = mmc_of_parse(mmc);
if (ret)
goto err_pltfm_free;
soc = soc_device_match(sdhci_omap_soc_devices);
if (soc) {
omap_host->version = "rev11";
if (!strcmp(dev_name(dev), "4809c000.mmc"))
mmc->f_max = 96000000;
if (!strcmp(dev_name(dev), "480b4000.mmc"))
mmc->f_max = 48000000;
if (!strcmp(dev_name(dev), "480ad000.mmc"))
mmc->f_max = 48000000;
}
if (!mmc_can_gpio_ro(mmc))
mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
pltfm_host->clk = devm_clk_get(dev, "fck");
if (IS_ERR(pltfm_host->clk)) {
ret = PTR_ERR(pltfm_host->clk);
goto err_pltfm_free;
}
ret = clk_set_rate(pltfm_host->clk, mmc->f_max);
if (ret) {
dev_err(dev, "failed to set clock to %d\n", mmc->f_max);
goto err_pltfm_free;
}
omap_host->pbias = devm_regulator_get_optional(dev, "pbias");
if (IS_ERR(omap_host->pbias)) {
ret = PTR_ERR(omap_host->pbias);
if (ret != -ENODEV)
goto err_pltfm_free;
dev_dbg(dev, "unable to get pbias regulator %d\n", ret);
}
omap_host->pbias_enabled = false;
/*
* omap_device_pm_domain has callbacks to enable the main
* functional clock, interface clock and also configure the
* SYSCONFIG register of omap devices. The callback will be invoked
* as part of pm_runtime_get_sync.
*/
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "pm_runtime_get_sync failed\n");
pm_runtime_put_noidle(dev);
goto err_rpm_disable;
}
ret = sdhci_omap_set_capabilities(omap_host);
if (ret) {
dev_err(dev, "failed to set system capabilities\n");
goto err_put_sync;
}
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_omap_start_signal_voltage_switch;
host->mmc_host_ops.set_ios = sdhci_omap_set_ios;
host->mmc_host_ops.card_busy = sdhci_omap_card_busy;
host->mmc_host_ops.execute_tuning = sdhci_omap_execute_tuning;
host->mmc_host_ops.enable_sdio_irq = sdhci_omap_enable_sdio_irq;
/* Switch to external DMA only if there is the "dmas" property */
if (of_find_property(dev->of_node, "dmas", NULL))
sdhci_switch_external_dma(host, true);
/* R1B responses is required to properly manage HW busy detection. */
mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
ret = sdhci_setup_host(host);
if (ret)
goto err_put_sync;
ret = sdhci_omap_config_iodelay_pinctrl_state(omap_host);
if (ret)
goto err_cleanup_host;
ret = __sdhci_add_host(host);
if (ret)
goto err_cleanup_host;
return 0;
err_cleanup_host:
sdhci_cleanup_host(host);
err_put_sync:
pm_runtime_put_sync(dev);
err_rpm_disable:
pm_runtime_disable(dev);
err_pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static int sdhci_omap_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdhci_host *host = platform_get_drvdata(pdev);
sdhci_remove_host(host, true);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
sdhci_pltfm_free(pdev);
return 0;
}
static struct platform_driver sdhci_omap_driver = {
.probe = sdhci_omap_probe,
.remove = sdhci_omap_remove,
.driver = {
.name = "sdhci-omap",
.of_match_table = omap_sdhci_match,
},
};
module_platform_driver(sdhci_omap_driver);
MODULE_DESCRIPTION("SDHCI driver for OMAP SoCs");
MODULE_AUTHOR("Texas Instruments Inc.");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sdhci_omap");