| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include <linux/dma-fence-array.h> |
| #include <linux/kthread.h> |
| #include <linux/dma-resv.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/stop_machine.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| #include <linux/mman.h> |
| |
| #include <drm/drm_cache.h> |
| #include <drm/drm_vma_manager.h> |
| |
| #include "display/intel_display.h" |
| |
| #include "gem/i915_gem_clflush.h" |
| #include "gem/i915_gem_context.h" |
| #include "gem/i915_gem_ioctls.h" |
| #include "gem/i915_gem_mman.h" |
| #include "gem/i915_gem_object_frontbuffer.h" |
| #include "gem/i915_gem_pm.h" |
| #include "gem/i915_gem_region.h" |
| #include "gt/intel_engine_user.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_pm.h" |
| #include "gt/intel_workarounds.h" |
| |
| #include "i915_drv.h" |
| #include "i915_file_private.h" |
| #include "i915_trace.h" |
| #include "i915_vgpu.h" |
| #include "intel_clock_gating.h" |
| |
| static int |
| insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) |
| { |
| int err; |
| |
| err = mutex_lock_interruptible(&ggtt->vm.mutex); |
| if (err) |
| return err; |
| |
| memset(node, 0, sizeof(*node)); |
| err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, |
| size, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| |
| mutex_unlock(&ggtt->vm.mutex); |
| |
| return err; |
| } |
| |
| static void |
| remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) |
| { |
| mutex_lock(&ggtt->vm.mutex); |
| drm_mm_remove_node(node); |
| mutex_unlock(&ggtt->vm.mutex); |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct i915_vma *vma; |
| u64 pinned; |
| |
| if (mutex_lock_interruptible(&ggtt->vm.mutex)) |
| return -EINTR; |
| |
| pinned = ggtt->vm.reserved; |
| list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) |
| if (i915_vma_is_pinned(vma)) |
| pinned += vma->node.size; |
| |
| mutex_unlock(&ggtt->vm.mutex); |
| |
| args->aper_size = ggtt->vm.total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| int i915_gem_object_unbind(struct drm_i915_gem_object *obj, |
| unsigned long flags) |
| { |
| struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; |
| bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK); |
| LIST_HEAD(still_in_list); |
| intel_wakeref_t wakeref; |
| struct i915_vma *vma; |
| int ret; |
| |
| assert_object_held(obj); |
| |
| if (list_empty(&obj->vma.list)) |
| return 0; |
| |
| /* |
| * As some machines use ACPI to handle runtime-resume callbacks, and |
| * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex |
| * as they are required by the shrinker. Ergo, we wake the device up |
| * first just in case. |
| */ |
| wakeref = intel_runtime_pm_get(rpm); |
| |
| try_again: |
| ret = 0; |
| spin_lock(&obj->vma.lock); |
| while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, |
| struct i915_vma, |
| obj_link))) { |
| list_move_tail(&vma->obj_link, &still_in_list); |
| if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) |
| continue; |
| |
| if (flags & I915_GEM_OBJECT_UNBIND_TEST) { |
| ret = -EBUSY; |
| break; |
| } |
| |
| /* |
| * Requiring the vm destructor to take the object lock |
| * before destroying a vma would help us eliminate the |
| * i915_vm_tryget() here, AND thus also the barrier stuff |
| * at the end. That's an easy fix, but sleeping locks in |
| * a kthread should generally be avoided. |
| */ |
| ret = -EAGAIN; |
| if (!i915_vm_tryget(vma->vm)) |
| break; |
| |
| spin_unlock(&obj->vma.lock); |
| |
| /* |
| * Since i915_vma_parked() takes the object lock |
| * before vma destruction, it won't race us here, |
| * and destroy the vma from under us. |
| */ |
| |
| ret = -EBUSY; |
| if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) { |
| assert_object_held(vma->obj); |
| ret = i915_vma_unbind_async(vma, vm_trylock); |
| } |
| |
| if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || |
| !i915_vma_is_active(vma))) { |
| if (vm_trylock) { |
| if (mutex_trylock(&vma->vm->mutex)) { |
| ret = __i915_vma_unbind(vma); |
| mutex_unlock(&vma->vm->mutex); |
| } |
| } else { |
| ret = i915_vma_unbind(vma); |
| } |
| } |
| |
| i915_vm_put(vma->vm); |
| spin_lock(&obj->vma.lock); |
| } |
| list_splice_init(&still_in_list, &obj->vma.list); |
| spin_unlock(&obj->vma.lock); |
| |
| if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { |
| rcu_barrier(); /* flush the i915_vm_release() */ |
| goto try_again; |
| } |
| |
| intel_runtime_pm_put(rpm, wakeref); |
| |
| return ret; |
| } |
| |
| static int |
| shmem_pread(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_to_user(user_data, vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args) |
| { |
| unsigned int needs_clflush; |
| char __user *user_data; |
| unsigned long offset; |
| pgoff_t idx; |
| u64 remain; |
| int ret; |
| |
| ret = i915_gem_object_lock_interruptible(obj, NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err_unlock; |
| |
| ret = i915_gem_object_prepare_read(obj, &needs_clflush); |
| if (ret) |
| goto err_unpin; |
| |
| i915_gem_object_finish_access(obj); |
| i915_gem_object_unlock(obj); |
| |
| remain = args->size; |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pread(page, offset, length, user_data, |
| needs_clflush); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| err_unlock: |
| i915_gem_object_unlock(obj); |
| return ret; |
| } |
| |
| static inline bool |
| gtt_user_read(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_to_user_inatomic(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_to_user(user_data, |
| (void __force *)vaddr + offset, |
| length); |
| io_mapping_unmap(vaddr); |
| } |
| return unwritten; |
| } |
| |
| static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj, |
| struct drm_mm_node *node, |
| bool write) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| struct i915_vma *vma; |
| struct i915_gem_ww_ctx ww; |
| int ret; |
| |
| i915_gem_ww_ctx_init(&ww, true); |
| retry: |
| vma = ERR_PTR(-ENODEV); |
| ret = i915_gem_object_lock(obj, &ww); |
| if (ret) |
| goto err_ww; |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, write); |
| if (ret) |
| goto err_ww; |
| |
| if (!i915_gem_object_is_tiled(obj)) |
| vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONBLOCK /* NOWARN */ | |
| PIN_NOEVICT); |
| if (vma == ERR_PTR(-EDEADLK)) { |
| ret = -EDEADLK; |
| goto err_ww; |
| } else if (!IS_ERR(vma)) { |
| node->start = i915_ggtt_offset(vma); |
| node->flags = 0; |
| } else { |
| ret = insert_mappable_node(ggtt, node, PAGE_SIZE); |
| if (ret) |
| goto err_ww; |
| GEM_BUG_ON(!drm_mm_node_allocated(node)); |
| vma = NULL; |
| } |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) { |
| if (drm_mm_node_allocated(node)) { |
| ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); |
| remove_mappable_node(ggtt, node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| } |
| |
| err_ww: |
| if (ret == -EDEADLK) { |
| ret = i915_gem_ww_ctx_backoff(&ww); |
| if (!ret) |
| goto retry; |
| } |
| i915_gem_ww_ctx_fini(&ww); |
| |
| return ret ? ERR_PTR(ret) : vma; |
| } |
| |
| static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj, |
| struct drm_mm_node *node, |
| struct i915_vma *vma) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| |
| i915_gem_object_unpin_pages(obj); |
| if (drm_mm_node_allocated(node)) { |
| ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); |
| remove_mappable_node(ggtt, node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| } |
| |
| static int |
| i915_gem_gtt_pread(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pread *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| unsigned long remain, offset; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| void __user *user_data; |
| struct i915_vma *vma; |
| int ret = 0; |
| |
| if (overflows_type(args->size, remain) || |
| overflows_type(args->offset, offset)) |
| return -EINVAL; |
| |
| wakeref = intel_runtime_pm_get(&i915->runtime_pm); |
| |
| vma = i915_gem_gtt_prepare(obj, &node, false); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto out_rpm; |
| } |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned page_offset = offset_in_page(offset); |
| unsigned page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (drm_mm_node_allocated(&node)) { |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, |
| offset >> PAGE_SHIFT), |
| node.start, |
| i915_gem_get_pat_index(i915, |
| I915_CACHE_NONE), 0); |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| |
| if (gtt_user_read(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| i915_gem_gtt_cleanup(obj, &node, vma); |
| out_rpm: |
| intel_runtime_pm_put(&i915->runtime_pm, wakeref); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_pread_ioctl - Reads data from the object referenced by handle. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| /* PREAD is disallowed for all platforms after TGL-LP. This also |
| * covers all platforms with local memory. |
| */ |
| if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) |
| return -EOPNOTSUPP; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check source. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| ret = -ENODEV; |
| if (obj->ops->pread) |
| ret = obj->ops->pread(obj, args); |
| if (ret != -ENODEV) |
| goto out; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_shmem_pread(obj, args); |
| if (ret == -EFAULT || ret == -ENODEV) |
| ret = i915_gem_gtt_pread(obj, args); |
| |
| out: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline bool |
| ggtt_write(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void __iomem *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_from_user((void __force *)vaddr + offset, |
| user_data, length); |
| io_mapping_unmap(vaddr); |
| } |
| |
| return unwritten; |
| } |
| |
| /** |
| * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| * @obj: i915 GEM object |
| * @args: pwrite arguments structure |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| struct intel_runtime_pm *rpm = &i915->runtime_pm; |
| unsigned long remain, offset; |
| intel_wakeref_t wakeref; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| void __user *user_data; |
| int ret = 0; |
| |
| if (overflows_type(args->size, remain) || |
| overflows_type(args->offset, offset)) |
| return -EINVAL; |
| |
| if (i915_gem_object_has_struct_page(obj)) { |
| /* |
| * Avoid waking the device up if we can fallback, as |
| * waking/resuming is very slow (worst-case 10-100 ms |
| * depending on PCI sleeps and our own resume time). |
| * This easily dwarfs any performance advantage from |
| * using the cache bypass of indirect GGTT access. |
| */ |
| wakeref = intel_runtime_pm_get_if_in_use(rpm); |
| if (!wakeref) |
| return -EFAULT; |
| } else { |
| /* No backing pages, no fallback, we must force GGTT access */ |
| wakeref = intel_runtime_pm_get(rpm); |
| } |
| |
| vma = i915_gem_gtt_prepare(obj, &node, true); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto out_rpm; |
| } |
| |
| i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = args->offset; |
| remain = args->size; |
| while (remain) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned int page_offset = offset_in_page(offset); |
| unsigned int page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (drm_mm_node_allocated(&node)) { |
| /* flush the write before we modify the GGTT */ |
| intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, |
| offset >> PAGE_SHIFT), |
| node.start, |
| i915_gem_get_pat_index(i915, |
| I915_CACHE_NONE), 0); |
| wmb(); /* flush modifications to the GGTT (insert_page) */ |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| * If the object is non-shmem backed, we retry again with the |
| * path that handles page fault. |
| */ |
| if (ggtt_write(&ggtt->iomap, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); |
| |
| i915_gem_gtt_cleanup(obj, &node, vma); |
| out_rpm: |
| intel_runtime_pm_put(rpm, wakeref); |
| return ret; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. |
| */ |
| static int |
| shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| ret = __copy_from_user(vaddr + offset, user_data, len); |
| if (!ret && needs_clflush_after) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| unsigned int partial_cacheline_write; |
| unsigned int needs_clflush; |
| void __user *user_data; |
| unsigned long offset; |
| pgoff_t idx; |
| u64 remain; |
| int ret; |
| |
| ret = i915_gem_object_lock_interruptible(obj, NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err_unlock; |
| |
| ret = i915_gem_object_prepare_write(obj, &needs_clflush); |
| if (ret) |
| goto err_unpin; |
| |
| i915_gem_object_finish_access(obj); |
| i915_gem_object_unlock(obj); |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. |
| */ |
| partial_cacheline_write = 0; |
| if (needs_clflush & CLFLUSH_BEFORE) |
| partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| |
| ret = shmem_pwrite(page, offset, length, user_data, |
| (offset | length) & partial_cacheline_write, |
| needs_clflush & CLFLUSH_AFTER); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); |
| |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| err_unlock: |
| i915_gem_object_unlock(obj); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| /* PWRITE is disallowed for all platforms after TGL-LP. This also |
| * covers all platforms with local memory. |
| */ |
| if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) |
| return -EOPNOTSUPP; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check destination. */ |
| if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* Writes not allowed into this read-only object */ |
| if (i915_gem_object_is_readonly(obj)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = -ENODEV; |
| if (obj->ops->pwrite) |
| ret = obj->ops->pwrite(obj, args); |
| if (ret != -ENODEV) |
| goto err; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT); |
| if (ret) |
| goto err; |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (!i915_gem_object_has_struct_page(obj) || |
| i915_gem_cpu_write_needs_clflush(obj)) |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. |
| */ |
| ret = i915_gem_gtt_pwrite_fast(obj, args); |
| |
| if (ret == -EFAULT || ret == -ENOSPC) { |
| if (i915_gem_object_has_struct_page(obj)) |
| ret = i915_gem_shmem_pwrite(obj, args); |
| } |
| |
| err: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* |
| * Proxy objects are barred from CPU access, so there is no |
| * need to ban sw_finish as it is a nop. |
| */ |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| i915_gem_object_flush_if_display(obj); |
| i915_gem_object_put(obj); |
| |
| return 0; |
| } |
| |
| void i915_gem_runtime_suspend(struct drm_i915_private *i915) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| int i; |
| |
| /* |
| * Only called during RPM suspend. All users of the userfault_list |
| * must be holding an RPM wakeref to ensure that this can not |
| * run concurrently with themselves (and use the struct_mutex for |
| * protection between themselves). |
| */ |
| |
| list_for_each_entry_safe(obj, on, |
| &to_gt(i915)->ggtt->userfault_list, userfault_link) |
| __i915_gem_object_release_mmap_gtt(obj); |
| |
| list_for_each_entry_safe(obj, on, |
| &i915->runtime_pm.lmem_userfault_list, userfault_link) |
| i915_gem_object_runtime_pm_release_mmap_offset(obj); |
| |
| /* |
| * The fence will be lost when the device powers down. If any were |
| * in use by hardware (i.e. they are pinned), we should not be powering |
| * down! All other fences will be reacquired by the user upon waking. |
| */ |
| for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) { |
| struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i]; |
| |
| /* |
| * Ideally we want to assert that the fence register is not |
| * live at this point (i.e. that no piece of code will be |
| * trying to write through fence + GTT, as that both violates |
| * our tracking of activity and associated locking/barriers, |
| * but also is illegal given that the hw is powered down). |
| * |
| * Previously we used reg->pin_count as a "liveness" indicator. |
| * That is not sufficient, and we need a more fine-grained |
| * tool if we want to have a sanity check here. |
| */ |
| |
| if (!reg->vma) |
| continue; |
| |
| GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); |
| reg->dirty = true; |
| } |
| } |
| |
| static void discard_ggtt_vma(struct i915_vma *vma) |
| { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| spin_lock(&obj->vma.lock); |
| if (!RB_EMPTY_NODE(&vma->obj_node)) { |
| rb_erase(&vma->obj_node, &obj->vma.tree); |
| RB_CLEAR_NODE(&vma->obj_node); |
| } |
| spin_unlock(&obj->vma.lock); |
| } |
| |
| struct i915_vma * |
| i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, |
| struct i915_gem_ww_ctx *ww, |
| const struct i915_gtt_view *view, |
| u64 size, u64 alignment, u64 flags) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = to_gt(i915)->ggtt; |
| struct i915_vma *vma; |
| int ret; |
| |
| GEM_WARN_ON(!ww); |
| |
| if (flags & PIN_MAPPABLE && |
| (!view || view->type == I915_GTT_VIEW_NORMAL)) { |
| /* |
| * If the required space is larger than the available |
| * aperture, we will not able to find a slot for the |
| * object and unbinding the object now will be in |
| * vain. Worse, doing so may cause us to ping-pong |
| * the object in and out of the Global GTT and |
| * waste a lot of cycles under the mutex. |
| */ |
| if (obj->base.size > ggtt->mappable_end) |
| return ERR_PTR(-E2BIG); |
| |
| /* |
| * If NONBLOCK is set the caller is optimistically |
| * trying to cache the full object within the mappable |
| * aperture, and *must* have a fallback in place for |
| * situations where we cannot bind the object. We |
| * can be a little more lax here and use the fallback |
| * more often to avoid costly migrations of ourselves |
| * and other objects within the aperture. |
| * |
| * Half-the-aperture is used as a simple heuristic. |
| * More interesting would to do search for a free |
| * block prior to making the commitment to unbind. |
| * That caters for the self-harm case, and with a |
| * little more heuristics (e.g. NOFAULT, NOEVICT) |
| * we could try to minimise harm to others. |
| */ |
| if (flags & PIN_NONBLOCK && |
| obj->base.size > ggtt->mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| new_vma: |
| vma = i915_vma_instance(obj, &ggtt->vm, view); |
| if (IS_ERR(vma)) |
| return vma; |
| |
| if (i915_vma_misplaced(vma, size, alignment, flags)) { |
| if (flags & PIN_NONBLOCK) { |
| if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) |
| return ERR_PTR(-ENOSPC); |
| |
| /* |
| * If this misplaced vma is too big (i.e, at-least |
| * half the size of aperture) or hasn't been pinned |
| * mappable before, we ignore the misplacement when |
| * PIN_NONBLOCK is set in order to avoid the ping-pong |
| * issue described above. In other words, we try to |
| * avoid the costly operation of unbinding this vma |
| * from the GGTT and rebinding it back because there |
| * may not be enough space for this vma in the aperture. |
| */ |
| if (flags & PIN_MAPPABLE && |
| (vma->fence_size > ggtt->mappable_end / 2 || |
| !i915_vma_is_map_and_fenceable(vma))) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { |
| discard_ggtt_vma(vma); |
| goto new_vma; |
| } |
| |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL); |
| |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (vma->fence && !i915_gem_object_is_tiled(obj)) { |
| mutex_lock(&ggtt->vm.mutex); |
| i915_vma_revoke_fence(vma); |
| mutex_unlock(&ggtt->vm.mutex); |
| } |
| |
| ret = i915_vma_wait_for_bind(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| return ERR_PTR(ret); |
| } |
| |
| return vma; |
| } |
| |
| struct i915_vma * __must_check |
| i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, |
| const struct i915_gtt_view *view, |
| u64 size, u64 alignment, u64 flags) |
| { |
| struct i915_gem_ww_ctx ww; |
| struct i915_vma *ret; |
| int err; |
| |
| for_i915_gem_ww(&ww, err, true) { |
| err = i915_gem_object_lock(obj, &ww); |
| if (err) |
| continue; |
| |
| ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size, |
| alignment, flags); |
| if (IS_ERR(ret)) |
| err = PTR_ERR(ret); |
| } |
| |
| return err ? ERR_PTR(err) : ret; |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int err; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = i915_gem_object_lookup(file_priv, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| err = i915_gem_object_lock_interruptible(obj, NULL); |
| if (err) |
| goto out; |
| |
| if (i915_gem_object_has_pages(obj) && |
| i915_gem_object_is_tiled(obj) && |
| i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { |
| if (obj->mm.madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); |
| i915_gem_object_clear_tiling_quirk(obj); |
| i915_gem_object_make_shrinkable(obj); |
| } |
| if (args->madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); |
| i915_gem_object_make_unshrinkable(obj); |
| i915_gem_object_set_tiling_quirk(obj); |
| } |
| } |
| |
| if (obj->mm.madv != __I915_MADV_PURGED) { |
| obj->mm.madv = args->madv; |
| if (obj->ops->adjust_lru) |
| obj->ops->adjust_lru(obj); |
| } |
| |
| if (i915_gem_object_has_pages(obj) || |
| i915_gem_object_has_self_managed_shrink_list(obj)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i915->mm.obj_lock, flags); |
| if (!list_empty(&obj->mm.link)) { |
| struct list_head *list; |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| list = &i915->mm.purge_list; |
| else |
| list = &i915->mm.shrink_list; |
| list_move_tail(&obj->mm.link, list); |
| |
| } |
| spin_unlock_irqrestore(&i915->mm.obj_lock, flags); |
| } |
| |
| /* if the object is no longer attached, discard its backing storage */ |
| if (obj->mm.madv == I915_MADV_DONTNEED && |
| !i915_gem_object_has_pages(obj)) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->mm.madv != __I915_MADV_PURGED; |
| |
| i915_gem_object_unlock(obj); |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| /* |
| * A single pass should suffice to release all the freed objects (along most |
| * call paths), but be a little more paranoid in that freeing the objects does |
| * take a little amount of time, during which the rcu callbacks could have added |
| * new objects into the freed list, and armed the work again. |
| */ |
| void i915_gem_drain_freed_objects(struct drm_i915_private *i915) |
| { |
| while (atomic_read(&i915->mm.free_count)) { |
| flush_work(&i915->mm.free_work); |
| drain_workqueue(i915->bdev.wq); |
| rcu_barrier(); |
| } |
| } |
| |
| /* |
| * Similar to objects above (see i915_gem_drain_freed-objects), in general we |
| * have workers that are armed by RCU and then rearm themselves in their |
| * callbacks. To be paranoid, we need to drain the workqueue a second time after |
| * waiting for the RCU grace period so that we catch work queued via RCU from |
| * the first pass. As neither drain_workqueue() nor flush_workqueue() report a |
| * result, we make an assumption that we only don't require more than 3 passes |
| * to catch all _recursive_ RCU delayed work. |
| */ |
| void i915_gem_drain_workqueue(struct drm_i915_private *i915) |
| { |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| flush_workqueue(i915->wq); |
| rcu_barrier(); |
| i915_gem_drain_freed_objects(i915); |
| } |
| |
| drain_workqueue(i915->wq); |
| } |
| |
| int i915_gem_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_gt *gt; |
| unsigned int i; |
| int ret; |
| |
| /* |
| * In the proccess of replacing cache_level with pat_index a tricky |
| * dependency is created on the definition of the enum i915_cache_level. |
| * in case this enum is changed, PTE encode would be broken. |
| * Add a WARNING here. And remove when we completely quit using this |
| * enum |
| */ |
| BUILD_BUG_ON(I915_CACHE_NONE != 0 || |
| I915_CACHE_LLC != 1 || |
| I915_CACHE_L3_LLC != 2 || |
| I915_CACHE_WT != 3 || |
| I915_MAX_CACHE_LEVEL != 4); |
| |
| /* We need to fallback to 4K pages if host doesn't support huge gtt. */ |
| if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) |
| RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K; |
| |
| for_each_gt(gt, dev_priv, i) { |
| intel_uc_fetch_firmwares(>->uc); |
| intel_wopcm_init(>->wopcm); |
| if (GRAPHICS_VER(dev_priv) >= 8) |
| setup_private_pat(gt); |
| } |
| |
| ret = i915_init_ggtt(dev_priv); |
| if (ret) { |
| GEM_BUG_ON(ret == -EIO); |
| goto err_unlock; |
| } |
| |
| /* |
| * Despite its name intel_clock_gating_init applies both display |
| * clock gating workarounds; GT mmio workarounds and the occasional |
| * GT power context workaround. Worse, sometimes it includes a context |
| * register workaround which we need to apply before we record the |
| * default HW state for all contexts. |
| * |
| * FIXME: break up the workarounds and apply them at the right time! |
| */ |
| intel_clock_gating_init(dev_priv); |
| |
| for_each_gt(gt, dev_priv, i) { |
| ret = intel_gt_init(gt); |
| if (ret) |
| goto err_unlock; |
| } |
| |
| /* |
| * Register engines early to ensure the engine list is in its final |
| * rb-tree form, lowering the amount of code that has to deal with |
| * the intermediate llist state. |
| */ |
| intel_engines_driver_register(dev_priv); |
| |
| return 0; |
| |
| /* |
| * Unwinding is complicated by that we want to handle -EIO to mean |
| * disable GPU submission but keep KMS alive. We want to mark the |
| * HW as irrevisibly wedged, but keep enough state around that the |
| * driver doesn't explode during runtime. |
| */ |
| err_unlock: |
| i915_gem_drain_workqueue(dev_priv); |
| |
| if (ret != -EIO) { |
| for_each_gt(gt, dev_priv, i) { |
| intel_gt_driver_remove(gt); |
| intel_gt_driver_release(gt); |
| intel_uc_cleanup_firmwares(>->uc); |
| } |
| } |
| |
| if (ret == -EIO) { |
| /* |
| * Allow engines or uC initialisation to fail by marking the GPU |
| * as wedged. But we only want to do this when the GPU is angry, |
| * for all other failure, such as an allocation failure, bail. |
| */ |
| for_each_gt(gt, dev_priv, i) { |
| if (!intel_gt_is_wedged(gt)) { |
| i915_probe_error(dev_priv, |
| "Failed to initialize GPU, declaring it wedged!\n"); |
| intel_gt_set_wedged(gt); |
| } |
| } |
| |
| /* Minimal basic recovery for KMS */ |
| ret = i915_ggtt_enable_hw(dev_priv); |
| i915_ggtt_resume(to_gt(dev_priv)->ggtt); |
| intel_clock_gating_init(dev_priv); |
| } |
| |
| i915_gem_drain_freed_objects(dev_priv); |
| |
| return ret; |
| } |
| |
| void i915_gem_driver_register(struct drm_i915_private *i915) |
| { |
| i915_gem_driver_register__shrinker(i915); |
| } |
| |
| void i915_gem_driver_unregister(struct drm_i915_private *i915) |
| { |
| i915_gem_driver_unregister__shrinker(i915); |
| } |
| |
| void i915_gem_driver_remove(struct drm_i915_private *dev_priv) |
| { |
| struct intel_gt *gt; |
| unsigned int i; |
| |
| i915_gem_suspend_late(dev_priv); |
| for_each_gt(gt, dev_priv, i) |
| intel_gt_driver_remove(gt); |
| dev_priv->uabi_engines = RB_ROOT; |
| |
| /* Flush any outstanding unpin_work. */ |
| i915_gem_drain_workqueue(dev_priv); |
| } |
| |
| void i915_gem_driver_release(struct drm_i915_private *dev_priv) |
| { |
| struct intel_gt *gt; |
| unsigned int i; |
| |
| for_each_gt(gt, dev_priv, i) { |
| intel_gt_driver_release(gt); |
| intel_uc_cleanup_firmwares(>->uc); |
| } |
| |
| /* Flush any outstanding work, including i915_gem_context.release_work. */ |
| i915_gem_drain_workqueue(dev_priv); |
| |
| drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); |
| } |
| |
| static void i915_gem_init__mm(struct drm_i915_private *i915) |
| { |
| spin_lock_init(&i915->mm.obj_lock); |
| |
| init_llist_head(&i915->mm.free_list); |
| |
| INIT_LIST_HEAD(&i915->mm.purge_list); |
| INIT_LIST_HEAD(&i915->mm.shrink_list); |
| |
| i915_gem_init__objects(i915); |
| } |
| |
| void i915_gem_init_early(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_init__mm(dev_priv); |
| i915_gem_init__contexts(dev_priv); |
| } |
| |
| void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) |
| { |
| i915_gem_drain_workqueue(dev_priv); |
| GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); |
| GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); |
| drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); |
| } |
| |
| int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv; |
| struct i915_drm_client *client; |
| int ret = -ENOMEM; |
| |
| drm_dbg(&i915->drm, "\n"); |
| |
| file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| if (!file_priv) |
| goto err_alloc; |
| |
| client = i915_drm_client_alloc(); |
| if (!client) |
| goto err_client; |
| |
| file->driver_priv = file_priv; |
| file_priv->i915 = i915; |
| file_priv->file = file; |
| file_priv->client = client; |
| |
| file_priv->bsd_engine = -1; |
| file_priv->hang_timestamp = jiffies; |
| |
| ret = i915_gem_context_open(i915, file); |
| if (ret) |
| goto err_context; |
| |
| return 0; |
| |
| err_context: |
| i915_drm_client_put(client); |
| err_client: |
| kfree(file_priv); |
| err_alloc: |
| return ret; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/mock_gem_device.c" |
| #include "selftests/i915_gem.c" |
| #endif |