blob: 49db3e09826c70c2b9725ea4d25ea5e73c10c40a [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/types.h>
#include "i915_drv.h"
#include "i915_hwmon.h"
#include "i915_reg.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_regs.h"
/*
* SF_* - scale factors for particular quantities according to hwmon spec.
* - voltage - millivolts
* - power - microwatts
* - curr - milliamperes
* - energy - microjoules
* - time - milliseconds
*/
#define SF_VOLTAGE 1000
#define SF_POWER 1000000
#define SF_CURR 1000
#define SF_ENERGY 1000000
#define SF_TIME 1000
struct hwm_reg {
i915_reg_t gt_perf_status;
i915_reg_t pkg_power_sku_unit;
i915_reg_t pkg_power_sku;
i915_reg_t pkg_rapl_limit;
i915_reg_t energy_status_all;
i915_reg_t energy_status_tile;
};
struct hwm_energy_info {
u32 reg_val_prev;
long accum_energy; /* Accumulated energy for energy1_input */
};
struct hwm_drvdata {
struct i915_hwmon *hwmon;
struct intel_uncore *uncore;
struct device *hwmon_dev;
struct hwm_energy_info ei; /* Energy info for energy1_input */
char name[12];
int gt_n;
bool reset_in_progress;
wait_queue_head_t waitq;
};
struct i915_hwmon {
struct hwm_drvdata ddat;
struct hwm_drvdata ddat_gt[I915_MAX_GT];
struct mutex hwmon_lock; /* counter overflow logic and rmw */
struct hwm_reg rg;
int scl_shift_power;
int scl_shift_energy;
int scl_shift_time;
};
static void
hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
i915_reg_t reg, u32 clear, u32 set)
{
struct i915_hwmon *hwmon = ddat->hwmon;
struct intel_uncore *uncore = ddat->uncore;
intel_wakeref_t wakeref;
with_intel_runtime_pm(uncore->rpm, wakeref) {
mutex_lock(&hwmon->hwmon_lock);
intel_uncore_rmw(uncore, reg, clear, set);
mutex_unlock(&hwmon->hwmon_lock);
}
}
/*
* This function's return type of u64 allows for the case where the scaling
* of the field taken from the 32-bit register value might cause a result to
* exceed 32 bits.
*/
static u64
hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
u32 field_msk, int nshift, u32 scale_factor)
{
struct intel_uncore *uncore = ddat->uncore;
intel_wakeref_t wakeref;
u32 reg_value;
with_intel_runtime_pm(uncore->rpm, wakeref)
reg_value = intel_uncore_read(uncore, rgadr);
reg_value = REG_FIELD_GET(field_msk, reg_value);
return mul_u64_u32_shr(reg_value, scale_factor, nshift);
}
/*
* hwm_energy - Obtain energy value
*
* The underlying energy hardware register is 32-bits and is subject to
* overflow. How long before overflow? For example, with an example
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
* a power draw of 1000 watts, the 32-bit counter will overflow in
* approximately 4.36 minutes.
*
* Examples:
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
*
* The function significantly increases overflow duration (from 4.36
* minutes) by accumulating the energy register into a 'long' as allowed by
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
* energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
*/
static void
hwm_energy(struct hwm_drvdata *ddat, long *energy)
{
struct intel_uncore *uncore = ddat->uncore;
struct i915_hwmon *hwmon = ddat->hwmon;
struct hwm_energy_info *ei = &ddat->ei;
intel_wakeref_t wakeref;
i915_reg_t rgaddr;
u32 reg_val;
if (ddat->gt_n >= 0)
rgaddr = hwmon->rg.energy_status_tile;
else
rgaddr = hwmon->rg.energy_status_all;
with_intel_runtime_pm(uncore->rpm, wakeref) {
mutex_lock(&hwmon->hwmon_lock);
reg_val = intel_uncore_read(uncore, rgaddr);
if (reg_val >= ei->reg_val_prev)
ei->accum_energy += reg_val - ei->reg_val_prev;
else
ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
ei->reg_val_prev = reg_val;
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
hwmon->scl_shift_energy);
mutex_unlock(&hwmon->hwmon_lock);
}
}
static ssize_t
hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u32 r, x, y, x_w = 2; /* 2 bits */
u64 tau4, out;
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
/*
* tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
* = (4 | x) << (y - 2)
* where (y - 2) ensures a 1.x fixed point representation of 1.x
* However because y can be < 2, we compute
* tau4 = (4 | x) << y
* but add 2 when doing the final right shift to account for units
*/
tau4 = (u64)((1 << x_w) | x) << y;
/* val in hwmon interface units (millisec) */
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
return sysfs_emit(buf, "%llu\n", out);
}
static ssize_t
hwm_power1_max_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
u32 x, y, rxy, x_w = 2; /* 2 bits */
u64 tau4, r, max_win;
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
/*
* Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
*/
#define PKG_MAX_WIN_DEFAULT 0x12ull
/*
* val must be < max in hwmon interface units. The steps below are
* explained in i915_power1_max_interval_show()
*/
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
tau4 = (u64)((1 << x_w) | x) << y;
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
if (val > max_win)
return -EINVAL;
/* val in hw units */
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
/* Convert to 1.x * power(2,y) */
if (!val) {
/* Avoid ilog2(0) */
y = 0;
x = 0;
} else {
y = ilog2(val);
/* x = (val - (1 << y)) >> (y - 2); */
x = (val - (1ul << y)) << x_w >> y;
}
rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_TIME, rxy);
return count;
}
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
hwm_power1_max_interval_show,
hwm_power1_max_interval_store, 0);
static struct attribute *hwm_attributes[] = {
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
NULL
};
static umode_t hwm_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
struct i915_hwmon *hwmon = ddat->hwmon;
if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
return 0;
}
static const struct attribute_group hwm_attrgroup = {
.attrs = hwm_attributes,
.is_visible = hwm_attributes_visible,
};
static const struct attribute_group *hwm_groups[] = {
&hwm_attrgroup,
NULL
};
static const struct hwmon_channel_info * const hwm_info[] = {
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
NULL
};
static const struct hwmon_channel_info * const hwm_gt_info[] = {
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
NULL
};
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
{
/* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
if (IS_DG1(i915) || IS_DG2(i915))
return -ENXIO;
return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
}
static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
{
return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
}
static umode_t
hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
switch (attr) {
case hwmon_in_input:
return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
default:
return 0;
}
}
static int
hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u32 reg_value;
switch (attr) {
case hwmon_in_input:
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
/* HW register value in units of 2.5 millivolt */
*val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
struct i915_hwmon *hwmon = ddat->hwmon;
u32 uval;
switch (attr) {
case hwmon_power_max:
return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
case hwmon_power_rated_max:
return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
case hwmon_power_crit:
return (hwm_pcode_read_i1(i915, &uval) ||
!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
default:
return 0;
}
}
#define PL1_DISABLE 0
/*
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
* "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
* clamped values when read. Write/read I1 also follows the same pattern.
*/
static int
hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
u64 r, min, max;
/* Check if PL1 limit is disabled */
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
if (!(r & PKG_PWR_LIM_1_EN)) {
*val = PL1_DISABLE;
return 0;
}
*val = hwm_field_read_and_scale(ddat,
hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1,
hwmon->scl_shift_power,
SF_POWER);
with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
min = REG_FIELD_GET(PKG_MIN_PWR, r);
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
max = REG_FIELD_GET(PKG_MAX_PWR, r);
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
if (min && max)
*val = clamp_t(u64, *val, min, max);
return 0;
}
static int
hwm_power_max_write(struct hwm_drvdata *ddat, long val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
intel_wakeref_t wakeref;
DEFINE_WAIT(wait);
int ret = 0;
u32 nval;
/* Block waiting for GuC reset to complete when needed */
for (;;) {
wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
mutex_lock(&hwmon->hwmon_lock);
prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
if (!hwmon->ddat.reset_in_progress)
break;
if (signal_pending(current)) {
ret = -EINTR;
break;
}
mutex_unlock(&hwmon->hwmon_lock);
intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
schedule();
}
finish_wait(&ddat->waitq, &wait);
if (ret)
goto exit;
/* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
if (val == PL1_DISABLE) {
intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, 0);
nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
if (nval & PKG_PWR_LIM_1_EN)
ret = -ENODEV;
goto exit;
}
/* Computation in 64-bits to avoid overflow. Round to nearest. */
nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
exit:
mutex_unlock(&hwmon->hwmon_lock);
intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
return ret;
}
static int
hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
{
struct i915_hwmon *hwmon = ddat->hwmon;
int ret;
u32 uval;
switch (attr) {
case hwmon_power_max:
return hwm_power_max_read(ddat, val);
case hwmon_power_rated_max:
*val = hwm_field_read_and_scale(ddat,
hwmon->rg.pkg_power_sku,
PKG_PKG_TDP,
hwmon->scl_shift_power,
SF_POWER);
return 0;
case hwmon_power_crit:
ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
if (ret)
return ret;
if (!(uval & POWER_SETUP_I1_WATTS))
return -ENODEV;
*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
SF_POWER, POWER_SETUP_I1_SHIFT);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int
hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
{
u32 uval;
switch (attr) {
case hwmon_power_max:
return hwm_power_max_write(ddat, val);
case hwmon_power_crit:
uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
return hwm_pcode_write_i1(ddat->uncore->i915, uval);
default:
return -EOPNOTSUPP;
}
}
void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
{
struct i915_hwmon *hwmon = i915->hwmon;
u32 r;
if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
return;
mutex_lock(&hwmon->hwmon_lock);
hwmon->ddat.reset_in_progress = true;
r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, 0);
*old = !!(r & PKG_PWR_LIM_1_EN);
mutex_unlock(&hwmon->hwmon_lock);
}
void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
{
struct i915_hwmon *hwmon = i915->hwmon;
if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
return;
mutex_lock(&hwmon->hwmon_lock);
intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
hwmon->ddat.reset_in_progress = false;
wake_up_all(&hwmon->ddat.waitq);
mutex_unlock(&hwmon->hwmon_lock);
}
static umode_t
hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct i915_hwmon *hwmon = ddat->hwmon;
i915_reg_t rgaddr;
switch (attr) {
case hwmon_energy_input:
if (ddat->gt_n >= 0)
rgaddr = hwmon->rg.energy_status_tile;
else
rgaddr = hwmon->rg.energy_status_all;
return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
default:
return 0;
}
}
static int
hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
switch (attr) {
case hwmon_energy_input:
hwm_energy(ddat, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
{
struct drm_i915_private *i915 = ddat->uncore->i915;
u32 uval;
switch (attr) {
case hwmon_curr_crit:
return (hwm_pcode_read_i1(i915, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
default:
return 0;
}
}
static int
hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
{
int ret;
u32 uval;
switch (attr) {
case hwmon_curr_crit:
ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
if (ret)
return ret;
if (uval & POWER_SETUP_I1_WATTS)
return -ENODEV;
*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
SF_CURR, POWER_SETUP_I1_SHIFT);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int
hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
{
u32 uval;
switch (attr) {
case hwmon_curr_crit:
uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
return hwm_pcode_write_i1(ddat->uncore->i915, uval);
default:
return -EOPNOTSUPP;
}
}
static umode_t
hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
switch (type) {
case hwmon_in:
return hwm_in_is_visible(ddat, attr);
case hwmon_power:
return hwm_power_is_visible(ddat, attr, channel);
case hwmon_energy:
return hwm_energy_is_visible(ddat, attr);
case hwmon_curr:
return hwm_curr_is_visible(ddat, attr);
default:
return 0;
}
}
static int
hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_in:
return hwm_in_read(ddat, attr, val);
case hwmon_power:
return hwm_power_read(ddat, attr, channel, val);
case hwmon_energy:
return hwm_energy_read(ddat, attr, val);
case hwmon_curr:
return hwm_curr_read(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static int
hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_power:
return hwm_power_write(ddat, attr, channel, val);
case hwmon_curr:
return hwm_curr_write(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwm_ops = {
.is_visible = hwm_is_visible,
.read = hwm_read,
.write = hwm_write,
};
static const struct hwmon_chip_info hwm_chip_info = {
.ops = &hwm_ops,
.info = hwm_info,
};
static umode_t
hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
switch (type) {
case hwmon_energy:
return hwm_energy_is_visible(ddat, attr);
default:
return 0;
}
}
static int
hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct hwm_drvdata *ddat = dev_get_drvdata(dev);
switch (type) {
case hwmon_energy:
return hwm_energy_read(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwm_gt_ops = {
.is_visible = hwm_gt_is_visible,
.read = hwm_gt_read,
};
static const struct hwmon_chip_info hwm_gt_chip_info = {
.ops = &hwm_gt_ops,
.info = hwm_gt_info,
};
static void
hwm_get_preregistration_info(struct drm_i915_private *i915)
{
struct i915_hwmon *hwmon = i915->hwmon;
struct intel_uncore *uncore = &i915->uncore;
struct hwm_drvdata *ddat = &hwmon->ddat;
intel_wakeref_t wakeref;
u32 val_sku_unit = 0;
struct intel_gt *gt;
long energy;
int i;
/* Available for all Gen12+/dGfx */
hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
if (IS_DG1(i915) || IS_DG2(i915)) {
hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
} else {
hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
hwmon->rg.energy_status_all = INVALID_MMIO_REG;
hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
}
with_intel_runtime_pm(uncore->rpm, wakeref) {
/*
* The contents of register hwmon->rg.pkg_power_sku_unit do not change,
* so read it once and store the shift values.
*/
if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
val_sku_unit = intel_uncore_read(uncore,
hwmon->rg.pkg_power_sku_unit);
}
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
/*
* Initialize 'struct hwm_energy_info', i.e. set fields to the
* first value of the energy register read
*/
if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
hwm_energy(ddat, &energy);
if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
for_each_gt(gt, i915, i)
hwm_energy(&hwmon->ddat_gt[i], &energy);
}
}
void i915_hwmon_register(struct drm_i915_private *i915)
{
struct device *dev = i915->drm.dev;
struct i915_hwmon *hwmon;
struct device *hwmon_dev;
struct hwm_drvdata *ddat;
struct hwm_drvdata *ddat_gt;
struct intel_gt *gt;
int i;
/* hwmon is available only for dGfx */
if (!IS_DGFX(i915))
return;
hwmon = kzalloc(sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return;
i915->hwmon = hwmon;
mutex_init(&hwmon->hwmon_lock);
ddat = &hwmon->ddat;
ddat->hwmon = hwmon;
ddat->uncore = &i915->uncore;
snprintf(ddat->name, sizeof(ddat->name), "i915");
ddat->gt_n = -1;
init_waitqueue_head(&ddat->waitq);
for_each_gt(gt, i915, i) {
ddat_gt = hwmon->ddat_gt + i;
ddat_gt->hwmon = hwmon;
ddat_gt->uncore = gt->uncore;
snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
ddat_gt->gt_n = i;
}
hwm_get_preregistration_info(i915);
/* hwmon_dev points to device hwmon<i> */
hwmon_dev = hwmon_device_register_with_info(dev, ddat->name,
ddat,
&hwm_chip_info,
hwm_groups);
if (IS_ERR(hwmon_dev))
goto err;
ddat->hwmon_dev = hwmon_dev;
for_each_gt(gt, i915, i) {
ddat_gt = hwmon->ddat_gt + i;
/*
* Create per-gt directories only if a per-gt attribute is
* visible. Currently this is only energy
*/
if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
continue;
hwmon_dev = hwmon_device_register_with_info(dev, ddat_gt->name,
ddat_gt,
&hwm_gt_chip_info,
NULL);
if (!IS_ERR(hwmon_dev))
ddat_gt->hwmon_dev = hwmon_dev;
}
return;
err:
i915_hwmon_unregister(i915);
}
void i915_hwmon_unregister(struct drm_i915_private *i915)
{
struct i915_hwmon *hwmon = i915->hwmon;
struct intel_gt *gt;
int i;
if (!hwmon)
return;
for_each_gt(gt, i915, i)
if (hwmon->ddat_gt[i].hwmon_dev)
hwmon_device_unregister(hwmon->ddat_gt[i].hwmon_dev);
if (hwmon->ddat.hwmon_dev)
hwmon_device_unregister(hwmon->ddat.hwmon_dev);
mutex_destroy(&hwmon->hwmon_lock);
kfree(i915->hwmon);
i915->hwmon = NULL;
}