blob: 2d83a9f9651b081b1abb1de6b76391f2dd91e7f5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* intel_pstate.c: Native P state management for Intel processors
*
* (C) Copyright 2012 Intel Corporation
* Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched/cpufreq.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/acpi.h>
#include <linux/vmalloc.h>
#include <linux/pm_qos.h>
#include <trace/events/power.h>
#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>
#include <asm/intel-family.h>
#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
#define INTEL_CPUFREQ_TRANSITION_DELAY 500
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#endif
#define FRAC_BITS 8
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
static inline int32_t mul_fp(int32_t x, int32_t y)
{
return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}
static inline int32_t div_fp(s64 x, s64 y)
{
return div64_s64((int64_t)x << FRAC_BITS, y);
}
static inline int ceiling_fp(int32_t x)
{
int mask, ret;
ret = fp_toint(x);
mask = (1 << FRAC_BITS) - 1;
if (x & mask)
ret += 1;
return ret;
}
static inline u64 mul_ext_fp(u64 x, u64 y)
{
return (x * y) >> EXT_FRAC_BITS;
}
static inline u64 div_ext_fp(u64 x, u64 y)
{
return div64_u64(x << EXT_FRAC_BITS, y);
}
/**
* struct sample - Store performance sample
* @core_avg_perf: Ratio of APERF/MPERF which is the actual average
* performance during last sample period
* @busy_scaled: Scaled busy value which is used to calculate next
* P state. This can be different than core_avg_perf
* to account for cpu idle period
* @aperf: Difference of actual performance frequency clock count
* read from APERF MSR between last and current sample
* @mperf: Difference of maximum performance frequency clock count
* read from MPERF MSR between last and current sample
* @tsc: Difference of time stamp counter between last and
* current sample
* @time: Current time from scheduler
*
* This structure is used in the cpudata structure to store performance sample
* data for choosing next P State.
*/
struct sample {
int32_t core_avg_perf;
int32_t busy_scaled;
u64 aperf;
u64 mperf;
u64 tsc;
u64 time;
};
/**
* struct pstate_data - Store P state data
* @current_pstate: Current requested P state
* @min_pstate: Min P state possible for this platform
* @max_pstate: Max P state possible for this platform
* @max_pstate_physical:This is physical Max P state for a processor
* This can be higher than the max_pstate which can
* be limited by platform thermal design power limits
* @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
* @scaling: Scaling factor between performance and frequency
* @turbo_pstate: Max Turbo P state possible for this platform
* @min_freq: @min_pstate frequency in cpufreq units
* @max_freq: @max_pstate frequency in cpufreq units
* @turbo_freq: @turbo_pstate frequency in cpufreq units
*
* Stores the per cpu model P state limits and current P state.
*/
struct pstate_data {
int current_pstate;
int min_pstate;
int max_pstate;
int max_pstate_physical;
int perf_ctl_scaling;
int scaling;
int turbo_pstate;
unsigned int min_freq;
unsigned int max_freq;
unsigned int turbo_freq;
};
/**
* struct vid_data - Stores voltage information data
* @min: VID data for this platform corresponding to
* the lowest P state
* @max: VID data corresponding to the highest P State.
* @turbo: VID data for turbo P state
* @ratio: Ratio of (vid max - vid min) /
* (max P state - Min P State)
*
* Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
* This data is used in Atom platforms, where in addition to target P state,
* the voltage data needs to be specified to select next P State.
*/
struct vid_data {
int min;
int max;
int turbo;
int32_t ratio;
};
/**
* struct global_params - Global parameters, mostly tunable via sysfs.
* @no_turbo: Whether or not to use turbo P-states.
* @turbo_disabled: Whether or not turbo P-states are available at all,
* based on the MSR_IA32_MISC_ENABLE value and whether or
* not the maximum reported turbo P-state is different from
* the maximum reported non-turbo one.
* @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
* @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
* P-state capacity.
* @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
* P-state capacity.
*/
struct global_params {
bool no_turbo;
bool turbo_disabled;
bool turbo_disabled_mf;
int max_perf_pct;
int min_perf_pct;
};
/**
* struct cpudata - Per CPU instance data storage
* @cpu: CPU number for this instance data
* @policy: CPUFreq policy value
* @update_util: CPUFreq utility callback information
* @update_util_set: CPUFreq utility callback is set
* @iowait_boost: iowait-related boost fraction
* @last_update: Time of the last update.
* @pstate: Stores P state limits for this CPU
* @vid: Stores VID limits for this CPU
* @last_sample_time: Last Sample time
* @aperf_mperf_shift: APERF vs MPERF counting frequency difference
* @prev_aperf: Last APERF value read from APERF MSR
* @prev_mperf: Last MPERF value read from MPERF MSR
* @prev_tsc: Last timestamp counter (TSC) value
* @prev_cummulative_iowait: IO Wait time difference from last and
* current sample
* @sample: Storage for storing last Sample data
* @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
* @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
* @acpi_perf_data: Stores ACPI perf information read from _PSS
* @valid_pss_table: Set to true for valid ACPI _PSS entries found
* @epp_powersave: Last saved HWP energy performance preference
* (EPP) or energy performance bias (EPB),
* when policy switched to performance
* @epp_policy: Last saved policy used to set EPP/EPB
* @epp_default: Power on default HWP energy performance
* preference/bias
* @epp_cached Cached HWP energy-performance preference value
* @hwp_req_cached: Cached value of the last HWP Request MSR
* @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
* @last_io_update: Last time when IO wake flag was set
* @sched_flags: Store scheduler flags for possible cross CPU update
* @hwp_boost_min: Last HWP boosted min performance
* @suspended: Whether or not the driver has been suspended.
*
* This structure stores per CPU instance data for all CPUs.
*/
struct cpudata {
int cpu;
unsigned int policy;
struct update_util_data update_util;
bool update_util_set;
struct pstate_data pstate;
struct vid_data vid;
u64 last_update;
u64 last_sample_time;
u64 aperf_mperf_shift;
u64 prev_aperf;
u64 prev_mperf;
u64 prev_tsc;
u64 prev_cummulative_iowait;
struct sample sample;
int32_t min_perf_ratio;
int32_t max_perf_ratio;
#ifdef CONFIG_ACPI
struct acpi_processor_performance acpi_perf_data;
bool valid_pss_table;
#endif
unsigned int iowait_boost;
s16 epp_powersave;
s16 epp_policy;
s16 epp_default;
s16 epp_cached;
u64 hwp_req_cached;
u64 hwp_cap_cached;
u64 last_io_update;
unsigned int sched_flags;
u32 hwp_boost_min;
bool suspended;
};
static struct cpudata **all_cpu_data;
/**
* struct pstate_funcs - Per CPU model specific callbacks
* @get_max: Callback to get maximum non turbo effective P state
* @get_max_physical: Callback to get maximum non turbo physical P state
* @get_min: Callback to get minimum P state
* @get_turbo: Callback to get turbo P state
* @get_scaling: Callback to get frequency scaling factor
* @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
* @get_val: Callback to convert P state to actual MSR write value
* @get_vid: Callback to get VID data for Atom platforms
*
* Core and Atom CPU models have different way to get P State limits. This
* structure is used to store those callbacks.
*/
struct pstate_funcs {
int (*get_max)(void);
int (*get_max_physical)(void);
int (*get_min)(void);
int (*get_turbo)(void);
int (*get_scaling)(void);
int (*get_aperf_mperf_shift)(void);
u64 (*get_val)(struct cpudata*, int pstate);
void (*get_vid)(struct cpudata *);
};
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
static int hwp_mode_bdw __read_mostly;
static bool per_cpu_limits __read_mostly;
static bool hwp_boost __read_mostly;
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
static struct global_params global;
static DEFINE_MUTEX(intel_pstate_driver_lock);
static DEFINE_MUTEX(intel_pstate_limits_lock);
#ifdef CONFIG_ACPI
static bool intel_pstate_acpi_pm_profile_server(void)
{
if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
return true;
return false;
}
static bool intel_pstate_get_ppc_enable_status(void)
{
if (intel_pstate_acpi_pm_profile_server())
return true;
return acpi_ppc;
}
#ifdef CONFIG_ACPI_CPPC_LIB
/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
sched_set_itmt_support();
}
static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
static void intel_pstate_set_itmt_prio(int cpu)
{
struct cppc_perf_caps cppc_perf;
static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
int ret;
ret = cppc_get_perf_caps(cpu, &cppc_perf);
if (ret)
return;
/*
* The priorities can be set regardless of whether or not
* sched_set_itmt_support(true) has been called and it is valid to
* update them at any time after it has been called.
*/
sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
if (max_highest_perf <= min_highest_perf) {
if (cppc_perf.highest_perf > max_highest_perf)
max_highest_perf = cppc_perf.highest_perf;
if (cppc_perf.highest_perf < min_highest_perf)
min_highest_perf = cppc_perf.highest_perf;
if (max_highest_perf > min_highest_perf) {
/*
* This code can be run during CPU online under the
* CPU hotplug locks, so sched_set_itmt_support()
* cannot be called from here. Queue up a work item
* to invoke it.
*/
schedule_work(&sched_itmt_work);
}
}
}
static int intel_pstate_get_cppc_guaranteed(int cpu)
{
struct cppc_perf_caps cppc_perf;
int ret;
ret = cppc_get_perf_caps(cpu, &cppc_perf);
if (ret)
return ret;
if (cppc_perf.guaranteed_perf)
return cppc_perf.guaranteed_perf;
return cppc_perf.nominal_perf;
}
#else /* CONFIG_ACPI_CPPC_LIB */
static inline void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif /* CONFIG_ACPI_CPPC_LIB */
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int ret;
int i;
if (hwp_active) {
intel_pstate_set_itmt_prio(policy->cpu);
return;
}
if (!intel_pstate_get_ppc_enable_status())
return;
cpu = all_cpu_data[policy->cpu];
ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
policy->cpu);
if (ret)
return;
/*
* Check if the control value in _PSS is for PERF_CTL MSR, which should
* guarantee that the states returned by it map to the states in our
* list directly.
*/
if (cpu->acpi_perf_data.control_register.space_id !=
ACPI_ADR_SPACE_FIXED_HARDWARE)
goto err;
/*
* If there is only one entry _PSS, simply ignore _PSS and continue as
* usual without taking _PSS into account
*/
if (cpu->acpi_perf_data.state_count < 2)
goto err;
pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
(i == cpu->acpi_perf_data.state ? '*' : ' '), i,
(u32) cpu->acpi_perf_data.states[i].core_frequency,
(u32) cpu->acpi_perf_data.states[i].power,
(u32) cpu->acpi_perf_data.states[i].control);
}
/*
* The _PSS table doesn't contain whole turbo frequency range.
* This just contains +1 MHZ above the max non turbo frequency,
* with control value corresponding to max turbo ratio. But
* when cpufreq set policy is called, it will call with this
* max frequency, which will cause a reduced performance as
* this driver uses real max turbo frequency as the max
* frequency. So correct this frequency in _PSS table to
* correct max turbo frequency based on the turbo state.
* Also need to convert to MHz as _PSS freq is in MHz.
*/
if (!global.turbo_disabled)
cpu->acpi_perf_data.states[0].core_frequency =
policy->cpuinfo.max_freq / 1000;
cpu->valid_pss_table = true;
pr_debug("_PPC limits will be enforced\n");
return;
err:
cpu->valid_pss_table = false;
acpi_processor_unregister_performance(policy->cpu);
}
static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
cpu = all_cpu_data[policy->cpu];
if (!cpu->valid_pss_table)
return;
acpi_processor_unregister_performance(policy->cpu);
}
static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
{
return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
}
static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
struct cppc_perf_caps *caps)
{
if (cppc_get_perf_caps(cpu->cpu, caps))
return false;
return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
}
#else /* CONFIG_ACPI */
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
static inline bool intel_pstate_acpi_pm_profile_server(void)
{
return false;
}
#endif /* CONFIG_ACPI */
#ifndef CONFIG_ACPI_CPPC_LIB
static inline int intel_pstate_get_cppc_guaranteed(int cpu)
{
return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
{
pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
}
/**
* intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
* @cpu: Target CPU.
*
* On hybrid processors, HWP may expose more performance levels than there are
* P-states accessible through the PERF_CTL interface. If that happens, the
* scaling factor between HWP performance levels and CPU frequency will be less
* than the scaling factor between P-state values and CPU frequency.
*
* In that case, the scaling factor between HWP performance levels and CPU
* frequency needs to be determined which can be done with the help of the
* observation that certain HWP performance levels should correspond to certain
* P-states, like for example the HWP highest performance should correspond
* to the maximum turbo P-state of the CPU.
*/
static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
{
int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
int perf_ctl_turbo = pstate_funcs.get_turbo();
int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
int perf_ctl_max = pstate_funcs.get_max();
int max_freq = perf_ctl_max * perf_ctl_scaling;
int scaling = INT_MAX;
int freq;
pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
#ifdef CONFIG_ACPI
if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
struct cppc_perf_caps caps;
if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
/*
* If the CPPC nominal performance is valid, it
* can be assumed to correspond to cpu_khz.
*/
if (caps.nominal_perf == perf_ctl_max_phys) {
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
return;
}
scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
} else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
/*
* If the CPPC guaranteed performance is valid,
* it can be assumed to correspond to max_freq.
*/
if (caps.guaranteed_perf == perf_ctl_max) {
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
return;
}
scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
}
}
}
#endif
/*
* If using the CPPC data to compute the HWP-to-frequency scaling factor
* doesn't work, use the HWP_CAP gauranteed perf for this purpose with
* the assumption that it corresponds to max_freq.
*/
if (scaling > perf_ctl_scaling) {
pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
if (cpu->pstate.max_pstate == perf_ctl_max) {
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
return;
}
scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
if (scaling > perf_ctl_scaling) {
/*
* This should not happen, because it would mean that
* the number of HWP perf levels was less than the
* number of P-states, so use the PERF_CTL scaling in
* that case.
*/
pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
scaling);
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
return;
}
}
/*
* If the product of the HWP performance scaling factor obtained above
* and the HWP_CAP highest performance is greater than the maximum turbo
* frequency corresponding to the pstate_funcs.get_turbo() return value,
* the scaling factor is too high, so recompute it so that the HWP_CAP
* highest performance corresponds to the maximum turbo frequency.
*/
if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
cpu->pstate.turbo_freq = turbo_freq;
scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
}
cpu->pstate.scaling = scaling;
pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
perf_ctl_scaling);
freq = perf_ctl_max_phys * perf_ctl_scaling;
cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
/*
* Cast the min P-state value retrieved via pstate_funcs.get_min() to
* the effective range of HWP performance levels.
*/
cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
}
static inline void update_turbo_state(void)
{
u64 misc_en;
struct cpudata *cpu;
cpu = all_cpu_data[0];
rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
global.turbo_disabled =
(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}
static int min_perf_pct_min(void)
{
struct cpudata *cpu = all_cpu_data[0];
int turbo_pstate = cpu->pstate.turbo_pstate;
return turbo_pstate ?
(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
}
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
u64 epb;
int ret;
if (!boot_cpu_has(X86_FEATURE_EPB))
return -ENXIO;
ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
if (ret)
return (s16)ret;
return (s16)(epb & 0x0f);
}
static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
s16 epp;
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
/*
* When hwp_req_data is 0, means that caller didn't read
* MSR_HWP_REQUEST, so need to read and get EPP.
*/
if (!hwp_req_data) {
epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
&hwp_req_data);
if (epp)
return epp;
}
epp = (hwp_req_data >> 24) & 0xff;
} else {
/* When there is no EPP present, HWP uses EPB settings */
epp = intel_pstate_get_epb(cpu_data);
}
return epp;
}
static int intel_pstate_set_epb(int cpu, s16 pref)
{
u64 epb;
int ret;
if (!boot_cpu_has(X86_FEATURE_EPB))
return -ENXIO;
ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
if (ret)
return ret;
epb = (epb & ~0x0f) | pref;
wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
return 0;
}
/*
* EPP/EPB display strings corresponding to EPP index in the
* energy_perf_strings[]
* index String
*-------------------------------------
* 0 default
* 1 performance
* 2 balance_performance
* 3 balance_power
* 4 power
*/
static const char * const energy_perf_strings[] = {
"default",
"performance",
"balance_performance",
"balance_power",
"power",
NULL
};
static const unsigned int epp_values[] = {
HWP_EPP_PERFORMANCE,
HWP_EPP_BALANCE_PERFORMANCE,
HWP_EPP_BALANCE_POWERSAVE,
HWP_EPP_POWERSAVE
};
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
{
s16 epp;
int index = -EINVAL;
*raw_epp = 0;
epp = intel_pstate_get_epp(cpu_data, 0);
if (epp < 0)
return epp;
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
if (epp == HWP_EPP_PERFORMANCE)
return 1;
if (epp == HWP_EPP_BALANCE_PERFORMANCE)
return 2;
if (epp == HWP_EPP_BALANCE_POWERSAVE)
return 3;
if (epp == HWP_EPP_POWERSAVE)
return 4;
*raw_epp = epp;
return 0;
} else if (boot_cpu_has(X86_FEATURE_EPB)) {
/*
* Range:
* 0x00-0x03 : Performance
* 0x04-0x07 : Balance performance
* 0x08-0x0B : Balance power
* 0x0C-0x0F : Power
* The EPB is a 4 bit value, but our ranges restrict the
* value which can be set. Here only using top two bits
* effectively.
*/
index = (epp >> 2) + 1;
}
return index;
}
static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
{
int ret;
/*
* Use the cached HWP Request MSR value, because in the active mode the
* register itself may be updated by intel_pstate_hwp_boost_up() or
* intel_pstate_hwp_boost_down() at any time.
*/
u64 value = READ_ONCE(cpu->hwp_req_cached);
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
/*
* The only other updater of hwp_req_cached in the active mode,
* intel_pstate_hwp_set(), is called under the same lock as this
* function, so it cannot run in parallel with the update below.
*/
WRITE_ONCE(cpu->hwp_req_cached, value);
ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
if (!ret)
cpu->epp_cached = epp;
return ret;
}
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
int pref_index, bool use_raw,
u32 raw_epp)
{
int epp = -EINVAL;
int ret;
if (!pref_index)
epp = cpu_data->epp_default;
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
if (use_raw)
epp = raw_epp;
else if (epp == -EINVAL)
epp = epp_values[pref_index - 1];
/*
* To avoid confusion, refuse to set EPP to any values different
* from 0 (performance) if the current policy is "performance",
* because those values would be overridden.
*/
if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
return -EBUSY;
ret = intel_pstate_set_epp(cpu_data, epp);
} else {
if (epp == -EINVAL)
epp = (pref_index - 1) << 2;
ret = intel_pstate_set_epb(cpu_data->cpu, epp);
}
return ret;
}
static ssize_t show_energy_performance_available_preferences(
struct cpufreq_policy *policy, char *buf)
{
int i = 0;
int ret = 0;
while (energy_perf_strings[i] != NULL)
ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
ret += sprintf(&buf[ret], "\n");
return ret;
}
cpufreq_freq_attr_ro(energy_performance_available_preferences);
static struct cpufreq_driver intel_pstate;
static ssize_t store_energy_performance_preference(
struct cpufreq_policy *policy, const char *buf, size_t count)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
char str_preference[21];
bool raw = false;
ssize_t ret;
u32 epp = 0;
ret = sscanf(buf, "%20s", str_preference);
if (ret != 1)
return -EINVAL;
ret = match_string(energy_perf_strings, -1, str_preference);
if (ret < 0) {
if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
return ret;
ret = kstrtouint(buf, 10, &epp);
if (ret)
return ret;
if (epp > 255)
return -EINVAL;
raw = true;
}
/*
* This function runs with the policy R/W semaphore held, which
* guarantees that the driver pointer will not change while it is
* running.
*/
if (!intel_pstate_driver)
return -EAGAIN;
mutex_lock(&intel_pstate_limits_lock);
if (intel_pstate_driver == &intel_pstate) {
ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
} else {
/*
* In the passive mode the governor needs to be stopped on the
* target CPU before the EPP update and restarted after it,
* which is super-heavy-weight, so make sure it is worth doing
* upfront.
*/
if (!raw)
epp = ret ? epp_values[ret - 1] : cpu->epp_default;
if (cpu->epp_cached != epp) {
int err;
cpufreq_stop_governor(policy);
ret = intel_pstate_set_epp(cpu, epp);
err = cpufreq_start_governor(policy);
if (!ret)
ret = err;
}
}
mutex_unlock(&intel_pstate_limits_lock);
return ret ?: count;
}
static ssize_t show_energy_performance_preference(
struct cpufreq_policy *policy, char *buf)
{
struct cpudata *cpu_data = all_cpu_data[policy->cpu];
int preference, raw_epp;
preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
if (preference < 0)
return preference;
if (raw_epp)
return sprintf(buf, "%d\n", raw_epp);
else
return sprintf(buf, "%s\n", energy_perf_strings[preference]);
}
cpufreq_freq_attr_rw(energy_performance_preference);
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
int ratio, freq;
ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
if (ratio <= 0) {
u64 cap;
rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
ratio = HWP_GUARANTEED_PERF(cap);
}
freq = ratio * cpu->pstate.scaling;
if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
return sprintf(buf, "%d\n", freq);
}
cpufreq_freq_attr_ro(base_frequency);
static struct freq_attr *hwp_cpufreq_attrs[] = {
&energy_performance_preference,
&energy_performance_available_preferences,
&base_frequency,
NULL,
};
static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
{
u64 cap;
rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
WRITE_ONCE(cpu->hwp_cap_cached, cap);
cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
}
static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
{
int scaling = cpu->pstate.scaling;
__intel_pstate_get_hwp_cap(cpu);
cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
if (scaling != cpu->pstate.perf_ctl_scaling) {
int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
perf_ctl_scaling);
cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
perf_ctl_scaling);
}
}
static void intel_pstate_hwp_set(unsigned int cpu)
{
struct cpudata *cpu_data = all_cpu_data[cpu];
int max, min;
u64 value;
s16 epp;
max = cpu_data->max_perf_ratio;
min = cpu_data->min_perf_ratio;
if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
min = max;
rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
value &= ~HWP_MIN_PERF(~0L);
value |= HWP_MIN_PERF(min);
value &= ~HWP_MAX_PERF(~0L);
value |= HWP_MAX_PERF(max);
if (cpu_data->epp_policy == cpu_data->policy)
goto skip_epp;
cpu_data->epp_policy = cpu_data->policy;
if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
epp = intel_pstate_get_epp(cpu_data, value);
cpu_data->epp_powersave = epp;
/* If EPP read was failed, then don't try to write */
if (epp < 0)
goto skip_epp;
epp = 0;
} else {
/* skip setting EPP, when saved value is invalid */
if (cpu_data->epp_powersave < 0)
goto skip_epp;
/*
* No need to restore EPP when it is not zero. This
* means:
* - Policy is not changed
* - user has manually changed
* - Error reading EPB
*/
epp = intel_pstate_get_epp(cpu_data, value);
if (epp)
goto skip_epp;
epp = cpu_data->epp_powersave;
}
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
} else {
intel_pstate_set_epb(cpu, epp);
}
skip_epp:
WRITE_ONCE(cpu_data->hwp_req_cached, value);
wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}
static void intel_pstate_hwp_offline(struct cpudata *cpu)
{
u64 value = READ_ONCE(cpu->hwp_req_cached);
int min_perf;
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
/*
* In case the EPP has been set to "performance" by the
* active mode "performance" scaling algorithm, replace that
* temporary value with the cached EPP one.
*/
value &= ~GENMASK_ULL(31, 24);
value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
WRITE_ONCE(cpu->hwp_req_cached, value);
}
value &= ~GENMASK_ULL(31, 0);
min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
/* Set hwp_max = hwp_min */
value |= HWP_MAX_PERF(min_perf);
value |= HWP_MIN_PERF(min_perf);
/* Set EPP to min */
if (boot_cpu_has(X86_FEATURE_HWP_EPP))
value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}
#define POWER_CTL_EE_ENABLE 1
#define POWER_CTL_EE_DISABLE 2
static int power_ctl_ee_state;
static void set_power_ctl_ee_state(bool input)
{
u64 power_ctl;
mutex_lock(&intel_pstate_driver_lock);
rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
if (input) {
power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
power_ctl_ee_state = POWER_CTL_EE_ENABLE;
} else {
power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
power_ctl_ee_state = POWER_CTL_EE_DISABLE;
}
wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
mutex_unlock(&intel_pstate_driver_lock);
}
static void intel_pstate_hwp_enable(struct cpudata *cpudata);
static void intel_pstate_hwp_reenable(struct cpudata *cpu)
{
intel_pstate_hwp_enable(cpu);
wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
}
static int intel_pstate_suspend(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
pr_debug("CPU %d suspending\n", cpu->cpu);
cpu->suspended = true;
return 0;
}
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
pr_debug("CPU %d resuming\n", cpu->cpu);
/* Only restore if the system default is changed */
if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
set_power_ctl_ee_state(true);
else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
set_power_ctl_ee_state(false);
if (cpu->suspended && hwp_active) {
mutex_lock(&intel_pstate_limits_lock);
/* Re-enable HWP, because "online" has not done that. */
intel_pstate_hwp_reenable(cpu);
mutex_unlock(&intel_pstate_limits_lock);
}
cpu->suspended = false;
return 0;
}
static void intel_pstate_update_policies(void)
{
int cpu;
for_each_possible_cpu(cpu)
cpufreq_update_policy(cpu);
}
static void intel_pstate_update_max_freq(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
struct cpudata *cpudata;
if (!policy)
return;
cpudata = all_cpu_data[cpu];
policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
refresh_frequency_limits(policy);
cpufreq_cpu_release(policy);
}
static void intel_pstate_update_limits(unsigned int cpu)
{
mutex_lock(&intel_pstate_driver_lock);
update_turbo_state();
/*
* If turbo has been turned on or off globally, policy limits for
* all CPUs need to be updated to reflect that.
*/
if (global.turbo_disabled_mf != global.turbo_disabled) {
global.turbo_disabled_mf = global.turbo_disabled;
arch_set_max_freq_ratio(global.turbo_disabled);
for_each_possible_cpu(cpu)
intel_pstate_update_max_freq(cpu);
} else {
cpufreq_update_policy(cpu);
}
mutex_unlock(&intel_pstate_driver_lock);
}
/************************** sysfs begin ************************/
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", global.object); \
}
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);
static ssize_t show_status(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&intel_pstate_driver_lock);
ret = intel_pstate_show_status(buf);
mutex_unlock(&intel_pstate_driver_lock);
return ret;
}
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
int ret;
mutex_lock(&intel_pstate_driver_lock);
ret = intel_pstate_update_status(buf, p ? p - buf : count);
mutex_unlock(&intel_pstate_driver_lock);
return ret < 0 ? ret : count;
}
static ssize_t show_turbo_pct(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct cpudata *cpu;
int total, no_turbo, turbo_pct;
uint32_t turbo_fp;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
cpu = all_cpu_data[0];
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
turbo_fp = div_fp(no_turbo, total);
turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
mutex_unlock(&intel_pstate_driver_lock);
return sprintf(buf, "%u\n", turbo_pct);
}
static ssize_t show_num_pstates(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct cpudata *cpu;
int total;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
cpu = all_cpu_data[0];
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
mutex_unlock(&intel_pstate_driver_lock);
return sprintf(buf, "%u\n", total);
}
static ssize_t show_no_turbo(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
update_turbo_state();
if (global.turbo_disabled)
ret = sprintf(buf, "%u\n", global.turbo_disabled);
else
ret = sprintf(buf, "%u\n", global.no_turbo);
mutex_unlock(&intel_pstate_driver_lock);
return ret;
}
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
update_turbo_state();
if (global.turbo_disabled) {
pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
mutex_unlock(&intel_pstate_limits_lock);
mutex_unlock(&intel_pstate_driver_lock);
return -EPERM;
}
global.no_turbo = clamp_t(int, input, 0, 1);
if (global.no_turbo) {
struct cpudata *cpu = all_cpu_data[0];
int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
/* Squash the global minimum into the permitted range. */
if (global.min_perf_pct > pct)
global.min_perf_pct = pct;
}
mutex_unlock(&intel_pstate_limits_lock);
intel_pstate_update_policies();
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static void update_qos_request(enum freq_qos_req_type type)
{
struct freq_qos_request *req;
struct cpufreq_policy *policy;
int i;
for_each_possible_cpu(i) {
struct cpudata *cpu = all_cpu_data[i];
unsigned int freq, perf_pct;
policy = cpufreq_cpu_get(i);
if (!policy)
continue;
req = policy->driver_data;
cpufreq_cpu_put(policy);
if (!req)
continue;
if (hwp_active)
intel_pstate_get_hwp_cap(cpu);
if (type == FREQ_QOS_MIN) {
perf_pct = global.min_perf_pct;
} else {
req++;
perf_pct = global.max_perf_pct;
}
freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
if (freq_qos_update_request(req, freq) < 0)
pr_warn("Failed to update freq constraint: CPU%d\n", i);
}
}
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
mutex_unlock(&intel_pstate_limits_lock);
if (intel_pstate_driver == &intel_pstate)
intel_pstate_update_policies();
else
update_qos_request(FREQ_QOS_MAX);
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!intel_pstate_driver) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
global.min_perf_pct = clamp_t(int, input,
min_perf_pct_min(), global.max_perf_pct);
mutex_unlock(&intel_pstate_limits_lock);
if (intel_pstate_driver == &intel_pstate)
intel_pstate_update_policies();
else
update_qos_request(FREQ_QOS_MIN);
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", hwp_boost);
}
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
struct kobj_attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = kstrtouint(buf, 10, &input);
if (ret)
return ret;
mutex_lock(&intel_pstate_driver_lock);
hwp_boost = !!input;
intel_pstate_update_policies();
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
u64 power_ctl;
int enable;
rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
return sprintf(buf, "%d\n", !enable);
}
static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
bool input;
int ret;
ret = kstrtobool(buf, &input);
if (ret)
return ret;
set_power_ctl_ee_state(input);
return count;
}
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);
define_one_global_rw(status);
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
define_one_global_ro(turbo_pct);
define_one_global_ro(num_pstates);
define_one_global_rw(hwp_dynamic_boost);
define_one_global_rw(energy_efficiency);
static struct attribute *intel_pstate_attributes[] = {
&status.attr,
&no_turbo.attr,
NULL
};
static const struct attribute_group intel_pstate_attr_group = {
.attrs = intel_pstate_attributes,
};
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
static struct kobject *intel_pstate_kobject;
static void __init intel_pstate_sysfs_expose_params(void)
{
int rc;
intel_pstate_kobject = kobject_create_and_add("intel_pstate",
&cpu_subsys.dev_root->kobj);
if (WARN_ON(!intel_pstate_kobject))
return;
rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
if (WARN_ON(rc))
return;
if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
WARN_ON(rc);
rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
WARN_ON(rc);
}
/*
* If per cpu limits are enforced there are no global limits, so
* return without creating max/min_perf_pct attributes
*/
if (per_cpu_limits)
return;
rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
WARN_ON(rc);
rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
WARN_ON(rc);
if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
WARN_ON(rc);
}
}
static void __init intel_pstate_sysfs_remove(void)
{
if (!intel_pstate_kobject)
return;
sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
}
if (!per_cpu_limits) {
sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
}
kobject_put(intel_pstate_kobject);
}
static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
{
int rc;
if (!hwp_active)
return;
rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
WARN_ON_ONCE(rc);
}
static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
{
if (!hwp_active)
return;
sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
}
/************************** sysfs end ************************/
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
/* First disable HWP notification interrupt as we don't process them */
if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
if (cpudata->epp_default == -EINVAL)
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
}
static int atom_get_min_pstate(void)
{
u64 value;
rdmsrl(MSR_ATOM_CORE_RATIOS, value);
return (value >> 8) & 0x7F;
}
static int atom_get_max_pstate(void)
{
u64 value;
rdmsrl(MSR_ATOM_CORE_RATIOS, value);
return (value >> 16) & 0x7F;
}
static int atom_get_turbo_pstate(void)
{
u64 value;
rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
return value & 0x7F;
}
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
{
u64 val;
int32_t vid_fp;
u32 vid;
val = (u64)pstate << 8;
if (global.no_turbo && !global.turbo_disabled)
val |= (u64)1 << 32;
vid_fp = cpudata->vid.min + mul_fp(
int_tofp(pstate - cpudata->pstate.min_pstate),
cpudata->vid.ratio);
vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
vid = ceiling_fp(vid_fp);
if (pstate > cpudata->pstate.max_pstate)
vid = cpudata->vid.turbo;
return val | vid;
}
static int silvermont_get_scaling(void)
{
u64 value;
int i;
/* Defined in Table 35-6 from SDM (Sept 2015) */
static int silvermont_freq_table[] = {
83300, 100000, 133300, 116700, 80000};
rdmsrl(MSR_FSB_FREQ, value);
i = value & 0x7;
WARN_ON(i > 4);
return silvermont_freq_table[i];
}
static int airmont_get_scaling(void)
{
u64 value;
int i;
/* Defined in Table 35-10 from SDM (Sept 2015) */
static int airmont_freq_table[] = {
83300, 100000, 133300, 116700, 80000,
93300, 90000, 88900, 87500};
rdmsrl(MSR_FSB_FREQ, value);
i = value & 0xF;
WARN_ON(i > 8);
return airmont_freq_table[i];
}
static void atom_get_vid(struct cpudata *cpudata)
{
u64 value;
rdmsrl(MSR_ATOM_CORE_VIDS, value);
cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
cpudata->vid.ratio = div_fp(
cpudata->vid.max - cpudata->vid.min,
int_tofp(cpudata->pstate.max_pstate -
cpudata->pstate.min_pstate));
rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
cpudata->vid.turbo = value & 0x7f;
}
static int core_get_min_pstate(void)
{
u64 value;
rdmsrl(MSR_PLATFORM_INFO, value);
return (value >> 40) & 0xFF;
}
static int core_get_max_pstate_physical(void)
{
u64 value;
rdmsrl(MSR_PLATFORM_INFO, value);
return (value >> 8) & 0xFF;
}
static int core_get_tdp_ratio(u64 plat_info)
{
/* Check how many TDP levels present */
if (plat_info & 0x600000000) {
u64 tdp_ctrl;
u64 tdp_ratio;
int tdp_msr;
int err;
/* Get the TDP level (0, 1, 2) to get ratios */
err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
if (err)
return err;
/* TDP MSR are continuous starting at 0x648 */
tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
err = rdmsrl_safe(tdp_msr, &tdp_ratio);
if (err)
return err;
/* For level 1 and 2, bits[23:16] contain the ratio */
if (tdp_ctrl & 0x03)
tdp_ratio >>= 16;
tdp_ratio &= 0xff; /* ratios are only 8 bits long */
pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
return (int)tdp_ratio;
}
return -ENXIO;
}
static int core_get_max_pstate(void)
{
u64 tar;
u64 plat_info;
int max_pstate;
int tdp_ratio;
int err;
rdmsrl(MSR_PLATFORM_INFO, plat_info);
max_pstate = (plat_info >> 8) & 0xFF;
tdp_ratio = core_get_tdp_ratio(plat_info);
if (tdp_ratio <= 0)
return max_pstate;
if (hwp_active) {
/* Turbo activation ratio is not used on HWP platforms */
return tdp_ratio;
}
err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
if (!err) {
int tar_levels;
/* Do some sanity checking for safety */
tar_levels = tar & 0xff;
if (tdp_ratio - 1 == tar_levels) {
max_pstate = tar_levels;
pr_debug("max_pstate=TAC %x\n", max_pstate);
}
}
return max_pstate;
}
static int core_get_turbo_pstate(void)
{
u64 value;
int nont, ret;
rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
nont = core_get_max_pstate();
ret = (value) & 255;
if (ret <= nont)
ret = nont;
return ret;
}
static inline int core_get_scaling(void)
{
return 100000;
}
static u64 core_get_val(struct cpudata *cpudata, int pstate)
{
u64 val;
val = (u64)pstate << 8;
if (global.no_turbo && !global.turbo_disabled)
val |= (u64)1 << 32;
return val;
}
static int knl_get_aperf_mperf_shift(void)
{
return 10;
}
static int knl_get_turbo_pstate(void)
{
u64 value;
int nont, ret;
rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
nont = core_get_max_pstate();
ret = (((value) >> 8) & 0xFF);
if (ret <= nont)
ret = nont;
return ret;
}
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
cpu->pstate.current_pstate = pstate;
/*
* Generally, there is no guarantee that this code will always run on
* the CPU being updated, so force the register update to run on the
* right CPU.
*/
wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
pstate_funcs.get_val(cpu, pstate));
}
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}
static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
update_turbo_state();
intel_pstate_set_pstate(cpu, pstate);
}
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
int perf_ctl_max_phys = pstate_funcs.get_max_physical();
int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
pstate_funcs.get_scaling();
cpu->pstate.min_pstate = pstate_funcs.get_min();
cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
if (hwp_active && !hwp_mode_bdw) {
__intel_pstate_get_hwp_cap(cpu);
if (hybrid_cpu)
intel_pstate_hybrid_hwp_calibrate(cpu);
else
cpu->pstate.scaling = perf_ctl_scaling;
} else {
cpu->pstate.scaling = perf_ctl_scaling;
cpu->pstate.max_pstate = pstate_funcs.get_max();
cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
}
if (cpu->pstate.scaling == perf_ctl_scaling) {
cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
}
if (pstate_funcs.get_aperf_mperf_shift)
cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
if (pstate_funcs.get_vid)
pstate_funcs.get_vid(cpu);
intel_pstate_set_min_pstate(cpu);
}
/*
* Long hold time will keep high perf limits for long time,
* which negatively impacts perf/watt for some workloads,
* like specpower. 3ms is based on experiements on some
* workoads.
*/
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
u32 max_limit = (hwp_req & 0xff00) >> 8;
u32 min_limit = (hwp_req & 0xff);
u32 boost_level1;
/*
* Cases to consider (User changes via sysfs or boot time):
* If, P0 (Turbo max) = P1 (Guaranteed max) = min:
* No boost, return.
* If, P0 (Turbo max) > P1 (Guaranteed max) = min:
* Should result in one level boost only for P0.
* If, P0 (Turbo max) = P1 (Guaranteed max) > min:
* Should result in two level boost:
* (min + p1)/2 and P1.
* If, P0 (Turbo max) > P1 (Guaranteed max) > min:
* Should result in three level boost:
* (min + p1)/2, P1 and P0.
*/
/* If max and min are equal or already at max, nothing to boost */
if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
return;
if (!cpu->hwp_boost_min)
cpu->hwp_boost_min = min_limit;
/* level at half way mark between min and guranteed */
boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
if (cpu->hwp_boost_min < boost_level1)
cpu->hwp_boost_min = boost_level1;
else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
max_limit != HWP_GUARANTEED_PERF(hwp_cap))
cpu->hwp_boost_min = max_limit;
else
return;
hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
wrmsrl(MSR_HWP_REQUEST, hwp_req);
cpu->last_update = cpu->sample.time;
}
static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
if (cpu->hwp_boost_min) {
bool expired;
/* Check if we are idle for hold time to boost down */
expired = time_after64(cpu->sample.time, cpu->last_update +
hwp_boost_hold_time_ns);
if (expired) {
wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
cpu->hwp_boost_min = 0;
}
}
cpu->last_update = cpu->sample.time;
}
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
u64 time)
{
cpu->sample.time = time;
if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
bool do_io = false;
cpu->sched_flags = 0;
/*
* Set iowait_boost flag and update time. Since IO WAIT flag
* is set all the time, we can't just conclude that there is
* some IO bound activity is scheduled on this CPU with just
* one occurrence. If we receive at least two in two
* consecutive ticks, then we treat as boost candidate.
*/
if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
do_io = true;
cpu->last_io_update = time;
if (do_io)
intel_pstate_hwp_boost_up(cpu);
} else {
intel_pstate_hwp_boost_down(cpu);
}
}
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
u64 time, unsigned int flags)
{
struct cpudata *cpu = container_of(data, struct cpudata, update_util);
cpu->sched_flags |= flags;
if (smp_processor_id() == cpu->cpu)
intel_pstate_update_util_hwp_local(cpu, time);
}
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
}
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
{
u64 aperf, mperf;
unsigned long flags;
u64 tsc;
local_irq_save(flags);
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
tsc = rdtsc();
if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
local_irq_restore(flags);
return false;
}
local_irq_restore(flags);
cpu->last_sample_time = cpu->sample.time;
cpu->sample.time = time;
cpu->sample.aperf = aperf;
cpu->sample.mperf = mperf;
cpu->sample.tsc = tsc;
cpu->sample.aperf -= cpu->prev_aperf;
cpu->sample.mperf -= cpu->prev_mperf;
cpu->sample.tsc -= cpu->prev_tsc;
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
cpu->prev_tsc = tsc;
/*
* First time this function is invoked in a given cycle, all of the
* previous sample data fields are equal to zero or stale and they must
* be populated with meaningful numbers for things to work, so assume
* that sample.time will always be reset before setting the utilization
* update hook and make the caller skip the sample then.
*/
if (cpu->last_sample_time) {
intel_pstate_calc_avg_perf(cpu);
return true;
}
return false;
}
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
}
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
return mul_ext_fp(cpu->pstate.max_pstate_physical,
cpu->sample.core_avg_perf);
}
static inline int32_t get_target_pstate(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
int32_t busy_frac;
int target, avg_pstate;
busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
sample->tsc);
if (busy_frac < cpu->iowait_boost)
busy_frac = cpu->iowait_boost;
sample->busy_scaled = busy_frac * 100;
target = global.no_turbo || global.turbo_disabled ?
cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
target += target >> 2;
target = mul_fp(target, busy_frac);
if (target < cpu->pstate.min_pstate)
target = cpu->pstate.min_pstate;
/*
* If the average P-state during the previous cycle was higher than the
* current target, add 50% of the difference to the target to reduce
* possible performance oscillations and offset possible performance
* loss related to moving the workload from one CPU to another within
* a package/module.
*/
avg_pstate = get_avg_pstate(cpu);
if (avg_pstate > target)
target += (avg_pstate - target) >> 1;
return target;
}
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
{
int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
int max_pstate = max(min_pstate, cpu->max_perf_ratio);
return clamp_t(int, pstate, min_pstate, max_pstate);
}
static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
if (pstate == cpu->pstate.current_pstate)
return;
cpu->pstate.current_pstate = pstate;
wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
{
int from = cpu->pstate.current_pstate;
struct sample *sample;
int target_pstate;
update_turbo_state();
target_pstate = get_target_pstate(cpu);
target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
intel_pstate_update_pstate(cpu, target_pstate);
sample = &cpu->sample;
trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
fp_toint(sample->busy_scaled),
from,
cpu->pstate.current_pstate,
sample->mperf,
sample->aperf,
sample->tsc,
get_avg_frequency(cpu),
fp_toint(cpu->iowait_boost * 100));
}
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
unsigned int flags)
{
struct cpudata *cpu = container_of(data, struct cpudata, update_util);
u64 delta_ns;
/* Don't allow remote callbacks */
if (smp_processor_id() != cpu->cpu)
return;
delta_ns = time - cpu->last_update;
if (flags & SCHED_CPUFREQ_IOWAIT) {
/* Start over if the CPU may have been idle. */
if (delta_ns > TICK_NSEC) {
cpu->iowait_boost = ONE_EIGHTH_FP;
} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
cpu->iowait_boost <<= 1;
if (cpu->iowait_boost > int_tofp(1))
cpu->iowait_boost = int_tofp(1);
} else {
cpu->iowait_boost = ONE_EIGHTH_FP;
}
} else if (cpu->iowait_boost) {
/* Clear iowait_boost if the CPU may have been idle. */
if (delta_ns > TICK_NSEC)
cpu->iowait_boost = 0;
else
cpu->iowait_boost >>= 1;
}
cpu->last_update = time;
delta_ns = time - cpu->sample.time;
if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
return;
if (intel_pstate_sample(cpu, time))
intel_pstate_adjust_pstate(cpu);
}
static struct pstate_funcs core_funcs = {
.get_max = core_get_max_pstate,
.get_max_physical = core_get_max_pstate_physical,
.get_min = core_get_min_pstate,
.get_turbo = core_get_turbo_pstate,
.get_scaling = core_get_scaling,
.get_val = core_get_val,
};
static const struct pstate_funcs silvermont_funcs = {
.get_max = atom_get_max_pstate,
.get_max_physical = atom_get_max_pstate,
.get_min = atom_get_min_pstate,
.get_turbo = atom_get_turbo_pstate,
.get_val = atom_get_val,
.get_scaling = silvermont_get_scaling,
.get_vid = atom_get_vid,
};
static const struct pstate_funcs airmont_funcs = {
.get_max = atom_get_max_pstate,
.get_max_physical = atom_get_max_pstate,
.get_min = atom_get_min_pstate,
.get_turbo = atom_get_turbo_pstate,
.get_val = atom_get_val,
.get_scaling = airmont_get_scaling,
.get_vid = atom_get_vid,
};
static const struct pstate_funcs knl_funcs = {
.get_max = core_get_max_pstate,
.get_max_physical = core_get_max_pstate_physical,
.get_min = core_get_min_pstate,
.get_turbo = knl_get_turbo_pstate,
.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
.get_scaling = core_get_scaling,
.get_val = core_get_val,
};
#define X86_MATCH(model, policy) \
X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
X86_FEATURE_APERFMPERF, &policy)
static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
X86_MATCH(SANDYBRIDGE, core_funcs),
X86_MATCH(SANDYBRIDGE_X, core_funcs),
X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
X86_MATCH(IVYBRIDGE, core_funcs),
X86_MATCH(HASWELL, core_funcs),
X86_MATCH(BROADWELL, core_funcs),
X86_MATCH(IVYBRIDGE_X, core_funcs),
X86_MATCH(HASWELL_X, core_funcs),
X86_MATCH(HASWELL_L, core_funcs),
X86_MATCH(HASWELL_G, core_funcs),
X86_MATCH(BROADWELL_G, core_funcs),
X86_MATCH(ATOM_AIRMONT, airmont_funcs),
X86_MATCH(SKYLAKE_L, core_funcs),
X86_MATCH(BROADWELL_X, core_funcs),
X86_MATCH(SKYLAKE, core_funcs),
X86_MATCH(BROADWELL_D, core_funcs),
X86_MATCH(XEON_PHI_KNL, knl_funcs),
X86_MATCH(XEON_PHI_KNM, knl_funcs),
X86_MATCH(ATOM_GOLDMONT, core_funcs),
X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
X86_MATCH(SKYLAKE_X, core_funcs),
X86_MATCH(COMETLAKE, core_funcs),
X86_MATCH(ICELAKE_X, core_funcs),
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
X86_MATCH(BROADWELL_D, core_funcs),
X86_MATCH(BROADWELL_X, core_funcs),
X86_MATCH(SKYLAKE_X, core_funcs),
{}
};
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
X86_MATCH(KABYLAKE, core_funcs),
{}
};
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
X86_MATCH(SKYLAKE_X, core_funcs),
X86_MATCH(SKYLAKE, core_funcs),
{}
};
static int intel_pstate_init_cpu(unsigned int cpunum)
{
struct cpudata *cpu;
cpu = all_cpu_data[cpunum];
if (!cpu) {
cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
if (!cpu)
return -ENOMEM;
all_cpu_data[cpunum] = cpu;
cpu->cpu = cpunum;
cpu->epp_default = -EINVAL;
if (hwp_active) {
const struct x86_cpu_id *id;
intel_pstate_hwp_enable(cpu);
id = x86_match_cpu(intel_pstate_hwp_boost_ids);
if (id && intel_pstate_acpi_pm_profile_server())
hwp_boost = true;
}
} else if (hwp_active) {
/*
* Re-enable HWP in case this happens after a resume from ACPI
* S3 if the CPU was offline during the whole system/resume
* cycle.
*/
intel_pstate_hwp_reenable(cpu);
}
cpu->epp_powersave = -EINVAL;
cpu->epp_policy = 0;
intel_pstate_get_cpu_pstates(cpu);
pr_debug("controlling: cpu %d\n", cpunum);
return 0;
}
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
{
struct cpudata *cpu = all_cpu_data[cpu_num];
if (hwp_active && !hwp_boost)
return;
if (cpu->update_util_set)
return;
/* Prevent intel_pstate_update_util() from using stale data. */
cpu->sample.time = 0;
cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
(hwp_active ?
intel_pstate_update_util_hwp :
intel_pstate_update_util));
cpu->update_util_set = true;
}
static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
struct cpudata *cpu_data = all_cpu_data[cpu];
if (!cpu_data->update_util_set)
return;
cpufreq_remove_update_util_hook(cpu);
cpu_data->update_util_set = false;
synchronize_rcu();
}
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
return global.turbo_disabled || global.no_turbo ?
cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
unsigned int policy_min,
unsigned int policy_max)
{
int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
int32_t max_policy_perf, min_policy_perf;
max_policy_perf = policy_max / perf_ctl_scaling;
if (policy_max == policy_min) {
min_policy_perf = max_policy_perf;
} else {
min_policy_perf = policy_min / perf_ctl_scaling;
min_policy_perf = clamp_t(int32_t, min_policy_perf,
0, max_policy_perf);
}
/*
* HWP needs some special consideration, because HWP_REQUEST uses
* abstract values to represent performance rather than pure ratios.
*/
if (hwp_active) {
intel_pstate_get_hwp_cap(cpu);
if (cpu->pstate.scaling != perf_ctl_scaling) {
int scaling = cpu->pstate.scaling;
int freq;
freq = max_policy_perf * perf_ctl_scaling;
max_policy_perf = DIV_ROUND_UP(freq, scaling);
freq = min_policy_perf * perf_ctl_scaling;
min_policy_perf = DIV_ROUND_UP(freq, scaling);
}
}
pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
cpu->cpu, min_policy_perf, max_policy_perf);
/* Normalize user input to [min_perf, max_perf] */
if (per_cpu_limits) {
cpu->min_perf_ratio = min_policy_perf;
cpu->max_perf_ratio = max_policy_perf;
} else {
int turbo_max = cpu->pstate.turbo_pstate;
int32_t global_min, global_max;
/* Global limits are in percent of the maximum turbo P-state. */
global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
global_min = clamp_t(int32_t, global_min, 0, global_max);
pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
global_min, global_max);
cpu->min_perf_ratio = max(min_policy_perf, global_min);
cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
cpu->max_perf_ratio = min(max_policy_perf, global_max);
cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
/* Make sure min_perf <= max_perf */
cpu->min_perf_ratio = min(cpu->min_perf_ratio,
cpu->max_perf_ratio);
}
pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
cpu->max_perf_ratio,
cpu->min_perf_ratio);
}
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
if (!policy->cpuinfo.max_freq)
return -ENODEV;
pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
policy->cpuinfo.max_freq, policy->max);
cpu = all_cpu_data[policy->cpu];
cpu->policy = policy->policy;
mutex_lock(&intel_pstate_limits_lock);
intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
/*
* NOHZ_FULL CPUs need this as the governor callback may not
* be invoked on them.
*/
intel_pstate_clear_update_util_hook(policy->cpu);
intel_pstate_max_within_limits(cpu);
} else {
intel_pstate_set_update_util_hook(policy->cpu);
}
if (hwp_active) {
/*
* When hwp_boost was active before and dynamically it
* was turned off, in that case we need to clear the
* update util hook.
*/
if (!hwp_boost)
intel_pstate_clear_update_util_hook(policy->cpu);
intel_pstate_hwp_set(policy->cpu);
}
mutex_unlock(&intel_pstate_limits_lock);
return 0;
}
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
struct cpufreq_policy_data *policy)
{
if (!hwp_active &&
cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
policy->max < policy->cpuinfo.max_freq &&
policy->max > cpu->pstate.max_freq) {
pr_debug("policy->max > max non turbo frequency\n");
policy->max = policy->cpuinfo.max_freq;
}
}
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
struct cpufreq_policy_data *policy)
{
int max_freq;
update_turbo_state();
if (hwp_active) {
intel_pstate_get_hwp_cap(cpu);
max_freq = global.no_turbo || global.turbo_disabled ?
cpu->pstate.max_freq : cpu->pstate.turbo_freq;
} else {
max_freq = intel_pstate_get_max_freq(cpu);
}
cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
intel_pstate_adjust_policy_max(cpu, policy);
}
static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
return 0;
}
static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
pr_debug("CPU %d going offline\n", cpu->cpu);
if (cpu->suspended)
return 0;
/*
* If the CPU is an SMT thread and it goes offline with the performance
* settings different from the minimum, it will prevent its sibling
* from getting to lower performance levels, so force the minimum
* performance on CPU offline to prevent that from happening.
*/
if (hwp_active)
intel_pstate_hwp_offline(cpu);
else
intel_pstate_set_min_pstate(cpu);
intel_pstate_exit_perf_limits(policy);
return 0;
}
static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
pr_debug("CPU %d going online\n", cpu->cpu);
intel_pstate_init_acpi_perf_limits(policy);
if (hwp_active) {
/*
* Re-enable HWP and clear the "suspended" flag to let "resume"
* know that it need not do that.
*/
intel_pstate_hwp_reenable(cpu);
cpu->suspended = false;
}
return 0;
}
static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
{
intel_pstate_clear_update_util_hook(policy->cpu);
return intel_cpufreq_cpu_offline(policy);
}
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
pr_debug("CPU %d exiting\n", policy->cpu);
policy->fast_switch_possible = false;
return 0;
}
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int rc;
rc = intel_pstate_init_cpu(policy->cpu);
if (rc)
return rc;
cpu = all_cpu_data[policy->cpu];
cpu->max_perf_ratio = 0xFF;
cpu->min_perf_ratio = 0;
/* cpuinfo and default policy values */
policy->cpuinfo.min_freq = cpu->pstate.min_freq;
update_turbo_state();
global.turbo_disabled_mf = global.turbo_disabled;
policy->cpuinfo.max_freq = global.turbo_disabled ?
cpu->pstate.max_freq : cpu->pstate.turbo_freq;
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
intel_pstate_init_acpi_perf_limits(policy);
policy->fast_switch_possible = true;
return 0;
}
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
int ret = __intel_pstate_cpu_init(policy);
if (ret)
return ret;
/*
* Set the policy to powersave to provide a valid fallback value in case
* the default cpufreq governor is neither powersave nor performance.
*/
policy->policy = CPUFREQ_POLICY_POWERSAVE;
if (hwp_active) {
struct cpudata *cpu = all_cpu_data[policy->cpu];
cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
}
return 0;
}
static struct cpufreq_driver intel_pstate = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_pstate_verify_policy,
.setpolicy = intel_pstate_set_policy,
.suspend = intel_pstate_suspend,
.resume = intel_pstate_resume,
.init = intel_pstate_cpu_init,
.exit = intel_pstate_cpu_exit,
.offline = intel_pstate_cpu_offline,
.online = intel_pstate_cpu_online,
.update_limits = intel_pstate_update_limits,
.name = "intel_pstate",
};
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
intel_pstate_verify_cpu_policy(cpu, policy);
intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
return 0;
}
/* Use of trace in passive mode:
*
* In passive mode the trace core_busy field (also known as the
* performance field, and lablelled as such on the graphs; also known as
* core_avg_perf) is not needed and so is re-assigned to indicate if the
* driver call was via the normal or fast switch path. Various graphs
* output from the intel_pstate_tracer.py utility that include core_busy
* (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
* so we use 10 to indicate the normal path through the driver, and
* 90 to indicate the fast switch path through the driver.
* The scaled_busy field is not used, and is set to 0.
*/
#define INTEL_PSTATE_TRACE_TARGET 10
#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
struct sample *sample;
if (!trace_pstate_sample_enabled())
return;
if (!intel_pstate_sample(cpu, ktime_get()))
return;
sample = &cpu->sample;
trace_pstate_sample(trace_type,
0,
old_pstate,
cpu->pstate.current_pstate,
sample->mperf,
sample->aperf,
sample->tsc,
get_avg_frequency(cpu),
fp_toint(cpu->iowait_boost * 100));
}
static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
u32 desired, bool fast_switch)
{
u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
value &= ~HWP_MIN_PERF(~0L);
value |= HWP_MIN_PERF(min);
value &= ~HWP_MAX_PERF(~0L);
value |= HWP_MAX_PERF(max);
value &= ~HWP_DESIRED_PERF(~0L);
value |= HWP_DESIRED_PERF(desired);
if (value == prev)
return;
WRITE_ONCE(cpu->hwp_req_cached, value);
if (fast_switch)
wrmsrl(MSR_HWP_REQUEST, value);
else
wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
}
static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
u32 target_pstate, bool fast_switch)
{
if (fast_switch)
wrmsrl(MSR_IA32_PERF_CTL,
pstate_funcs.get_val(cpu, target_pstate));
else
wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
pstate_funcs.get_val(cpu, target_pstate));
}
static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
int target_pstate, bool fast_switch)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
int old_pstate = cpu->pstate.current_pstate;
target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
if (hwp_active) {
int max_pstate = policy->strict_target ?
target_pstate : cpu->max_perf_ratio;
intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
fast_switch);
} else if (target_pstate != old_pstate) {
intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
}
cpu->pstate.current_pstate = target_pstate;
intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
INTEL_PSTATE_TRACE_TARGET, old_pstate);
return target_pstate;
}
static int intel_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
struct cpufreq_freqs freqs;
int target_pstate;
update_turbo_state();
freqs.old = policy->cur;
freqs.new = target_freq;
cpufreq_freq_transition_begin(policy, &freqs);
switch (relation) {
case CPUFREQ_RELATION_L:
target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
break;
case CPUFREQ_RELATION_H:
target_pstate = freqs.new / cpu->pstate.scaling;
break;
default:
target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
break;
}
target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
freqs.new = target_pstate * cpu->pstate.scaling;
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
int target_pstate;
update_turbo_state();
target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
return target_pstate * cpu->pstate.scaling;
}
static void intel_cpufreq_adjust_perf(unsigned int cpunum,
unsigned long min_perf,
unsigned long target_perf,
unsigned long capacity)
{
struct cpudata *cpu = all_cpu_data[cpunum];
u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
int old_pstate = cpu->pstate.current_pstate;
int cap_pstate, min_pstate, max_pstate, target_pstate;
update_turbo_state();
cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
HWP_HIGHEST_PERF(hwp_cap);
/* Optimization: Avoid unnecessary divisions. */
target_pstate = cap_pstate;
if (target_perf < capacity)
target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
min_pstate = cap_pstate;
if (min_perf < capacity)
min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
if (min_pstate < cpu->pstate.min_pstate)
min_pstate = cpu->pstate.min_pstate;
if (min_pstate < cpu->min_perf_ratio)
min_pstate = cpu->min_perf_ratio;
max_pstate = min(cap_pstate, cpu->max_perf_ratio);
if (max_pstate < min_pstate)
max_pstate = min_pstate;
target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
cpu->pstate.current_pstate = target_pstate;
intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
}
static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct freq_qos_request *req;
struct cpudata *cpu;
struct device *dev;
int ret, freq;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
ret = __intel_pstate_cpu_init(policy);
if (ret)
return ret;
policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
/* This reflects the intel_pstate_get_cpu_pstates() setting. */
policy->cur = policy->cpuinfo.min_freq;
req = kcalloc(2, sizeof(*req), GFP_KERNEL);
if (!req) {
ret = -ENOMEM;
goto pstate_exit;
}
cpu = all_cpu_data[policy->cpu];
if (hwp_active) {
u64 value;
policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
intel_pstate_get_hwp_cap(cpu);
rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
WRITE_ONCE(cpu->hwp_req_cached, value);
cpu->epp_cached = intel_pstate_get_epp(cpu, value);
} else {
policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
}
freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
freq);
if (ret < 0) {
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
goto free_req;
}
freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
freq);
if (ret < 0) {
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
goto remove_min_req;
}
policy->driver_data = req;
return 0;
remove_min_req:
freq_qos_remove_request(req);
free_req:
kfree(req);
pstate_exit:
intel_pstate_exit_perf_limits(policy);
return ret;
}
static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
struct freq_qos_request *req;
req = policy->driver_data;
freq_qos_remove_request(req + 1);
freq_qos_remove_request(req);
kfree(req);
return intel_pstate_cpu_exit(policy);
}
static struct cpufreq_driver intel_cpufreq = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_cpufreq_verify_policy,
.target = intel_cpufreq_target,
.fast_switch = intel_cpufreq_fast_switch,
.init = intel_cpufreq_cpu_init,
.exit = intel_cpufreq_cpu_exit,
.offline = intel_cpufreq_cpu_offline,
.online = intel_pstate_cpu_online,
.suspend = intel_pstate_suspend,
.resume = intel_pstate_resume,
.update_limits = intel_pstate_update_limits,
.name = "intel_cpufreq",
};
static struct cpufreq_driver *default_driver;
static void intel_pstate_driver_cleanup(void)
{
unsigned int cpu;
cpus_read_lock();
for_each_online_cpu(cpu) {
if (all_cpu_data[cpu]) {
if (intel_pstate_driver == &intel_pstate)
intel_pstate_clear_update_util_hook(cpu);
kfree(all_cpu_data[cpu]);
all_cpu_data[cpu] = NULL;
}
}
cpus_read_unlock();
intel_pstate_driver = NULL;
}
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
{
int ret;
if (driver == &intel_pstate)
intel_pstate_sysfs_expose_hwp_dynamic_boost();
memset(&global, 0, sizeof(global));
global.max_perf_pct = 100;
intel_pstate_driver = driver;
ret = cpufreq_register_driver(intel_pstate_driver);
if (ret) {
intel_pstate_driver_cleanup();
return ret;
}
global.min_perf_pct = min_perf_pct_min();
return 0;
}
static ssize_t intel_pstate_show_status(char *buf)
{
if (!intel_pstate_driver)
return sprintf(buf, "off\n");
return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
"active" : "passive");
}
static int intel_pstate_update_status(const char *buf, size_t size)
{
if (size == 3 && !strncmp(buf, "off", size)) {
if (!intel_pstate_driver)
return -EINVAL;
if (hwp_active)
return -EBUSY;
cpufreq_unregister_driver(intel_pstate_driver);
intel_pstate_driver_cleanup();
return 0;
}
if (size == 6 && !strncmp(buf, "active", size)) {
if (intel_pstate_driver) {
if (intel_pstate_driver == &intel_pstate)
return 0;
cpufreq_unregister_driver(intel_pstate_driver);
}
return intel_pstate_register_driver(&intel_pstate);
}
if (size == 7 && !strncmp(buf, "passive", size)) {
if (intel_pstate_driver) {
if (intel_pstate_driver == &intel_cpufreq)
return 0;
cpufreq_unregister_driver(intel_pstate_driver);
intel_pstate_sysfs_hide_hwp_dynamic_boost();
}
return intel_pstate_register_driver(&intel_cpufreq);
}
return -EINVAL;
}
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
static unsigned int force_load __initdata;
static int __init intel_pstate_msrs_not_valid(void)
{
if (!pstate_funcs.get_max() ||
!pstate_funcs.get_min() ||
!pstate_funcs.get_turbo())
return -ENODEV;
return 0;
}
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
{
pstate_funcs.get_max = funcs->get_max;
pstate_funcs.get_max_physical = funcs->get_max_physical;
pstate_funcs.get_min = funcs->get_min;
pstate_funcs.get_turbo = funcs->get_turbo;
pstate_funcs.get_scaling = funcs->get_scaling;
pstate_funcs.get_val = funcs->get_val;
pstate_funcs.get_vid = funcs->get_vid;
pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
}
#ifdef CONFIG_ACPI
static bool __init intel_pstate_no_acpi_pss(void)
{
int i;
for_each_possible_cpu(i) {
acpi_status status;
union acpi_object *pss;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_processor *pr = per_cpu(processors, i);
if (!pr)
continue;
status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
if (ACPI_FAILURE(status))
continue;
pss = buffer.pointer;
if (pss && pss->type == ACPI_TYPE_PACKAGE) {
kfree(pss);
return false;
}
kfree(pss);
}
pr_debug("ACPI _PSS not found\n");
return true;
}
static bool __init intel_pstate_no_acpi_pcch(void)
{
acpi_status status;
acpi_handle handle;
status = acpi_get_handle(NULL, "\\_SB", &handle);
if (ACPI_FAILURE(status))
goto not_found;
if (acpi_has_method(handle, "PCCH"))
return false;
not_found:
pr_debug("ACPI PCCH not found\n");
return true;
}
static bool __init intel_pstate_has_acpi_ppc(void)
{
int i;
for_each_possible_cpu(i) {
struct acpi_processor *pr = per_cpu(processors, i);
if (!pr)
continue;
if (acpi_has_method(pr->handle, "_PPC"))
return true;
}
pr_debug("ACPI _PPC not found\n");
return false;
}
enum {
PSS,
PPC,
};
/* Hardware vendor-specific info that has its own power management modes */
static struct acpi_platform_list plat_info[] __initdata = {
{"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
{"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
{ } /* End */
};
#define BITMASK_OOB (BIT(8) | BIT(18))
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
{
const struct x86_cpu_id *id;
u64 misc_pwr;
int idx;
id = x86_match_cpu(intel_pstate_cpu_oob_ids);
if (id) {
rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
if (misc_pwr & BITMASK_OOB) {
pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
return true;
}
}
idx = acpi_match_platform_list(plat_info);
if (idx < 0)
return false;
switch (plat_info[idx].data) {
case PSS:
if (!intel_pstate_no_acpi_pss())
return false;
return intel_pstate_no_acpi_pcch();
case PPC:
return intel_pstate_has_acpi_ppc() && !force_load;
}
return false;
}
static void intel_pstate_request_control_from_smm(void)
{
/*
* It may be unsafe to request P-states control from SMM if _PPC support
* has not been enabled.
*/
if (acpi_ppc)
acpi_processor_pstate_control();
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
static inline void intel_pstate_request_control_from_smm(void) {}
#endif /* CONFIG_ACPI */
#define INTEL_PSTATE_HWP_BROADWELL 0x01
#define X86_MATCH_HWP(model, hwp_mode) \
X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
X86_FEATURE_HWP, hwp_mode)
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
X86_MATCH_HWP(ANY, 0),
{}
};
static bool intel_pstate_hwp_is_enabled(void)
{
u64 value;
rdmsrl(MSR_PM_ENABLE, value);
return !!(value & 0x1);
}
static int __init intel_pstate_init(void)
{
const struct x86_cpu_id *id;
int rc;
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return -ENODEV;
if (no_load)
return -ENODEV;
id = x86_match_cpu(hwp_support_ids);
if (id) {
copy_cpu_funcs(&core_funcs);
/*
* Avoid enabling HWP for processors without EPP support,
* because that means incomplete HWP implementation which is a
* corner case and supporting it is generally problematic.
*
* If HWP is enabled already, though, there is no choice but to
* deal with it.
*/
if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
intel_pstate_hwp_is_enabled()) {
hwp_active++;
hwp_mode_bdw = id->driver_data;
intel_pstate.attr = hwp_cpufreq_attrs;
intel_cpufreq.attr = hwp_cpufreq_attrs;
intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
if (!default_driver)
default_driver = &intel_pstate;
goto hwp_cpu_matched;
}
} else {
id = x86_match_cpu(intel_pstate_cpu_ids);
if (!id) {
pr_info("CPU model not supported\n");
return -ENODEV;
}
copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
}
if (intel_pstate_msrs_not_valid()) {
pr_info("Invalid MSRs\n");
return -ENODEV;
}
/* Without HWP start in the passive mode. */
if (!default_driver)
default_driver = &intel_cpufreq;
hwp_cpu_matched:
/*
* The Intel pstate driver will be ignored if the platform
* firmware has its own power management modes.
*/
if (intel_pstate_platform_pwr_mgmt_exists()) {
pr_info("P-states controlled by the platform\n");
return -ENODEV;
}
if (!hwp_active && hwp_only)
return -ENOTSUPP;
pr_info("Intel P-state driver initializing\n");
all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
if (!all_cpu_data)
return -ENOMEM;
intel_pstate_request_control_from_smm();
intel_pstate_sysfs_expose_params();
mutex_lock(&intel_pstate_driver_lock);
rc = intel_pstate_register_driver(default_driver);
mutex_unlock(&intel_pstate_driver_lock);
if (rc) {
intel_pstate_sysfs_remove();
return rc;
}
if (hwp_active) {
const struct x86_cpu_id *id;
id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
if (id) {
set_power_ctl_ee_state(false);
pr_info("Disabling energy efficiency optimization\n");
}
pr_info("HWP enabled\n");
} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
}
return 0;
}
device_initcall(intel_pstate_init);
static int __init intel_pstate_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "disable"))
no_load = 1;
else if (!strcmp(str, "active"))
default_driver = &intel_pstate;
else if (!strcmp(str, "passive"))
default_driver = &intel_cpufreq;
if (!strcmp(str, "no_hwp")) {
pr_info("HWP disabled\n");
no_hwp = 1;
}
if (!strcmp(str, "force"))
force_load = 1;
if (!strcmp(str, "hwp_only"))
hwp_only = 1;
if (!strcmp(str, "per_cpu_perf_limits"))
per_cpu_limits = true;
#ifdef CONFIG_ACPI
if (!strcmp(str, "support_acpi_ppc"))
acpi_ppc = true;
#endif
return 0;
}
early_param("intel_pstate", intel_pstate_setup);
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");