| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Page table allocation functions |
| * |
| * Copyright IBM Corp. 2016 |
| * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> |
| */ |
| |
| #include <linux/sysctl.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgalloc.h> |
| #include <asm/gmap.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| |
| #ifdef CONFIG_PGSTE |
| |
| int page_table_allocate_pgste = 0; |
| EXPORT_SYMBOL(page_table_allocate_pgste); |
| |
| static struct ctl_table page_table_sysctl[] = { |
| { |
| .procname = "allocate_pgste", |
| .data = &page_table_allocate_pgste, |
| .maxlen = sizeof(int), |
| .mode = S_IRUGO | S_IWUSR, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE, |
| }, |
| { } |
| }; |
| |
| static int __init page_table_register_sysctl(void) |
| { |
| return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM; |
| } |
| __initcall(page_table_register_sysctl); |
| |
| #endif /* CONFIG_PGSTE */ |
| |
| unsigned long *crst_table_alloc(struct mm_struct *mm) |
| { |
| struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER); |
| |
| if (!ptdesc) |
| return NULL; |
| arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER); |
| return (unsigned long *) ptdesc_to_virt(ptdesc); |
| } |
| |
| void crst_table_free(struct mm_struct *mm, unsigned long *table) |
| { |
| pagetable_free(virt_to_ptdesc(table)); |
| } |
| |
| static void __crst_table_upgrade(void *arg) |
| { |
| struct mm_struct *mm = arg; |
| |
| /* change all active ASCEs to avoid the creation of new TLBs */ |
| if (current->active_mm == mm) { |
| S390_lowcore.user_asce = mm->context.asce; |
| __ctl_load(S390_lowcore.user_asce, 7, 7); |
| } |
| __tlb_flush_local(); |
| } |
| |
| int crst_table_upgrade(struct mm_struct *mm, unsigned long end) |
| { |
| unsigned long *pgd = NULL, *p4d = NULL, *__pgd; |
| unsigned long asce_limit = mm->context.asce_limit; |
| |
| /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ |
| VM_BUG_ON(asce_limit < _REGION2_SIZE); |
| |
| if (end <= asce_limit) |
| return 0; |
| |
| if (asce_limit == _REGION2_SIZE) { |
| p4d = crst_table_alloc(mm); |
| if (unlikely(!p4d)) |
| goto err_p4d; |
| crst_table_init(p4d, _REGION2_ENTRY_EMPTY); |
| } |
| if (end > _REGION1_SIZE) { |
| pgd = crst_table_alloc(mm); |
| if (unlikely(!pgd)) |
| goto err_pgd; |
| crst_table_init(pgd, _REGION1_ENTRY_EMPTY); |
| } |
| |
| spin_lock_bh(&mm->page_table_lock); |
| |
| /* |
| * This routine gets called with mmap_lock lock held and there is |
| * no reason to optimize for the case of otherwise. However, if |
| * that would ever change, the below check will let us know. |
| */ |
| VM_BUG_ON(asce_limit != mm->context.asce_limit); |
| |
| if (p4d) { |
| __pgd = (unsigned long *) mm->pgd; |
| p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); |
| mm->pgd = (pgd_t *) p4d; |
| mm->context.asce_limit = _REGION1_SIZE; |
| mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | |
| _ASCE_USER_BITS | _ASCE_TYPE_REGION2; |
| mm_inc_nr_puds(mm); |
| } |
| if (pgd) { |
| __pgd = (unsigned long *) mm->pgd; |
| pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); |
| mm->pgd = (pgd_t *) pgd; |
| mm->context.asce_limit = TASK_SIZE_MAX; |
| mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | |
| _ASCE_USER_BITS | _ASCE_TYPE_REGION1; |
| } |
| |
| spin_unlock_bh(&mm->page_table_lock); |
| |
| on_each_cpu(__crst_table_upgrade, mm, 0); |
| |
| return 0; |
| |
| err_pgd: |
| crst_table_free(mm, p4d); |
| err_p4d: |
| return -ENOMEM; |
| } |
| |
| static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) |
| { |
| return atomic_fetch_xor(bits, v) ^ bits; |
| } |
| |
| #ifdef CONFIG_PGSTE |
| |
| struct page *page_table_alloc_pgste(struct mm_struct *mm) |
| { |
| struct ptdesc *ptdesc; |
| u64 *table; |
| |
| ptdesc = pagetable_alloc(GFP_KERNEL, 0); |
| if (ptdesc) { |
| table = (u64 *)ptdesc_to_virt(ptdesc); |
| memset64(table, _PAGE_INVALID, PTRS_PER_PTE); |
| memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); |
| } |
| return ptdesc_page(ptdesc); |
| } |
| |
| void page_table_free_pgste(struct page *page) |
| { |
| pagetable_free(page_ptdesc(page)); |
| } |
| |
| #endif /* CONFIG_PGSTE */ |
| |
| /* |
| * A 2KB-pgtable is either upper or lower half of a normal page. |
| * The second half of the page may be unused or used as another |
| * 2KB-pgtable. |
| * |
| * Whenever possible the parent page for a new 2KB-pgtable is picked |
| * from the list of partially allocated pages mm_context_t::pgtable_list. |
| * In case the list is empty a new parent page is allocated and added to |
| * the list. |
| * |
| * When a parent page gets fully allocated it contains 2KB-pgtables in both |
| * upper and lower halves and is removed from mm_context_t::pgtable_list. |
| * |
| * When 2KB-pgtable is freed from to fully allocated parent page that |
| * page turns partially allocated and added to mm_context_t::pgtable_list. |
| * |
| * If 2KB-pgtable is freed from the partially allocated parent page that |
| * page turns unused and gets removed from mm_context_t::pgtable_list. |
| * Furthermore, the unused parent page is released. |
| * |
| * As follows from the above, no unallocated or fully allocated parent |
| * pages are contained in mm_context_t::pgtable_list. |
| * |
| * The upper byte (bits 24-31) of the parent page _refcount is used |
| * for tracking contained 2KB-pgtables and has the following format: |
| * |
| * PP AA |
| * 01234567 upper byte (bits 24-31) of struct page::_refcount |
| * || || |
| * || |+--- upper 2KB-pgtable is allocated |
| * || +---- lower 2KB-pgtable is allocated |
| * |+------- upper 2KB-pgtable is pending for removal |
| * +-------- lower 2KB-pgtable is pending for removal |
| * |
| * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why |
| * using _refcount is possible). |
| * |
| * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. |
| * The parent page is either: |
| * - added to mm_context_t::pgtable_list in case the second half of the |
| * parent page is still unallocated; |
| * - removed from mm_context_t::pgtable_list in case both hales of the |
| * parent page are allocated; |
| * These operations are protected with mm_context_t::lock. |
| * |
| * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 |
| * and the corresponding PP bit is set to 1 in a single atomic operation. |
| * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually |
| * exclusive and may never be both set to 1! |
| * The parent page is either: |
| * - added to mm_context_t::pgtable_list in case the second half of the |
| * parent page is still allocated; |
| * - removed from mm_context_t::pgtable_list in case the second half of |
| * the parent page is unallocated; |
| * These operations are protected with mm_context_t::lock. |
| * |
| * It is important to understand that mm_context_t::lock only protects |
| * mm_context_t::pgtable_list and AA bits, but not the parent page itself |
| * and PP bits. |
| * |
| * Releasing the parent page happens whenever the PP bit turns from 1 to 0, |
| * while both AA bits and the second PP bit are already unset. Then the |
| * parent page does not contain any 2KB-pgtable fragment anymore, and it has |
| * also been removed from mm_context_t::pgtable_list. It is safe to release |
| * the page therefore. |
| * |
| * PGSTE memory spaces use full 4KB-pgtables and do not need most of the |
| * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable |
| * while the PP bits are never used, nor such a page is added to or removed |
| * from mm_context_t::pgtable_list. |
| * |
| * pte_free_defer() overrides those rules: it takes the page off pgtable_list, |
| * and prevents both 2K fragments from being reused. pte_free_defer() has to |
| * guarantee that its pgtable cannot be reused before the RCU grace period |
| * has elapsed (which page_table_free_rcu() does not actually guarantee). |
| * But for simplicity, because page->rcu_head overlays page->lru, and because |
| * the RCU callback might not be called before the mm_context_t has been freed, |
| * pte_free_defer() in this implementation prevents both fragments from being |
| * reused, and delays making the call to RCU until both fragments are freed. |
| */ |
| unsigned long *page_table_alloc(struct mm_struct *mm) |
| { |
| unsigned long *table; |
| struct ptdesc *ptdesc; |
| unsigned int mask, bit; |
| |
| /* Try to get a fragment of a 4K page as a 2K page table */ |
| if (!mm_alloc_pgste(mm)) { |
| table = NULL; |
| spin_lock_bh(&mm->context.lock); |
| if (!list_empty(&mm->context.pgtable_list)) { |
| ptdesc = list_first_entry(&mm->context.pgtable_list, |
| struct ptdesc, pt_list); |
| mask = atomic_read(&ptdesc->_refcount) >> 24; |
| /* |
| * The pending removal bits must also be checked. |
| * Failure to do so might lead to an impossible |
| * value of (i.e 0x13 or 0x23) written to _refcount. |
| * Such values violate the assumption that pending and |
| * allocation bits are mutually exclusive, and the rest |
| * of the code unrails as result. That could lead to |
| * a whole bunch of races and corruptions. |
| */ |
| mask = (mask | (mask >> 4)) & 0x03U; |
| if (mask != 0x03U) { |
| table = (unsigned long *) ptdesc_to_virt(ptdesc); |
| bit = mask & 1; /* =1 -> second 2K */ |
| if (bit) |
| table += PTRS_PER_PTE; |
| atomic_xor_bits(&ptdesc->_refcount, |
| 0x01U << (bit + 24)); |
| list_del_init(&ptdesc->pt_list); |
| } |
| } |
| spin_unlock_bh(&mm->context.lock); |
| if (table) |
| return table; |
| } |
| /* Allocate a fresh page */ |
| ptdesc = pagetable_alloc(GFP_KERNEL, 0); |
| if (!ptdesc) |
| return NULL; |
| if (!pagetable_pte_ctor(ptdesc)) { |
| pagetable_free(ptdesc); |
| return NULL; |
| } |
| arch_set_page_dat(ptdesc_page(ptdesc), 0); |
| /* Initialize page table */ |
| table = (unsigned long *) ptdesc_to_virt(ptdesc); |
| if (mm_alloc_pgste(mm)) { |
| /* Return 4K page table with PGSTEs */ |
| INIT_LIST_HEAD(&ptdesc->pt_list); |
| atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); |
| memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); |
| memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); |
| } else { |
| /* Return the first 2K fragment of the page */ |
| atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24); |
| memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); |
| spin_lock_bh(&mm->context.lock); |
| list_add(&ptdesc->pt_list, &mm->context.pgtable_list); |
| spin_unlock_bh(&mm->context.lock); |
| } |
| return table; |
| } |
| |
| static void page_table_release_check(struct page *page, void *table, |
| unsigned int half, unsigned int mask) |
| { |
| char msg[128]; |
| |
| if (!IS_ENABLED(CONFIG_DEBUG_VM)) |
| return; |
| if (!mask && list_empty(&page->lru)) |
| return; |
| snprintf(msg, sizeof(msg), |
| "Invalid pgtable %p release half 0x%02x mask 0x%02x", |
| table, half, mask); |
| dump_page(page, msg); |
| } |
| |
| static void pte_free_now(struct rcu_head *head) |
| { |
| struct ptdesc *ptdesc; |
| |
| ptdesc = container_of(head, struct ptdesc, pt_rcu_head); |
| pagetable_pte_dtor(ptdesc); |
| pagetable_free(ptdesc); |
| } |
| |
| void page_table_free(struct mm_struct *mm, unsigned long *table) |
| { |
| unsigned int mask, bit, half; |
| struct ptdesc *ptdesc = virt_to_ptdesc(table); |
| |
| if (!mm_alloc_pgste(mm)) { |
| /* Free 2K page table fragment of a 4K page */ |
| bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); |
| spin_lock_bh(&mm->context.lock); |
| /* |
| * Mark the page for delayed release. The actual release |
| * will happen outside of the critical section from this |
| * function or from __tlb_remove_table() |
| */ |
| mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); |
| mask >>= 24; |
| if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { |
| /* |
| * Other half is allocated, and neither half has had |
| * its free deferred: add page to head of list, to make |
| * this freed half available for immediate reuse. |
| */ |
| list_add(&ptdesc->pt_list, &mm->context.pgtable_list); |
| } else { |
| /* If page is on list, now remove it. */ |
| list_del_init(&ptdesc->pt_list); |
| } |
| spin_unlock_bh(&mm->context.lock); |
| mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24)); |
| mask >>= 24; |
| if (mask != 0x00U) |
| return; |
| half = 0x01U << bit; |
| } else { |
| half = 0x03U; |
| mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); |
| mask >>= 24; |
| } |
| |
| page_table_release_check(ptdesc_page(ptdesc), table, half, mask); |
| if (folio_test_clear_active(ptdesc_folio(ptdesc))) |
| call_rcu(&ptdesc->pt_rcu_head, pte_free_now); |
| else |
| pte_free_now(&ptdesc->pt_rcu_head); |
| } |
| |
| void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, |
| unsigned long vmaddr) |
| { |
| struct mm_struct *mm; |
| unsigned int bit, mask; |
| struct ptdesc *ptdesc = virt_to_ptdesc(table); |
| |
| mm = tlb->mm; |
| if (mm_alloc_pgste(mm)) { |
| gmap_unlink(mm, table, vmaddr); |
| table = (unsigned long *) ((unsigned long)table | 0x03U); |
| tlb_remove_ptdesc(tlb, table); |
| return; |
| } |
| bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); |
| spin_lock_bh(&mm->context.lock); |
| /* |
| * Mark the page for delayed release. The actual release will happen |
| * outside of the critical section from __tlb_remove_table() or from |
| * page_table_free() |
| */ |
| mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); |
| mask >>= 24; |
| if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { |
| /* |
| * Other half is allocated, and neither half has had |
| * its free deferred: add page to end of list, to make |
| * this freed half available for reuse once its pending |
| * bit has been cleared by __tlb_remove_table(). |
| */ |
| list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list); |
| } else { |
| /* If page is on list, now remove it. */ |
| list_del_init(&ptdesc->pt_list); |
| } |
| spin_unlock_bh(&mm->context.lock); |
| table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); |
| tlb_remove_table(tlb, table); |
| } |
| |
| void __tlb_remove_table(void *_table) |
| { |
| unsigned int mask = (unsigned long) _table & 0x03U, half = mask; |
| void *table = (void *)((unsigned long) _table ^ mask); |
| struct ptdesc *ptdesc = virt_to_ptdesc(table); |
| |
| switch (half) { |
| case 0x00U: /* pmd, pud, or p4d */ |
| pagetable_free(ptdesc); |
| return; |
| case 0x01U: /* lower 2K of a 4K page table */ |
| case 0x02U: /* higher 2K of a 4K page table */ |
| mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24)); |
| mask >>= 24; |
| if (mask != 0x00U) |
| return; |
| break; |
| case 0x03U: /* 4K page table with pgstes */ |
| mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); |
| mask >>= 24; |
| break; |
| } |
| |
| page_table_release_check(ptdesc_page(ptdesc), table, half, mask); |
| if (folio_test_clear_active(ptdesc_folio(ptdesc))) |
| call_rcu(&ptdesc->pt_rcu_head, pte_free_now); |
| else |
| pte_free_now(&ptdesc->pt_rcu_head); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) |
| { |
| struct page *page; |
| |
| page = virt_to_page(pgtable); |
| SetPageActive(page); |
| page_table_free(mm, (unsigned long *)pgtable); |
| /* |
| * page_table_free() does not do the pgste gmap_unlink() which |
| * page_table_free_rcu() does: warn us if pgste ever reaches here. |
| */ |
| WARN_ON_ONCE(mm_has_pgste(mm)); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * Base infrastructure required to generate basic asces, region, segment, |
| * and page tables that do not make use of enhanced features like EDAT1. |
| */ |
| |
| static struct kmem_cache *base_pgt_cache; |
| |
| static unsigned long *base_pgt_alloc(void) |
| { |
| unsigned long *table; |
| |
| table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); |
| if (table) |
| memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); |
| return table; |
| } |
| |
| static void base_pgt_free(unsigned long *table) |
| { |
| kmem_cache_free(base_pgt_cache, table); |
| } |
| |
| static unsigned long *base_crst_alloc(unsigned long val) |
| { |
| unsigned long *table; |
| struct ptdesc *ptdesc; |
| |
| ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER); |
| if (!ptdesc) |
| return NULL; |
| table = ptdesc_address(ptdesc); |
| |
| crst_table_init(table, val); |
| return table; |
| } |
| |
| static void base_crst_free(unsigned long *table) |
| { |
| pagetable_free(virt_to_ptdesc(table)); |
| } |
| |
| #define BASE_ADDR_END_FUNC(NAME, SIZE) \ |
| static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ |
| unsigned long end) \ |
| { \ |
| unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ |
| \ |
| return (next - 1) < (end - 1) ? next : end; \ |
| } |
| |
| BASE_ADDR_END_FUNC(page, _PAGE_SIZE) |
| BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) |
| BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) |
| BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) |
| BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) |
| |
| static inline unsigned long base_lra(unsigned long address) |
| { |
| unsigned long real; |
| |
| asm volatile( |
| " lra %0,0(%1)\n" |
| : "=d" (real) : "a" (address) : "cc"); |
| return real; |
| } |
| |
| static int base_page_walk(unsigned long *origin, unsigned long addr, |
| unsigned long end, int alloc) |
| { |
| unsigned long *pte, next; |
| |
| if (!alloc) |
| return 0; |
| pte = origin; |
| pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; |
| do { |
| next = base_page_addr_end(addr, end); |
| *pte = base_lra(addr); |
| } while (pte++, addr = next, addr < end); |
| return 0; |
| } |
| |
| static int base_segment_walk(unsigned long *origin, unsigned long addr, |
| unsigned long end, int alloc) |
| { |
| unsigned long *ste, next, *table; |
| int rc; |
| |
| ste = origin; |
| ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; |
| do { |
| next = base_segment_addr_end(addr, end); |
| if (*ste & _SEGMENT_ENTRY_INVALID) { |
| if (!alloc) |
| continue; |
| table = base_pgt_alloc(); |
| if (!table) |
| return -ENOMEM; |
| *ste = __pa(table) | _SEGMENT_ENTRY; |
| } |
| table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); |
| rc = base_page_walk(table, addr, next, alloc); |
| if (rc) |
| return rc; |
| if (!alloc) |
| base_pgt_free(table); |
| cond_resched(); |
| } while (ste++, addr = next, addr < end); |
| return 0; |
| } |
| |
| static int base_region3_walk(unsigned long *origin, unsigned long addr, |
| unsigned long end, int alloc) |
| { |
| unsigned long *rtte, next, *table; |
| int rc; |
| |
| rtte = origin; |
| rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; |
| do { |
| next = base_region3_addr_end(addr, end); |
| if (*rtte & _REGION_ENTRY_INVALID) { |
| if (!alloc) |
| continue; |
| table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| if (!table) |
| return -ENOMEM; |
| *rtte = __pa(table) | _REGION3_ENTRY; |
| } |
| table = __va(*rtte & _REGION_ENTRY_ORIGIN); |
| rc = base_segment_walk(table, addr, next, alloc); |
| if (rc) |
| return rc; |
| if (!alloc) |
| base_crst_free(table); |
| } while (rtte++, addr = next, addr < end); |
| return 0; |
| } |
| |
| static int base_region2_walk(unsigned long *origin, unsigned long addr, |
| unsigned long end, int alloc) |
| { |
| unsigned long *rste, next, *table; |
| int rc; |
| |
| rste = origin; |
| rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; |
| do { |
| next = base_region2_addr_end(addr, end); |
| if (*rste & _REGION_ENTRY_INVALID) { |
| if (!alloc) |
| continue; |
| table = base_crst_alloc(_REGION3_ENTRY_EMPTY); |
| if (!table) |
| return -ENOMEM; |
| *rste = __pa(table) | _REGION2_ENTRY; |
| } |
| table = __va(*rste & _REGION_ENTRY_ORIGIN); |
| rc = base_region3_walk(table, addr, next, alloc); |
| if (rc) |
| return rc; |
| if (!alloc) |
| base_crst_free(table); |
| } while (rste++, addr = next, addr < end); |
| return 0; |
| } |
| |
| static int base_region1_walk(unsigned long *origin, unsigned long addr, |
| unsigned long end, int alloc) |
| { |
| unsigned long *rfte, next, *table; |
| int rc; |
| |
| rfte = origin; |
| rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; |
| do { |
| next = base_region1_addr_end(addr, end); |
| if (*rfte & _REGION_ENTRY_INVALID) { |
| if (!alloc) |
| continue; |
| table = base_crst_alloc(_REGION2_ENTRY_EMPTY); |
| if (!table) |
| return -ENOMEM; |
| *rfte = __pa(table) | _REGION1_ENTRY; |
| } |
| table = __va(*rfte & _REGION_ENTRY_ORIGIN); |
| rc = base_region2_walk(table, addr, next, alloc); |
| if (rc) |
| return rc; |
| if (!alloc) |
| base_crst_free(table); |
| } while (rfte++, addr = next, addr < end); |
| return 0; |
| } |
| |
| /** |
| * base_asce_free - free asce and tables returned from base_asce_alloc() |
| * @asce: asce to be freed |
| * |
| * Frees all region, segment, and page tables that were allocated with a |
| * corresponding base_asce_alloc() call. |
| */ |
| void base_asce_free(unsigned long asce) |
| { |
| unsigned long *table = __va(asce & _ASCE_ORIGIN); |
| |
| if (!asce) |
| return; |
| switch (asce & _ASCE_TYPE_MASK) { |
| case _ASCE_TYPE_SEGMENT: |
| base_segment_walk(table, 0, _REGION3_SIZE, 0); |
| break; |
| case _ASCE_TYPE_REGION3: |
| base_region3_walk(table, 0, _REGION2_SIZE, 0); |
| break; |
| case _ASCE_TYPE_REGION2: |
| base_region2_walk(table, 0, _REGION1_SIZE, 0); |
| break; |
| case _ASCE_TYPE_REGION1: |
| base_region1_walk(table, 0, TASK_SIZE_MAX, 0); |
| break; |
| } |
| base_crst_free(table); |
| } |
| |
| static int base_pgt_cache_init(void) |
| { |
| static DEFINE_MUTEX(base_pgt_cache_mutex); |
| unsigned long sz = _PAGE_TABLE_SIZE; |
| |
| if (base_pgt_cache) |
| return 0; |
| mutex_lock(&base_pgt_cache_mutex); |
| if (!base_pgt_cache) |
| base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); |
| mutex_unlock(&base_pgt_cache_mutex); |
| return base_pgt_cache ? 0 : -ENOMEM; |
| } |
| |
| /** |
| * base_asce_alloc - create kernel mapping without enhanced DAT features |
| * @addr: virtual start address of kernel mapping |
| * @num_pages: number of consecutive pages |
| * |
| * Generate an asce, including all required region, segment and page tables, |
| * that can be used to access the virtual kernel mapping. The difference is |
| * that the returned asce does not make use of any enhanced DAT features like |
| * e.g. large pages. This is required for some I/O functions that pass an |
| * asce, like e.g. some service call requests. |
| * |
| * Note: the returned asce may NEVER be attached to any cpu. It may only be |
| * used for I/O requests. tlb entries that might result because the |
| * asce was attached to a cpu won't be cleared. |
| */ |
| unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) |
| { |
| unsigned long asce, *table, end; |
| int rc; |
| |
| if (base_pgt_cache_init()) |
| return 0; |
| end = addr + num_pages * PAGE_SIZE; |
| if (end <= _REGION3_SIZE) { |
| table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| if (!table) |
| return 0; |
| rc = base_segment_walk(table, addr, end, 1); |
| asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; |
| } else if (end <= _REGION2_SIZE) { |
| table = base_crst_alloc(_REGION3_ENTRY_EMPTY); |
| if (!table) |
| return 0; |
| rc = base_region3_walk(table, addr, end, 1); |
| asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; |
| } else if (end <= _REGION1_SIZE) { |
| table = base_crst_alloc(_REGION2_ENTRY_EMPTY); |
| if (!table) |
| return 0; |
| rc = base_region2_walk(table, addr, end, 1); |
| asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; |
| } else { |
| table = base_crst_alloc(_REGION1_ENTRY_EMPTY); |
| if (!table) |
| return 0; |
| rc = base_region1_walk(table, addr, end, 1); |
| asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; |
| } |
| if (rc) { |
| base_asce_free(asce); |
| asce = 0; |
| } |
| return asce; |
| } |