| /* |
| * Copyright (c) 2010 Broadcom Corporation |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| |
| #include <brcmu_utils.h> |
| #include <aiutils.h> |
| #include "types.h" |
| #include "dma.h" |
| #include "soc.h" |
| |
| /* |
| * dma register field offset calculation |
| */ |
| #define DMA64REGOFFS(field) offsetof(struct dma64regs, field) |
| #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field)) |
| #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field)) |
| |
| /* |
| * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within |
| * a contiguous 8kB physical address. |
| */ |
| #define D64RINGALIGN_BITS 13 |
| #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS) |
| #define D64RINGALIGN (1 << D64RINGALIGN_BITS) |
| |
| #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc)) |
| |
| /* transmit channel control */ |
| #define D64_XC_XE 0x00000001 /* transmit enable */ |
| #define D64_XC_SE 0x00000002 /* transmit suspend request */ |
| #define D64_XC_LE 0x00000004 /* loopback enable */ |
| #define D64_XC_FL 0x00000010 /* flush request */ |
| #define D64_XC_PD 0x00000800 /* parity check disable */ |
| #define D64_XC_AE 0x00030000 /* address extension bits */ |
| #define D64_XC_AE_SHIFT 16 |
| |
| /* transmit descriptor table pointer */ |
| #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */ |
| |
| /* transmit channel status */ |
| #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */ |
| #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */ |
| #define D64_XS0_XS_SHIFT 28 |
| #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */ |
| #define D64_XS0_XS_ACTIVE 0x10000000 /* active */ |
| #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */ |
| #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */ |
| #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */ |
| |
| #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */ |
| #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */ |
| #define D64_XS1_XE_SHIFT 28 |
| #define D64_XS1_XE_NOERR 0x00000000 /* no error */ |
| #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */ |
| #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */ |
| #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */ |
| #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */ |
| #define D64_XS1_XE_COREE 0x50000000 /* core error */ |
| |
| /* receive channel control */ |
| /* receive enable */ |
| #define D64_RC_RE 0x00000001 |
| /* receive frame offset */ |
| #define D64_RC_RO_MASK 0x000000fe |
| #define D64_RC_RO_SHIFT 1 |
| /* direct fifo receive (pio) mode */ |
| #define D64_RC_FM 0x00000100 |
| /* separate rx header descriptor enable */ |
| #define D64_RC_SH 0x00000200 |
| /* overflow continue */ |
| #define D64_RC_OC 0x00000400 |
| /* parity check disable */ |
| #define D64_RC_PD 0x00000800 |
| /* address extension bits */ |
| #define D64_RC_AE 0x00030000 |
| #define D64_RC_AE_SHIFT 16 |
| |
| /* flags for dma controller */ |
| /* partity enable */ |
| #define DMA_CTRL_PEN (1 << 0) |
| /* rx overflow continue */ |
| #define DMA_CTRL_ROC (1 << 1) |
| /* allow rx scatter to multiple descriptors */ |
| #define DMA_CTRL_RXMULTI (1 << 2) |
| /* Unframed Rx/Tx data */ |
| #define DMA_CTRL_UNFRAMED (1 << 3) |
| |
| /* receive descriptor table pointer */ |
| #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */ |
| |
| /* receive channel status */ |
| #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */ |
| #define D64_RS0_RS_MASK 0xf0000000 /* receive state */ |
| #define D64_RS0_RS_SHIFT 28 |
| #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */ |
| #define D64_RS0_RS_ACTIVE 0x10000000 /* active */ |
| #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */ |
| #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */ |
| #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */ |
| |
| #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */ |
| #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */ |
| #define D64_RS1_RE_SHIFT 28 |
| #define D64_RS1_RE_NOERR 0x00000000 /* no error */ |
| #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */ |
| #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */ |
| #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */ |
| #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */ |
| #define D64_RS1_RE_COREE 0x50000000 /* core error */ |
| |
| /* fifoaddr */ |
| #define D64_FA_OFF_MASK 0xffff /* offset */ |
| #define D64_FA_SEL_MASK 0xf0000 /* select */ |
| #define D64_FA_SEL_SHIFT 16 |
| #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */ |
| #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */ |
| #define D64_FA_SEL_RDD 0x40000 /* receive dma data */ |
| #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */ |
| #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */ |
| #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */ |
| #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */ |
| #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */ |
| #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */ |
| #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */ |
| |
| /* descriptor control flags 1 */ |
| #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */ |
| #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */ |
| #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */ |
| #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */ |
| #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */ |
| |
| /* descriptor control flags 2 */ |
| /* buffer byte count. real data len must <= 16KB */ |
| #define D64_CTRL2_BC_MASK 0x00007fff |
| /* address extension bits */ |
| #define D64_CTRL2_AE 0x00030000 |
| #define D64_CTRL2_AE_SHIFT 16 |
| /* parity bit */ |
| #define D64_CTRL2_PARITY 0x00040000 |
| |
| /* control flags in the range [27:20] are core-specific and not defined here */ |
| #define D64_CTRL_CORE_MASK 0x0ff00000 |
| |
| #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */ |
| #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */ |
| #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */ |
| #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */ |
| |
| /* |
| * packet headroom necessary to accommodate the largest header |
| * in the system, (i.e TXOFF). By doing, we avoid the need to |
| * allocate an extra buffer for the header when bridging to WL. |
| * There is a compile time check in wlc.c which ensure that this |
| * value is at least as big as TXOFF. This value is used in |
| * dma_rxfill(). |
| */ |
| |
| #define BCMEXTRAHDROOM 172 |
| |
| /* debug/trace */ |
| #ifdef BCMDBG |
| #define DMA_ERROR(fmt, ...) \ |
| do { \ |
| if (*di->msg_level & 1) \ |
| pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \ |
| } while (0) |
| #define DMA_TRACE(fmt, ...) \ |
| do { \ |
| if (*di->msg_level & 2) \ |
| pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \ |
| } while (0) |
| #else |
| #define DMA_ERROR(fmt, ...) \ |
| no_printk(fmt, ##__VA_ARGS__) |
| #define DMA_TRACE(fmt, ...) \ |
| no_printk(fmt, ##__VA_ARGS__) |
| #endif /* BCMDBG */ |
| |
| #define DMA_NONE(fmt, ...) \ |
| no_printk(fmt, ##__VA_ARGS__) |
| |
| #define MAXNAMEL 8 /* 8 char names */ |
| |
| /* macros to convert between byte offsets and indexes */ |
| #define B2I(bytes, type) ((bytes) / sizeof(type)) |
| #define I2B(index, type) ((index) * sizeof(type)) |
| |
| #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */ |
| #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */ |
| |
| #define PCI64ADDR_HIGH 0x80000000 /* address[63] */ |
| #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */ |
| |
| /* |
| * DMA Descriptor |
| * Descriptors are only read by the hardware, never written back. |
| */ |
| struct dma64desc { |
| __le32 ctrl1; /* misc control bits & bufcount */ |
| __le32 ctrl2; /* buffer count and address extension */ |
| __le32 addrlow; /* memory address of the date buffer, bits 31:0 */ |
| __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */ |
| }; |
| |
| /* dma engine software state */ |
| struct dma_info { |
| struct dma_pub dma; /* exported structure */ |
| uint *msg_level; /* message level pointer */ |
| char name[MAXNAMEL]; /* callers name for diag msgs */ |
| |
| struct bcma_device *core; |
| struct device *dmadev; |
| |
| bool dma64; /* this dma engine is operating in 64-bit mode */ |
| bool addrext; /* this dma engine supports DmaExtendedAddrChanges */ |
| |
| /* 64-bit dma tx engine registers */ |
| uint d64txregbase; |
| /* 64-bit dma rx engine registers */ |
| uint d64rxregbase; |
| /* pointer to dma64 tx descriptor ring */ |
| struct dma64desc *txd64; |
| /* pointer to dma64 rx descriptor ring */ |
| struct dma64desc *rxd64; |
| |
| u16 dmadesc_align; /* alignment requirement for dma descriptors */ |
| |
| u16 ntxd; /* # tx descriptors tunable */ |
| u16 txin; /* index of next descriptor to reclaim */ |
| u16 txout; /* index of next descriptor to post */ |
| /* pointer to parallel array of pointers to packets */ |
| struct sk_buff **txp; |
| /* Aligned physical address of descriptor ring */ |
| dma_addr_t txdpa; |
| /* Original physical address of descriptor ring */ |
| dma_addr_t txdpaorig; |
| u16 txdalign; /* #bytes added to alloc'd mem to align txd */ |
| u32 txdalloc; /* #bytes allocated for the ring */ |
| u32 xmtptrbase; /* When using unaligned descriptors, the ptr register |
| * is not just an index, it needs all 13 bits to be |
| * an offset from the addr register. |
| */ |
| |
| u16 nrxd; /* # rx descriptors tunable */ |
| u16 rxin; /* index of next descriptor to reclaim */ |
| u16 rxout; /* index of next descriptor to post */ |
| /* pointer to parallel array of pointers to packets */ |
| struct sk_buff **rxp; |
| /* Aligned physical address of descriptor ring */ |
| dma_addr_t rxdpa; |
| /* Original physical address of descriptor ring */ |
| dma_addr_t rxdpaorig; |
| u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */ |
| u32 rxdalloc; /* #bytes allocated for the ring */ |
| u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */ |
| |
| /* tunables */ |
| unsigned int rxbufsize; /* rx buffer size in bytes, not including |
| * the extra headroom |
| */ |
| uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper |
| * stack, e.g. some rx pkt buffers will be |
| * bridged to tx side without byte copying. |
| * The extra headroom needs to be large enough |
| * to fit txheader needs. Some dongle driver may |
| * not need it. |
| */ |
| uint nrxpost; /* # rx buffers to keep posted */ |
| unsigned int rxoffset; /* rxcontrol offset */ |
| /* add to get dma address of descriptor ring, low 32 bits */ |
| uint ddoffsetlow; |
| /* high 32 bits */ |
| uint ddoffsethigh; |
| /* add to get dma address of data buffer, low 32 bits */ |
| uint dataoffsetlow; |
| /* high 32 bits */ |
| uint dataoffsethigh; |
| /* descriptor base need to be aligned or not */ |
| bool aligndesc_4k; |
| }; |
| |
| /* |
| * default dma message level (if input msg_level |
| * pointer is null in dma_attach()) |
| */ |
| static uint dma_msg_level; |
| |
| /* Check for odd number of 1's */ |
| static u32 parity32(__le32 data) |
| { |
| /* no swap needed for counting 1's */ |
| u32 par_data = *(u32 *)&data; |
| |
| par_data ^= par_data >> 16; |
| par_data ^= par_data >> 8; |
| par_data ^= par_data >> 4; |
| par_data ^= par_data >> 2; |
| par_data ^= par_data >> 1; |
| |
| return par_data & 1; |
| } |
| |
| static bool dma64_dd_parity(struct dma64desc *dd) |
| { |
| return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2); |
| } |
| |
| /* descriptor bumping functions */ |
| |
| static uint xxd(uint x, uint n) |
| { |
| return x & (n - 1); /* faster than %, but n must be power of 2 */ |
| } |
| |
| static uint txd(struct dma_info *di, uint x) |
| { |
| return xxd(x, di->ntxd); |
| } |
| |
| static uint rxd(struct dma_info *di, uint x) |
| { |
| return xxd(x, di->nrxd); |
| } |
| |
| static uint nexttxd(struct dma_info *di, uint i) |
| { |
| return txd(di, i + 1); |
| } |
| |
| static uint prevtxd(struct dma_info *di, uint i) |
| { |
| return txd(di, i - 1); |
| } |
| |
| static uint nextrxd(struct dma_info *di, uint i) |
| { |
| return txd(di, i + 1); |
| } |
| |
| static uint ntxdactive(struct dma_info *di, uint h, uint t) |
| { |
| return txd(di, t-h); |
| } |
| |
| static uint nrxdactive(struct dma_info *di, uint h, uint t) |
| { |
| return rxd(di, t-h); |
| } |
| |
| static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags) |
| { |
| uint dmactrlflags; |
| |
| if (di == NULL) { |
| DMA_ERROR("NULL dma handle\n"); |
| return 0; |
| } |
| |
| dmactrlflags = di->dma.dmactrlflags; |
| dmactrlflags &= ~mask; |
| dmactrlflags |= flags; |
| |
| /* If trying to enable parity, check if parity is actually supported */ |
| if (dmactrlflags & DMA_CTRL_PEN) { |
| u32 control; |
| |
| control = bcma_read32(di->core, DMA64TXREGOFFS(di, control)); |
| bcma_write32(di->core, DMA64TXREGOFFS(di, control), |
| control | D64_XC_PD); |
| if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) & |
| D64_XC_PD) |
| /* We *can* disable it so it is supported, |
| * restore control register |
| */ |
| bcma_write32(di->core, DMA64TXREGOFFS(di, control), |
| control); |
| else |
| /* Not supported, don't allow it to be enabled */ |
| dmactrlflags &= ~DMA_CTRL_PEN; |
| } |
| |
| di->dma.dmactrlflags = dmactrlflags; |
| |
| return dmactrlflags; |
| } |
| |
| static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset) |
| { |
| u32 w; |
| bcma_set32(di->core, ctrl_offset, D64_XC_AE); |
| w = bcma_read32(di->core, ctrl_offset); |
| bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE); |
| return (w & D64_XC_AE) == D64_XC_AE; |
| } |
| |
| /* |
| * return true if this dma engine supports DmaExtendedAddrChanges, |
| * otherwise false |
| */ |
| static bool _dma_isaddrext(struct dma_info *di) |
| { |
| /* DMA64 supports full 32- or 64-bit operation. AE is always valid */ |
| |
| /* not all tx or rx channel are available */ |
| if (di->d64txregbase != 0) { |
| if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control))) |
| DMA_ERROR("%s: DMA64 tx doesn't have AE set\n", |
| di->name); |
| return true; |
| } else if (di->d64rxregbase != 0) { |
| if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control))) |
| DMA_ERROR("%s: DMA64 rx doesn't have AE set\n", |
| di->name); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool _dma_descriptor_align(struct dma_info *di) |
| { |
| u32 addrl; |
| |
| /* Check to see if the descriptors need to be aligned on 4K/8K or not */ |
| if (di->d64txregbase != 0) { |
| bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0); |
| addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow)); |
| if (addrl != 0) |
| return false; |
| } else if (di->d64rxregbase != 0) { |
| bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0); |
| addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow)); |
| if (addrl != 0) |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Descriptor table must start at the DMA hardware dictated alignment, so |
| * allocated memory must be large enough to support this requirement. |
| */ |
| static void *dma_alloc_consistent(struct dma_info *di, uint size, |
| u16 align_bits, uint *alloced, |
| dma_addr_t *pap) |
| { |
| if (align_bits) { |
| u16 align = (1 << align_bits); |
| if (!IS_ALIGNED(PAGE_SIZE, align)) |
| size += align; |
| *alloced = size; |
| } |
| return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC); |
| } |
| |
| static |
| u8 dma_align_sizetobits(uint size) |
| { |
| u8 bitpos = 0; |
| while (size >>= 1) |
| bitpos++; |
| return bitpos; |
| } |
| |
| /* This function ensures that the DMA descriptor ring will not get allocated |
| * across Page boundary. If the allocation is done across the page boundary |
| * at the first time, then it is freed and the allocation is done at |
| * descriptor ring size aligned location. This will ensure that the ring will |
| * not cross page boundary |
| */ |
| static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size, |
| u16 *alignbits, uint *alloced, |
| dma_addr_t *descpa) |
| { |
| void *va; |
| u32 desc_strtaddr; |
| u32 alignbytes = 1 << *alignbits; |
| |
| va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa); |
| |
| if (NULL == va) |
| return NULL; |
| |
| desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes); |
| if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr |
| & boundary)) { |
| *alignbits = dma_align_sizetobits(size); |
| dma_free_coherent(di->dmadev, size, va, *descpa); |
| va = dma_alloc_consistent(di, size, *alignbits, |
| alloced, descpa); |
| } |
| return va; |
| } |
| |
| static bool dma64_alloc(struct dma_info *di, uint direction) |
| { |
| u16 size; |
| uint ddlen; |
| void *va; |
| uint alloced = 0; |
| u16 align; |
| u16 align_bits; |
| |
| ddlen = sizeof(struct dma64desc); |
| |
| size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen); |
| align_bits = di->dmadesc_align; |
| align = (1 << align_bits); |
| |
| if (direction == DMA_TX) { |
| va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, |
| &alloced, &di->txdpaorig); |
| if (va == NULL) { |
| DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n", |
| di->name); |
| return false; |
| } |
| align = (1 << align_bits); |
| di->txd64 = (struct dma64desc *) |
| roundup((unsigned long)va, align); |
| di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va); |
| di->txdpa = di->txdpaorig + di->txdalign; |
| di->txdalloc = alloced; |
| } else { |
| va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, |
| &alloced, &di->rxdpaorig); |
| if (va == NULL) { |
| DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n", |
| di->name); |
| return false; |
| } |
| align = (1 << align_bits); |
| di->rxd64 = (struct dma64desc *) |
| roundup((unsigned long)va, align); |
| di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va); |
| di->rxdpa = di->rxdpaorig + di->rxdalign; |
| di->rxdalloc = alloced; |
| } |
| |
| return true; |
| } |
| |
| static bool _dma_alloc(struct dma_info *di, uint direction) |
| { |
| return dma64_alloc(di, direction); |
| } |
| |
| struct dma_pub *dma_attach(char *name, struct si_pub *sih, |
| struct bcma_device *core, |
| uint txregbase, uint rxregbase, uint ntxd, uint nrxd, |
| uint rxbufsize, int rxextheadroom, |
| uint nrxpost, uint rxoffset, uint *msg_level) |
| { |
| struct dma_info *di; |
| u8 rev = core->id.rev; |
| uint size; |
| |
| /* allocate private info structure */ |
| di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC); |
| if (di == NULL) |
| return NULL; |
| |
| di->msg_level = msg_level ? msg_level : &dma_msg_level; |
| |
| |
| di->dma64 = |
| ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64); |
| |
| /* init dma reg info */ |
| di->core = core; |
| di->d64txregbase = txregbase; |
| di->d64rxregbase = rxregbase; |
| |
| /* |
| * Default flags (which can be changed by the driver calling |
| * dma_ctrlflags before enable): For backwards compatibility |
| * both Rx Overflow Continue and Parity are DISABLED. |
| */ |
| _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0); |
| |
| DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d " |
| "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d " |
| "txregbase %u rxregbase %u\n", name, "DMA64", |
| di->dma.dmactrlflags, ntxd, nrxd, rxbufsize, |
| rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase); |
| |
| /* make a private copy of our callers name */ |
| strncpy(di->name, name, MAXNAMEL); |
| di->name[MAXNAMEL - 1] = '\0'; |
| |
| di->dmadev = core->dma_dev; |
| |
| /* save tunables */ |
| di->ntxd = (u16) ntxd; |
| di->nrxd = (u16) nrxd; |
| |
| /* the actual dma size doesn't include the extra headroom */ |
| di->rxextrahdrroom = |
| (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom; |
| if (rxbufsize > BCMEXTRAHDROOM) |
| di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom); |
| else |
| di->rxbufsize = (u16) rxbufsize; |
| |
| di->nrxpost = (u16) nrxpost; |
| di->rxoffset = (u8) rxoffset; |
| |
| /* |
| * figure out the DMA physical address offset for dd and data |
| * PCI/PCIE: they map silicon backplace address to zero |
| * based memory, need offset |
| * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram |
| * swapped region for data buffer, not descriptor |
| */ |
| di->ddoffsetlow = 0; |
| di->dataoffsetlow = 0; |
| /* add offset for pcie with DMA64 bus */ |
| di->ddoffsetlow = 0; |
| di->ddoffsethigh = SI_PCIE_DMA_H32; |
| di->dataoffsetlow = di->ddoffsetlow; |
| di->dataoffsethigh = di->ddoffsethigh; |
| /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */ |
| if ((core->id.id == SDIOD_CORE_ID) |
| && ((rev > 0) && (rev <= 2))) |
| di->addrext = false; |
| else if ((core->id.id == I2S_CORE_ID) && |
| ((rev == 0) || (rev == 1))) |
| di->addrext = false; |
| else |
| di->addrext = _dma_isaddrext(di); |
| |
| /* does the descriptor need to be aligned and if yes, on 4K/8K or not */ |
| di->aligndesc_4k = _dma_descriptor_align(di); |
| if (di->aligndesc_4k) { |
| di->dmadesc_align = D64RINGALIGN_BITS; |
| if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) |
| /* for smaller dd table, HW relax alignment reqmnt */ |
| di->dmadesc_align = D64RINGALIGN_BITS - 1; |
| } else { |
| di->dmadesc_align = 4; /* 16 byte alignment */ |
| } |
| |
| DMA_NONE("DMA descriptor align_needed %d, align %d\n", |
| di->aligndesc_4k, di->dmadesc_align); |
| |
| /* allocate tx packet pointer vector */ |
| if (ntxd) { |
| size = ntxd * sizeof(void *); |
| di->txp = kzalloc(size, GFP_ATOMIC); |
| if (di->txp == NULL) |
| goto fail; |
| } |
| |
| /* allocate rx packet pointer vector */ |
| if (nrxd) { |
| size = nrxd * sizeof(void *); |
| di->rxp = kzalloc(size, GFP_ATOMIC); |
| if (di->rxp == NULL) |
| goto fail; |
| } |
| |
| /* |
| * allocate transmit descriptor ring, only need ntxd descriptors |
| * but it must be aligned |
| */ |
| if (ntxd) { |
| if (!_dma_alloc(di, DMA_TX)) |
| goto fail; |
| } |
| |
| /* |
| * allocate receive descriptor ring, only need nrxd descriptors |
| * but it must be aligned |
| */ |
| if (nrxd) { |
| if (!_dma_alloc(di, DMA_RX)) |
| goto fail; |
| } |
| |
| if ((di->ddoffsetlow != 0) && !di->addrext) { |
| if (di->txdpa > SI_PCI_DMA_SZ) { |
| DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n", |
| di->name, (u32)di->txdpa); |
| goto fail; |
| } |
| if (di->rxdpa > SI_PCI_DMA_SZ) { |
| DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n", |
| di->name, (u32)di->rxdpa); |
| goto fail; |
| } |
| } |
| |
| DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n", |
| di->ddoffsetlow, di->ddoffsethigh, |
| di->dataoffsetlow, di->dataoffsethigh, |
| di->addrext); |
| |
| return (struct dma_pub *) di; |
| |
| fail: |
| dma_detach((struct dma_pub *)di); |
| return NULL; |
| } |
| |
| static inline void |
| dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring, |
| dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount) |
| { |
| u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK; |
| |
| /* PCI bus with big(>1G) physical address, use address extension */ |
| if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) { |
| ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); |
| ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); |
| ddring[outidx].ctrl1 = cpu_to_le32(*flags); |
| ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); |
| } else { |
| /* address extension for 32-bit PCI */ |
| u32 ae; |
| |
| ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; |
| pa &= ~PCI32ADDR_HIGH; |
| |
| ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE; |
| ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); |
| ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); |
| ddring[outidx].ctrl1 = cpu_to_le32(*flags); |
| ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); |
| } |
| if (di->dma.dmactrlflags & DMA_CTRL_PEN) { |
| if (dma64_dd_parity(&ddring[outidx])) |
| ddring[outidx].ctrl2 = |
| cpu_to_le32(ctrl2 | D64_CTRL2_PARITY); |
| } |
| } |
| |
| /* !! may be called with core in reset */ |
| void dma_detach(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| /* free dma descriptor rings */ |
| if (di->txd64) |
| dma_free_coherent(di->dmadev, di->txdalloc, |
| ((s8 *)di->txd64 - di->txdalign), |
| (di->txdpaorig)); |
| if (di->rxd64) |
| dma_free_coherent(di->dmadev, di->rxdalloc, |
| ((s8 *)di->rxd64 - di->rxdalign), |
| (di->rxdpaorig)); |
| |
| /* free packet pointer vectors */ |
| kfree(di->txp); |
| kfree(di->rxp); |
| |
| /* free our private info structure */ |
| kfree(di); |
| |
| } |
| |
| /* initialize descriptor table base address */ |
| static void |
| _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa) |
| { |
| if (!di->aligndesc_4k) { |
| if (direction == DMA_TX) |
| di->xmtptrbase = pa; |
| else |
| di->rcvptrbase = pa; |
| } |
| |
| if ((di->ddoffsetlow == 0) |
| || !(pa & PCI32ADDR_HIGH)) { |
| if (direction == DMA_TX) { |
| bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), |
| pa + di->ddoffsetlow); |
| bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), |
| di->ddoffsethigh); |
| } else { |
| bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), |
| pa + di->ddoffsetlow); |
| bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), |
| di->ddoffsethigh); |
| } |
| } else { |
| /* DMA64 32bits address extension */ |
| u32 ae; |
| |
| /* shift the high bit(s) from pa to ae */ |
| ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; |
| pa &= ~PCI32ADDR_HIGH; |
| |
| if (direction == DMA_TX) { |
| bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), |
| pa + di->ddoffsetlow); |
| bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), |
| di->ddoffsethigh); |
| bcma_maskset32(di->core, DMA64TXREGOFFS(di, control), |
| D64_XC_AE, (ae << D64_XC_AE_SHIFT)); |
| } else { |
| bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), |
| pa + di->ddoffsetlow); |
| bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), |
| di->ddoffsethigh); |
| bcma_maskset32(di->core, DMA64RXREGOFFS(di, control), |
| D64_RC_AE, (ae << D64_RC_AE_SHIFT)); |
| } |
| } |
| } |
| |
| static void _dma_rxenable(struct dma_info *di) |
| { |
| uint dmactrlflags = di->dma.dmactrlflags; |
| u32 control; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| control = D64_RC_RE | (bcma_read32(di->core, |
| DMA64RXREGOFFS(di, control)) & |
| D64_RC_AE); |
| |
| if ((dmactrlflags & DMA_CTRL_PEN) == 0) |
| control |= D64_RC_PD; |
| |
| if (dmactrlflags & DMA_CTRL_ROC) |
| control |= D64_RC_OC; |
| |
| bcma_write32(di->core, DMA64RXREGOFFS(di, control), |
| ((di->rxoffset << D64_RC_RO_SHIFT) | control)); |
| } |
| |
| void dma_rxinit(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| if (di->nrxd == 0) |
| return; |
| |
| di->rxin = di->rxout = 0; |
| |
| /* clear rx descriptor ring */ |
| memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc)); |
| |
| /* DMA engine with out alignment requirement requires table to be inited |
| * before enabling the engine |
| */ |
| if (!di->aligndesc_4k) |
| _dma_ddtable_init(di, DMA_RX, di->rxdpa); |
| |
| _dma_rxenable(di); |
| |
| if (di->aligndesc_4k) |
| _dma_ddtable_init(di, DMA_RX, di->rxdpa); |
| } |
| |
| static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall) |
| { |
| uint i, curr; |
| struct sk_buff *rxp; |
| dma_addr_t pa; |
| |
| i = di->rxin; |
| |
| /* return if no packets posted */ |
| if (i == di->rxout) |
| return NULL; |
| |
| curr = |
| B2I(((bcma_read32(di->core, |
| DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) - |
| di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc); |
| |
| /* ignore curr if forceall */ |
| if (!forceall && (i == curr)) |
| return NULL; |
| |
| /* get the packet pointer that corresponds to the rx descriptor */ |
| rxp = di->rxp[i]; |
| di->rxp[i] = NULL; |
| |
| pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow; |
| |
| /* clear this packet from the descriptor ring */ |
| dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE); |
| |
| di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef); |
| di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef); |
| |
| di->rxin = nextrxd(di, i); |
| |
| return rxp; |
| } |
| |
| static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall) |
| { |
| if (di->nrxd == 0) |
| return NULL; |
| |
| return dma64_getnextrxp(di, forceall); |
| } |
| |
| /* |
| * !! rx entry routine |
| * returns the number packages in the next frame, or 0 if there are no more |
| * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is |
| * supported with pkts chain |
| * otherwise, it's treated as giant pkt and will be tossed. |
| * The DMA scattering starts with normal DMA header, followed by first |
| * buffer data. After it reaches the max size of buffer, the data continues |
| * in next DMA descriptor buffer WITHOUT DMA header |
| */ |
| int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| struct sk_buff_head dma_frames; |
| struct sk_buff *p, *next; |
| uint len; |
| uint pkt_len; |
| int resid = 0; |
| int pktcnt = 1; |
| |
| skb_queue_head_init(&dma_frames); |
| next_frame: |
| p = _dma_getnextrxp(di, false); |
| if (p == NULL) |
| return 0; |
| |
| len = le16_to_cpu(*(__le16 *) (p->data)); |
| DMA_TRACE("%s: dma_rx len %d\n", di->name, len); |
| dma_spin_for_len(len, p); |
| |
| /* set actual length */ |
| pkt_len = min((di->rxoffset + len), di->rxbufsize); |
| __skb_trim(p, pkt_len); |
| skb_queue_tail(&dma_frames, p); |
| resid = len - (di->rxbufsize - di->rxoffset); |
| |
| /* check for single or multi-buffer rx */ |
| if (resid > 0) { |
| while ((resid > 0) && (p = _dma_getnextrxp(di, false))) { |
| pkt_len = min_t(uint, resid, di->rxbufsize); |
| __skb_trim(p, pkt_len); |
| skb_queue_tail(&dma_frames, p); |
| resid -= di->rxbufsize; |
| pktcnt++; |
| } |
| |
| #ifdef BCMDBG |
| if (resid > 0) { |
| uint cur; |
| cur = |
| B2I(((bcma_read32(di->core, |
| DMA64RXREGOFFS(di, status0)) & |
| D64_RS0_CD_MASK) - di->rcvptrbase) & |
| D64_RS0_CD_MASK, struct dma64desc); |
| DMA_ERROR("rxin %d rxout %d, hw_curr %d\n", |
| di->rxin, di->rxout, cur); |
| } |
| #endif /* BCMDBG */ |
| |
| if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) { |
| DMA_ERROR("%s: bad frame length (%d)\n", |
| di->name, len); |
| skb_queue_walk_safe(&dma_frames, p, next) { |
| skb_unlink(p, &dma_frames); |
| brcmu_pkt_buf_free_skb(p); |
| } |
| di->dma.rxgiants++; |
| pktcnt = 1; |
| goto next_frame; |
| } |
| } |
| |
| skb_queue_splice_tail(&dma_frames, skb_list); |
| return pktcnt; |
| } |
| |
| static bool dma64_rxidle(struct dma_info *di) |
| { |
| DMA_TRACE("%s:\n", di->name); |
| |
| if (di->nrxd == 0) |
| return true; |
| |
| return ((bcma_read32(di->core, |
| DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) == |
| (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) & |
| D64_RS0_CD_MASK)); |
| } |
| |
| /* |
| * post receive buffers |
| * return false is refill failed completely and ring is empty this will stall |
| * the rx dma and user might want to call rxfill again asap. This unlikely |
| * happens on memory-rich NIC, but often on memory-constrained dongle |
| */ |
| bool dma_rxfill(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| struct sk_buff *p; |
| u16 rxin, rxout; |
| u32 flags = 0; |
| uint n; |
| uint i; |
| dma_addr_t pa; |
| uint extra_offset = 0; |
| bool ring_empty; |
| |
| ring_empty = false; |
| |
| /* |
| * Determine how many receive buffers we're lacking |
| * from the full complement, allocate, initialize, |
| * and post them, then update the chip rx lastdscr. |
| */ |
| |
| rxin = di->rxin; |
| rxout = di->rxout; |
| |
| n = di->nrxpost - nrxdactive(di, rxin, rxout); |
| |
| DMA_TRACE("%s: post %d\n", di->name, n); |
| |
| if (di->rxbufsize > BCMEXTRAHDROOM) |
| extra_offset = di->rxextrahdrroom; |
| |
| for (i = 0; i < n; i++) { |
| /* |
| * the di->rxbufsize doesn't include the extra headroom, |
| * we need to add it to the size to be allocated |
| */ |
| p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset); |
| |
| if (p == NULL) { |
| DMA_ERROR("%s: out of rxbufs\n", di->name); |
| if (i == 0 && dma64_rxidle(di)) { |
| DMA_ERROR("%s: ring is empty !\n", di->name); |
| ring_empty = true; |
| } |
| di->dma.rxnobuf++; |
| break; |
| } |
| /* reserve an extra headroom, if applicable */ |
| if (extra_offset) |
| skb_pull(p, extra_offset); |
| |
| /* Do a cached write instead of uncached write since DMA_MAP |
| * will flush the cache. |
| */ |
| *(u32 *) (p->data) = 0; |
| |
| pa = dma_map_single(di->dmadev, p->data, di->rxbufsize, |
| DMA_FROM_DEVICE); |
| |
| /* save the free packet pointer */ |
| di->rxp[rxout] = p; |
| |
| /* reset flags for each descriptor */ |
| flags = 0; |
| if (rxout == (di->nrxd - 1)) |
| flags = D64_CTRL1_EOT; |
| |
| dma64_dd_upd(di, di->rxd64, pa, rxout, &flags, |
| di->rxbufsize); |
| rxout = nextrxd(di, rxout); |
| } |
| |
| di->rxout = rxout; |
| |
| /* update the chip lastdscr pointer */ |
| bcma_write32(di->core, DMA64RXREGOFFS(di, ptr), |
| di->rcvptrbase + I2B(rxout, struct dma64desc)); |
| |
| return ring_empty; |
| } |
| |
| void dma_rxreclaim(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| struct sk_buff *p; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| while ((p = _dma_getnextrxp(di, true))) |
| brcmu_pkt_buf_free_skb(p); |
| } |
| |
| void dma_counterreset(struct dma_pub *pub) |
| { |
| /* reset all software counters */ |
| pub->rxgiants = 0; |
| pub->rxnobuf = 0; |
| pub->txnobuf = 0; |
| } |
| |
| /* get the address of the var in order to change later */ |
| unsigned long dma_getvar(struct dma_pub *pub, const char *name) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| if (!strcmp(name, "&txavail")) |
| return (unsigned long)&(di->dma.txavail); |
| return 0; |
| } |
| |
| /* 64-bit DMA functions */ |
| |
| void dma_txinit(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| u32 control = D64_XC_XE; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| if (di->ntxd == 0) |
| return; |
| |
| di->txin = di->txout = 0; |
| di->dma.txavail = di->ntxd - 1; |
| |
| /* clear tx descriptor ring */ |
| memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc))); |
| |
| /* DMA engine with out alignment requirement requires table to be inited |
| * before enabling the engine |
| */ |
| if (!di->aligndesc_4k) |
| _dma_ddtable_init(di, DMA_TX, di->txdpa); |
| |
| if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0) |
| control |= D64_XC_PD; |
| bcma_set32(di->core, DMA64TXREGOFFS(di, control), control); |
| |
| /* DMA engine with alignment requirement requires table to be inited |
| * before enabling the engine |
| */ |
| if (di->aligndesc_4k) |
| _dma_ddtable_init(di, DMA_TX, di->txdpa); |
| } |
| |
| void dma_txsuspend(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| if (di->ntxd == 0) |
| return; |
| |
| bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); |
| } |
| |
| void dma_txresume(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| if (di->ntxd == 0) |
| return; |
| |
| bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE); |
| } |
| |
| bool dma_txsuspended(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| |
| return (di->ntxd == 0) || |
| ((bcma_read32(di->core, |
| DMA64TXREGOFFS(di, control)) & D64_XC_SE) == |
| D64_XC_SE); |
| } |
| |
| void dma_txreclaim(struct dma_pub *pub, enum txd_range range) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| struct sk_buff *p; |
| |
| DMA_TRACE("%s: %s\n", |
| di->name, |
| range == DMA_RANGE_ALL ? "all" : |
| range == DMA_RANGE_TRANSMITTED ? "transmitted" : |
| "transferred"); |
| |
| if (di->txin == di->txout) |
| return; |
| |
| while ((p = dma_getnexttxp(pub, range))) { |
| /* For unframed data, we don't have any packets to free */ |
| if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED)) |
| brcmu_pkt_buf_free_skb(p); |
| } |
| } |
| |
| bool dma_txreset(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| u32 status; |
| |
| if (di->ntxd == 0) |
| return true; |
| |
| /* suspend tx DMA first */ |
| bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); |
| SPINWAIT(((status = |
| (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & |
| D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) && |
| (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED), |
| 10000); |
| |
| bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0); |
| SPINWAIT(((status = |
| (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & |
| D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000); |
| |
| /* wait for the last transaction to complete */ |
| udelay(300); |
| |
| return status == D64_XS0_XS_DISABLED; |
| } |
| |
| bool dma_rxreset(struct dma_pub *pub) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| u32 status; |
| |
| if (di->nrxd == 0) |
| return true; |
| |
| bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0); |
| SPINWAIT(((status = |
| (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & |
| D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000); |
| |
| return status == D64_RS0_RS_DISABLED; |
| } |
| |
| /* |
| * !! tx entry routine |
| * WARNING: call must check the return value for error. |
| * the error(toss frames) could be fatal and cause many subsequent hard |
| * to debug problems |
| */ |
| int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| unsigned char *data; |
| uint len; |
| u16 txout; |
| u32 flags = 0; |
| dma_addr_t pa; |
| |
| DMA_TRACE("%s:\n", di->name); |
| |
| txout = di->txout; |
| |
| /* |
| * obtain and initialize transmit descriptor entry. |
| */ |
| data = p->data; |
| len = p->len; |
| |
| /* no use to transmit a zero length packet */ |
| if (len == 0) |
| return 0; |
| |
| /* return nonzero if out of tx descriptors */ |
| if (nexttxd(di, txout) == di->txin) |
| goto outoftxd; |
| |
| /* get physical address of buffer start */ |
| pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE); |
| |
| /* With a DMA segment list, Descriptor table is filled |
| * using the segment list instead of looping over |
| * buffers in multi-chain DMA. Therefore, EOF for SGLIST |
| * is when end of segment list is reached. |
| */ |
| flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF; |
| if (txout == (di->ntxd - 1)) |
| flags |= D64_CTRL1_EOT; |
| |
| dma64_dd_upd(di, di->txd64, pa, txout, &flags, len); |
| |
| txout = nexttxd(di, txout); |
| |
| /* save the packet */ |
| di->txp[prevtxd(di, txout)] = p; |
| |
| /* bump the tx descriptor index */ |
| di->txout = txout; |
| |
| /* kick the chip */ |
| if (commit) |
| bcma_write32(di->core, DMA64TXREGOFFS(di, ptr), |
| di->xmtptrbase + I2B(txout, struct dma64desc)); |
| |
| /* tx flow control */ |
| di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1; |
| |
| return 0; |
| |
| outoftxd: |
| DMA_ERROR("%s: out of txds !!!\n", di->name); |
| brcmu_pkt_buf_free_skb(p); |
| di->dma.txavail = 0; |
| di->dma.txnobuf++; |
| return -1; |
| } |
| |
| /* |
| * Reclaim next completed txd (txds if using chained buffers) in the range |
| * specified and return associated packet. |
| * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be |
| * transmitted as noted by the hardware "CurrDescr" pointer. |
| * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be |
| * transferred by the DMA as noted by the hardware "ActiveDescr" pointer. |
| * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and |
| * return associated packet regardless of the value of hardware pointers. |
| */ |
| struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range) |
| { |
| struct dma_info *di = (struct dma_info *)pub; |
| u16 start, end, i; |
| u16 active_desc; |
| struct sk_buff *txp; |
| |
| DMA_TRACE("%s: %s\n", |
| di->name, |
| range == DMA_RANGE_ALL ? "all" : |
| range == DMA_RANGE_TRANSMITTED ? "transmitted" : |
| "transferred"); |
| |
| if (di->ntxd == 0) |
| return NULL; |
| |
| txp = NULL; |
| |
| start = di->txin; |
| if (range == DMA_RANGE_ALL) |
| end = di->txout; |
| else { |
| end = (u16) (B2I(((bcma_read32(di->core, |
| DMA64TXREGOFFS(di, status0)) & |
| D64_XS0_CD_MASK) - di->xmtptrbase) & |
| D64_XS0_CD_MASK, struct dma64desc)); |
| |
| if (range == DMA_RANGE_TRANSFERED) { |
| active_desc = |
| (u16)(bcma_read32(di->core, |
| DMA64TXREGOFFS(di, status1)) & |
| D64_XS1_AD_MASK); |
| active_desc = |
| (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK; |
| active_desc = B2I(active_desc, struct dma64desc); |
| if (end != active_desc) |
| end = prevtxd(di, active_desc); |
| } |
| } |
| |
| if ((start == 0) && (end > di->txout)) |
| goto bogus; |
| |
| for (i = start; i != end && !txp; i = nexttxd(di, i)) { |
| dma_addr_t pa; |
| uint size; |
| |
| pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow; |
| |
| size = |
| (le32_to_cpu(di->txd64[i].ctrl2) & |
| D64_CTRL2_BC_MASK); |
| |
| di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef); |
| di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef); |
| |
| txp = di->txp[i]; |
| di->txp[i] = NULL; |
| |
| dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE); |
| } |
| |
| di->txin = i; |
| |
| /* tx flow control */ |
| di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1; |
| |
| return txp; |
| |
| bogus: |
| DMA_NONE("bogus curr: start %d end %d txout %d\n", |
| start, end, di->txout); |
| return NULL; |
| } |
| |
| /* |
| * Mac80211 initiated actions sometimes require packets in the DMA queue to be |
| * modified. The modified portion of the packet is not under control of the DMA |
| * engine. This function calls a caller-supplied function for each packet in |
| * the caller specified dma chain. |
| */ |
| void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc) |
| (void *pkt, void *arg_a), void *arg_a) |
| { |
| struct dma_info *di = (struct dma_info *) dmah; |
| uint i = di->txin; |
| uint end = di->txout; |
| struct sk_buff *skb; |
| struct ieee80211_tx_info *tx_info; |
| |
| while (i != end) { |
| skb = (struct sk_buff *)di->txp[i]; |
| if (skb != NULL) { |
| tx_info = (struct ieee80211_tx_info *)skb->cb; |
| (callback_fnc)(tx_info, arg_a); |
| } |
| i = nexttxd(di, i); |
| } |
| } |