blob: a13f92593cfdad89294abe8d37582b40c2c12954 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Author: Xiang Gao <gaoxiang@loongson.cn>
* Huacai Chen <chenhuacai@loongson.cn>
*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/export.h>
#include <linux/nodemask.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/pfn.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <asm/bootinfo.h>
#include <asm/loongson.h>
#include <asm/numa.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/time.h>
int numa_off;
struct pglist_data *node_data[MAX_NUMNODES];
unsigned char node_distances[MAX_NUMNODES][MAX_NUMNODES];
EXPORT_SYMBOL(node_data);
EXPORT_SYMBOL(node_distances);
static struct numa_meminfo numa_meminfo;
cpumask_t cpus_on_node[MAX_NUMNODES];
cpumask_t phys_cpus_on_node[MAX_NUMNODES];
EXPORT_SYMBOL(cpus_on_node);
/*
* apicid, cpu, node mappings
*/
s16 __cpuid_to_node[CONFIG_NR_CPUS] = {
[0 ... CONFIG_NR_CPUS - 1] = NUMA_NO_NODE
};
EXPORT_SYMBOL(__cpuid_to_node);
nodemask_t numa_nodes_parsed __initdata;
#ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);
static int __init pcpu_cpu_to_node(int cpu)
{
return early_cpu_to_node(cpu);
}
static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
{
if (early_cpu_to_node(from) == early_cpu_to_node(to))
return LOCAL_DISTANCE;
else
return REMOTE_DISTANCE;
}
void __init pcpu_populate_pte(unsigned long addr)
{
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d = p4d_offset(pgd, addr);
pud_t *pud;
pmd_t *pmd;
if (p4d_none(*p4d)) {
pud_t *new;
new = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
pgd_populate(&init_mm, pgd, new);
#ifndef __PAGETABLE_PUD_FOLDED
pud_init((unsigned long)new, (unsigned long)invalid_pmd_table);
#endif
}
pud = pud_offset(p4d, addr);
if (pud_none(*pud)) {
pmd_t *new;
new = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
pud_populate(&init_mm, pud, new);
#ifndef __PAGETABLE_PMD_FOLDED
pmd_init((unsigned long)new, (unsigned long)invalid_pte_table);
#endif
}
pmd = pmd_offset(pud, addr);
if (!pmd_present(*pmd)) {
pte_t *new;
new = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
pmd_populate_kernel(&init_mm, pmd, new);
}
}
void __init setup_per_cpu_areas(void)
{
unsigned long delta;
unsigned int cpu;
int rc = -EINVAL;
if (pcpu_chosen_fc == PCPU_FC_AUTO) {
if (nr_node_ids >= 8)
pcpu_chosen_fc = PCPU_FC_PAGE;
else
pcpu_chosen_fc = PCPU_FC_EMBED;
}
/*
* Always reserve area for module percpu variables. That's
* what the legacy allocator did.
*/
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
PERCPU_DYNAMIC_RESERVE, PMD_SIZE,
pcpu_cpu_distance, pcpu_cpu_to_node);
if (rc < 0)
pr_warn("%s allocator failed (%d), falling back to page size\n",
pcpu_fc_names[pcpu_chosen_fc], rc);
}
if (rc < 0)
rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_cpu_to_node);
if (rc < 0)
panic("cannot initialize percpu area (err=%d)", rc);
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu)
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
}
#endif
/*
* Get nodeid by logical cpu number.
* __cpuid_to_node maps phyical cpu id to node, so we
* should use cpu_logical_map(cpu) to index it.
*
* This routine is only used in early phase during
* booting, after setup_per_cpu_areas calling and numa_node
* initialization, cpu_to_node will be used instead.
*/
int early_cpu_to_node(int cpu)
{
int physid = cpu_logical_map(cpu);
if (physid < 0)
return NUMA_NO_NODE;
return __cpuid_to_node[physid];
}
void __init early_numa_add_cpu(int cpuid, s16 node)
{
int cpu = __cpu_number_map[cpuid];
if (cpu < 0)
return;
cpumask_set_cpu(cpu, &cpus_on_node[node]);
cpumask_set_cpu(cpuid, &phys_cpus_on_node[node]);
}
void numa_add_cpu(unsigned int cpu)
{
int nid = cpu_to_node(cpu);
cpumask_set_cpu(cpu, &cpus_on_node[nid]);
}
void numa_remove_cpu(unsigned int cpu)
{
int nid = cpu_to_node(cpu);
cpumask_clear_cpu(cpu, &cpus_on_node[nid]);
}
static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
struct numa_meminfo *mi)
{
/* ignore zero length blks */
if (start == end)
return 0;
/* whine about and ignore invalid blks */
if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
pr_warn("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
nid, start, end - 1);
return 0;
}
if (mi->nr_blks >= NR_NODE_MEMBLKS) {
pr_err("NUMA: too many memblk ranges\n");
return -EINVAL;
}
mi->blk[mi->nr_blks].start = PFN_ALIGN(start);
mi->blk[mi->nr_blks].end = PFN_ALIGN(end - PAGE_SIZE + 1);
mi->blk[mi->nr_blks].nid = nid;
mi->nr_blks++;
return 0;
}
/**
* numa_add_memblk - Add one numa_memblk to numa_meminfo
* @nid: NUMA node ID of the new memblk
* @start: Start address of the new memblk
* @end: End address of the new memblk
*
* Add a new memblk to the default numa_meminfo.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}
static void __init alloc_node_data(int nid)
{
void *nd;
unsigned long nd_pa;
size_t nd_sz = roundup(sizeof(pg_data_t), PAGE_SIZE);
nd_pa = memblock_phys_alloc_try_nid(nd_sz, SMP_CACHE_BYTES, nid);
if (!nd_pa) {
pr_err("Cannot find %zu Byte for node_data (initial node: %d)\n", nd_sz, nid);
return;
}
nd = __va(nd_pa);
node_data[nid] = nd;
memset(nd, 0, sizeof(pg_data_t));
}
static void __init node_mem_init(unsigned int node)
{
unsigned long start_pfn, end_pfn;
unsigned long node_addrspace_offset;
node_addrspace_offset = nid_to_addrbase(node);
pr_info("Node%d's addrspace_offset is 0x%lx\n",
node, node_addrspace_offset);
get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
pr_info("Node%d: start_pfn=0x%lx, end_pfn=0x%lx\n",
node, start_pfn, end_pfn);
alloc_node_data(node);
}
#ifdef CONFIG_ACPI_NUMA
/*
* Sanity check to catch more bad NUMA configurations (they are amazingly
* common). Make sure the nodes cover all memory.
*/
static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
{
int i;
u64 numaram, biosram;
numaram = 0;
for (i = 0; i < mi->nr_blks; i++) {
u64 s = mi->blk[i].start >> PAGE_SHIFT;
u64 e = mi->blk[i].end >> PAGE_SHIFT;
numaram += e - s;
numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
if ((s64)numaram < 0)
numaram = 0;
}
max_pfn = max_low_pfn;
biosram = max_pfn - absent_pages_in_range(0, max_pfn);
BUG_ON((s64)(biosram - numaram) >= (1 << (20 - PAGE_SHIFT)));
return true;
}
static void __init add_node_intersection(u32 node, u64 start, u64 size, u32 type)
{
static unsigned long num_physpages;
num_physpages += (size >> PAGE_SHIFT);
pr_info("Node%d: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n",
node, type, start, size);
pr_info(" start_pfn:0x%llx, end_pfn:0x%llx, num_physpages:0x%lx\n",
start >> PAGE_SHIFT, (start + size) >> PAGE_SHIFT, num_physpages);
memblock_set_node(start, size, &memblock.memory, node);
}
/*
* add_numamem_region
*
* Add a uasable memory region described by BIOS. The
* routine gets each intersection between BIOS's region
* and node's region, and adds them into node's memblock
* pool.
*
*/
static void __init add_numamem_region(u64 start, u64 end, u32 type)
{
u32 i;
u64 ofs = start;
if (start >= end) {
pr_debug("Invalid region: %016llx-%016llx\n", start, end);
return;
}
for (i = 0; i < numa_meminfo.nr_blks; i++) {
struct numa_memblk *mb = &numa_meminfo.blk[i];
if (ofs > mb->end)
continue;
if (end > mb->end) {
add_node_intersection(mb->nid, ofs, mb->end - ofs, type);
ofs = mb->end;
} else {
add_node_intersection(mb->nid, ofs, end - ofs, type);
break;
}
}
}
static void __init init_node_memblock(void)
{
u32 mem_type;
u64 mem_end, mem_start, mem_size;
efi_memory_desc_t *md;
/* Parse memory information and activate */
for_each_efi_memory_desc(md) {
mem_type = md->type;
mem_start = md->phys_addr;
mem_size = md->num_pages << EFI_PAGE_SHIFT;
mem_end = mem_start + mem_size;
switch (mem_type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_PERSISTENT_MEMORY:
case EFI_CONVENTIONAL_MEMORY:
add_numamem_region(mem_start, mem_end, mem_type);
break;
case EFI_PAL_CODE:
case EFI_UNUSABLE_MEMORY:
case EFI_ACPI_RECLAIM_MEMORY:
add_numamem_region(mem_start, mem_end, mem_type);
fallthrough;
case EFI_RESERVED_TYPE:
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
case EFI_MEMORY_MAPPED_IO:
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
pr_info("Resvd: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n",
mem_type, mem_start, mem_size);
break;
}
}
}
static void __init numa_default_distance(void)
{
int row, col;
for (row = 0; row < MAX_NUMNODES; row++)
for (col = 0; col < MAX_NUMNODES; col++) {
if (col == row)
node_distances[row][col] = LOCAL_DISTANCE;
else
/* We assume that one node per package here!
*
* A SLIT should be used for multiple nodes
* per package to override default setting.
*/
node_distances[row][col] = REMOTE_DISTANCE;
}
}
int __init init_numa_memory(void)
{
int i;
int ret;
int node;
for (i = 0; i < NR_CPUS; i++)
set_cpuid_to_node(i, NUMA_NO_NODE);
numa_default_distance();
nodes_clear(numa_nodes_parsed);
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
memset(&numa_meminfo, 0, sizeof(numa_meminfo));
/* Parse SRAT and SLIT if provided by firmware. */
ret = acpi_numa_init();
if (ret < 0)
return ret;
node_possible_map = numa_nodes_parsed;
if (WARN_ON(nodes_empty(node_possible_map)))
return -EINVAL;
init_node_memblock();
if (numa_meminfo_cover_memory(&numa_meminfo) == false)
return -EINVAL;
for_each_node_mask(node, node_possible_map) {
node_mem_init(node);
node_set_online(node);
}
max_low_pfn = PHYS_PFN(memblock_end_of_DRAM());
setup_nr_node_ids();
loongson_sysconf.nr_nodes = nr_node_ids;
loongson_sysconf.cores_per_node = cpumask_weight(&phys_cpus_on_node[0]);
return 0;
}
#endif
void __init paging_init(void)
{
unsigned int node;
unsigned long zones_size[MAX_NR_ZONES] = {0, };
for_each_online_node(node) {
unsigned long start_pfn, end_pfn;
get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
if (end_pfn > max_low_pfn)
max_low_pfn = end_pfn;
}
#ifdef CONFIG_ZONE_DMA32
zones_size[ZONE_DMA32] = MAX_DMA32_PFN;
#endif
zones_size[ZONE_NORMAL] = max_low_pfn;
free_area_init(zones_size);
}
void __init mem_init(void)
{
high_memory = (void *) __va(get_num_physpages() << PAGE_SHIFT);
memblock_free_all();
setup_zero_pages(); /* This comes from node 0 */
}
int pcibus_to_node(struct pci_bus *bus)
{
return dev_to_node(&bus->dev);
}
EXPORT_SYMBOL(pcibus_to_node);