| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include <linux/pm_qos.h> |
| #include <linux/sort.h> |
| |
| #include "gem/i915_gem_internal.h" |
| |
| #include "intel_engine_heartbeat.h" |
| #include "intel_engine_pm.h" |
| #include "intel_engine_regs.h" |
| #include "intel_gpu_commands.h" |
| #include "intel_gt_clock_utils.h" |
| #include "intel_gt_pm.h" |
| #include "intel_rc6.h" |
| #include "selftest_engine_heartbeat.h" |
| #include "selftest_rps.h" |
| #include "selftests/igt_flush_test.h" |
| #include "selftests/igt_spinner.h" |
| #include "selftests/librapl.h" |
| |
| /* Try to isolate the impact of cstates from determing frequency response */ |
| #define CPU_LATENCY 0 /* -1 to disable pm_qos, 0 to disable cstates */ |
| |
| static void dummy_rps_work(struct work_struct *wrk) |
| { |
| } |
| |
| static int cmp_u64(const void *A, const void *B) |
| { |
| const u64 *a = A, *b = B; |
| |
| if (*a < *b) |
| return -1; |
| else if (*a > *b) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static int cmp_u32(const void *A, const void *B) |
| { |
| const u32 *a = A, *b = B; |
| |
| if (*a < *b) |
| return -1; |
| else if (*a > *b) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static struct i915_vma * |
| create_spin_counter(struct intel_engine_cs *engine, |
| struct i915_address_space *vm, |
| bool srm, |
| u32 **cancel, |
| u32 **counter) |
| { |
| enum { |
| COUNT, |
| INC, |
| __NGPR__, |
| }; |
| #define CS_GPR(x) GEN8_RING_CS_GPR(engine->mmio_base, x) |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| unsigned long end; |
| u32 *base, *cs; |
| int loop, i; |
| int err; |
| |
| obj = i915_gem_object_create_internal(vm->i915, 64 << 10); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| end = obj->base.size / sizeof(u32) - 1; |
| |
| vma = i915_vma_instance(obj, vm, NULL); |
| if (IS_ERR(vma)) { |
| err = PTR_ERR(vma); |
| goto err_put; |
| } |
| |
| err = i915_vma_pin(vma, 0, 0, PIN_USER); |
| if (err) |
| goto err_unlock; |
| |
| i915_vma_lock(vma); |
| |
| base = i915_gem_object_pin_map(obj, I915_MAP_WC); |
| if (IS_ERR(base)) { |
| err = PTR_ERR(base); |
| goto err_unpin; |
| } |
| cs = base; |
| |
| *cs++ = MI_LOAD_REGISTER_IMM(__NGPR__ * 2); |
| for (i = 0; i < __NGPR__; i++) { |
| *cs++ = i915_mmio_reg_offset(CS_GPR(i)); |
| *cs++ = 0; |
| *cs++ = i915_mmio_reg_offset(CS_GPR(i)) + 4; |
| *cs++ = 0; |
| } |
| |
| *cs++ = MI_LOAD_REGISTER_IMM(1); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(INC)); |
| *cs++ = 1; |
| |
| loop = cs - base; |
| |
| /* Unroll the loop to avoid MI_BB_START stalls impacting measurements */ |
| for (i = 0; i < 1024; i++) { |
| *cs++ = MI_MATH(4); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(COUNT)); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(INC)); |
| *cs++ = MI_MATH_ADD; |
| *cs++ = MI_MATH_STORE(MI_MATH_REG(COUNT), MI_MATH_REG_ACCU); |
| |
| if (srm) { |
| *cs++ = MI_STORE_REGISTER_MEM_GEN8; |
| *cs++ = i915_mmio_reg_offset(CS_GPR(COUNT)); |
| *cs++ = lower_32_bits(vma->node.start + end * sizeof(*cs)); |
| *cs++ = upper_32_bits(vma->node.start + end * sizeof(*cs)); |
| } |
| } |
| |
| *cs++ = MI_BATCH_BUFFER_START_GEN8; |
| *cs++ = lower_32_bits(vma->node.start + loop * sizeof(*cs)); |
| *cs++ = upper_32_bits(vma->node.start + loop * sizeof(*cs)); |
| GEM_BUG_ON(cs - base > end); |
| |
| i915_gem_object_flush_map(obj); |
| |
| *cancel = base + loop; |
| *counter = srm ? memset32(base + end, 0, 1) : NULL; |
| return vma; |
| |
| err_unpin: |
| i915_vma_unpin(vma); |
| err_unlock: |
| i915_vma_unlock(vma); |
| err_put: |
| i915_gem_object_put(obj); |
| return ERR_PTR(err); |
| } |
| |
| static u8 wait_for_freq(struct intel_rps *rps, u8 freq, int timeout_ms) |
| { |
| u8 history[64], i; |
| unsigned long end; |
| int sleep; |
| |
| i = 0; |
| memset(history, freq, sizeof(history)); |
| sleep = 20; |
| |
| /* The PCU does not change instantly, but drifts towards the goal? */ |
| end = jiffies + msecs_to_jiffies(timeout_ms); |
| do { |
| u8 act; |
| |
| act = read_cagf(rps); |
| if (time_after(jiffies, end)) |
| return act; |
| |
| /* Target acquired */ |
| if (act == freq) |
| return act; |
| |
| /* Any change within the last N samples? */ |
| if (!memchr_inv(history, act, sizeof(history))) |
| return act; |
| |
| history[i] = act; |
| i = (i + 1) % ARRAY_SIZE(history); |
| |
| usleep_range(sleep, 2 * sleep); |
| sleep *= 2; |
| if (sleep > timeout_ms * 20) |
| sleep = timeout_ms * 20; |
| } while (1); |
| } |
| |
| static u8 rps_set_check(struct intel_rps *rps, u8 freq) |
| { |
| mutex_lock(&rps->lock); |
| GEM_BUG_ON(!intel_rps_is_active(rps)); |
| if (wait_for(!intel_rps_set(rps, freq), 50)) { |
| mutex_unlock(&rps->lock); |
| return 0; |
| } |
| GEM_BUG_ON(rps->last_freq != freq); |
| mutex_unlock(&rps->lock); |
| |
| return wait_for_freq(rps, freq, 50); |
| } |
| |
| static void show_pstate_limits(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| |
| if (IS_BROXTON(i915)) { |
| pr_info("P_STATE_CAP[%x]: 0x%08x\n", |
| i915_mmio_reg_offset(BXT_RP_STATE_CAP), |
| intel_uncore_read(rps_to_uncore(rps), |
| BXT_RP_STATE_CAP)); |
| } else if (GRAPHICS_VER(i915) == 9) { |
| pr_info("P_STATE_LIMITS[%x]: 0x%08x\n", |
| i915_mmio_reg_offset(GEN9_RP_STATE_LIMITS), |
| intel_uncore_read(rps_to_uncore(rps), |
| GEN9_RP_STATE_LIMITS)); |
| } |
| } |
| |
| int live_rps_clock_interval(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| int err = 0; |
| |
| if (!intel_rps_is_enabled(rps) || GRAPHICS_VER(gt->i915) < 6) |
| return 0; |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| intel_gt_pm_get(gt); |
| intel_rps_disable(>->rps); |
| |
| intel_gt_check_clock_frequency(gt); |
| |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| u32 cycles; |
| u64 dt; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| continue; |
| |
| st_engine_heartbeat_disable(engine); |
| |
| rq = igt_spinner_create_request(&spin, |
| engine->kernel_context, |
| MI_NOOP); |
| if (IS_ERR(rq)) { |
| st_engine_heartbeat_enable(engine); |
| err = PTR_ERR(rq); |
| break; |
| } |
| |
| i915_request_add(rq); |
| |
| if (!igt_wait_for_spinner(&spin, rq)) { |
| pr_err("%s: RPS spinner did not start\n", |
| engine->name); |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| intel_gt_set_wedged(engine->gt); |
| err = -EIO; |
| break; |
| } |
| |
| intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); |
| |
| intel_uncore_write_fw(gt->uncore, GEN6_RP_CUR_UP_EI, 0); |
| |
| /* Set the evaluation interval to infinity! */ |
| intel_uncore_write_fw(gt->uncore, |
| GEN6_RP_UP_EI, 0xffffffff); |
| intel_uncore_write_fw(gt->uncore, |
| GEN6_RP_UP_THRESHOLD, 0xffffffff); |
| |
| intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL, |
| GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG); |
| |
| if (wait_for(intel_uncore_read_fw(gt->uncore, |
| GEN6_RP_CUR_UP_EI), |
| 10)) { |
| /* Just skip the test; assume lack of HW support */ |
| pr_notice("%s: rps evaluation interval not ticking\n", |
| engine->name); |
| err = -ENODEV; |
| } else { |
| ktime_t dt_[5]; |
| u32 cycles_[5]; |
| int i; |
| |
| for (i = 0; i < 5; i++) { |
| preempt_disable(); |
| |
| dt_[i] = ktime_get(); |
| cycles_[i] = -intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI); |
| |
| udelay(1000); |
| |
| dt_[i] = ktime_sub(ktime_get(), dt_[i]); |
| cycles_[i] += intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI); |
| |
| preempt_enable(); |
| } |
| |
| /* Use the median of both cycle/dt; close enough */ |
| sort(cycles_, 5, sizeof(*cycles_), cmp_u32, NULL); |
| cycles = (cycles_[1] + 2 * cycles_[2] + cycles_[3]) / 4; |
| sort(dt_, 5, sizeof(*dt_), cmp_u64, NULL); |
| dt = div_u64(dt_[1] + 2 * dt_[2] + dt_[3], 4); |
| } |
| |
| intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL, 0); |
| intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); |
| |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| |
| if (err == 0) { |
| u64 time = intel_gt_pm_interval_to_ns(gt, cycles); |
| u32 expected = |
| intel_gt_ns_to_pm_interval(gt, dt); |
| |
| pr_info("%s: rps counted %d C0 cycles [%lldns] in %lldns [%d cycles], using GT clock frequency of %uKHz\n", |
| engine->name, cycles, time, dt, expected, |
| gt->clock_frequency / 1000); |
| |
| if (10 * time < 8 * dt || |
| 8 * time > 10 * dt) { |
| pr_err("%s: rps clock time does not match walltime!\n", |
| engine->name); |
| err = -EINVAL; |
| } |
| |
| if (10 * expected < 8 * cycles || |
| 8 * expected > 10 * cycles) { |
| pr_err("%s: walltime does not match rps clock ticks!\n", |
| engine->name); |
| err = -EINVAL; |
| } |
| } |
| |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| |
| break; /* once is enough */ |
| } |
| |
| intel_rps_enable(>->rps); |
| intel_gt_pm_put(gt); |
| |
| igt_spinner_fini(&spin); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| if (err == -ENODEV) /* skipped, don't report a fail */ |
| err = 0; |
| |
| return err; |
| } |
| |
| int live_rps_control(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| int err = 0; |
| |
| /* |
| * Check that the actual frequency matches our requested frequency, |
| * to verify our control mechanism. We have to be careful that the |
| * PCU may throttle the GPU in which case the actual frequency used |
| * will be lowered than requested. |
| */ |
| |
| if (!intel_rps_is_enabled(rps)) |
| return 0; |
| |
| if (IS_CHERRYVIEW(gt->i915)) /* XXX fragile PCU */ |
| return 0; |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| intel_gt_pm_get(gt); |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| ktime_t min_dt, max_dt; |
| int f, limit; |
| int min, max; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| continue; |
| |
| st_engine_heartbeat_disable(engine); |
| |
| rq = igt_spinner_create_request(&spin, |
| engine->kernel_context, |
| MI_NOOP); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| break; |
| } |
| |
| i915_request_add(rq); |
| |
| if (!igt_wait_for_spinner(&spin, rq)) { |
| pr_err("%s: RPS spinner did not start\n", |
| engine->name); |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| intel_gt_set_wedged(engine->gt); |
| err = -EIO; |
| break; |
| } |
| |
| if (rps_set_check(rps, rps->min_freq) != rps->min_freq) { |
| pr_err("%s: could not set minimum frequency [%x], only %x!\n", |
| engine->name, rps->min_freq, read_cagf(rps)); |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| show_pstate_limits(rps); |
| err = -EINVAL; |
| break; |
| } |
| |
| for (f = rps->min_freq + 1; f < rps->max_freq; f++) { |
| if (rps_set_check(rps, f) < f) |
| break; |
| } |
| |
| limit = rps_set_check(rps, f); |
| |
| if (rps_set_check(rps, rps->min_freq) != rps->min_freq) { |
| pr_err("%s: could not restore minimum frequency [%x], only %x!\n", |
| engine->name, rps->min_freq, read_cagf(rps)); |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| show_pstate_limits(rps); |
| err = -EINVAL; |
| break; |
| } |
| |
| max_dt = ktime_get(); |
| max = rps_set_check(rps, limit); |
| max_dt = ktime_sub(ktime_get(), max_dt); |
| |
| min_dt = ktime_get(); |
| min = rps_set_check(rps, rps->min_freq); |
| min_dt = ktime_sub(ktime_get(), min_dt); |
| |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| |
| pr_info("%s: range:[%x:%uMHz, %x:%uMHz] limit:[%x:%uMHz], %x:%x response %lluns:%lluns\n", |
| engine->name, |
| rps->min_freq, intel_gpu_freq(rps, rps->min_freq), |
| rps->max_freq, intel_gpu_freq(rps, rps->max_freq), |
| limit, intel_gpu_freq(rps, limit), |
| min, max, ktime_to_ns(min_dt), ktime_to_ns(max_dt)); |
| |
| if (limit == rps->min_freq) { |
| pr_err("%s: GPU throttled to minimum!\n", |
| engine->name); |
| show_pstate_limits(rps); |
| err = -ENODEV; |
| break; |
| } |
| |
| if (igt_flush_test(gt->i915)) { |
| err = -EIO; |
| break; |
| } |
| } |
| intel_gt_pm_put(gt); |
| |
| igt_spinner_fini(&spin); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| return err; |
| } |
| |
| static void show_pcu_config(struct intel_rps *rps) |
| { |
| struct drm_i915_private *i915 = rps_to_i915(rps); |
| unsigned int max_gpu_freq, min_gpu_freq; |
| intel_wakeref_t wakeref; |
| int gpu_freq; |
| |
| if (!HAS_LLC(i915)) |
| return; |
| |
| min_gpu_freq = rps->min_freq; |
| max_gpu_freq = rps->max_freq; |
| if (GRAPHICS_VER(i915) >= 9) { |
| /* Convert GT frequency to 50 HZ units */ |
| min_gpu_freq /= GEN9_FREQ_SCALER; |
| max_gpu_freq /= GEN9_FREQ_SCALER; |
| } |
| |
| wakeref = intel_runtime_pm_get(rps_to_uncore(rps)->rpm); |
| |
| pr_info("%5s %5s %5s\n", "GPU", "eCPU", "eRing"); |
| for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { |
| int ia_freq = gpu_freq; |
| |
| snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_PCODE_READ_MIN_FREQ_TABLE, |
| &ia_freq, NULL); |
| |
| pr_info("%5d %5d %5d\n", |
| gpu_freq * 50, |
| ((ia_freq >> 0) & 0xff) * 100, |
| ((ia_freq >> 8) & 0xff) * 100); |
| } |
| |
| intel_runtime_pm_put(rps_to_uncore(rps)->rpm, wakeref); |
| } |
| |
| static u64 __measure_frequency(u32 *cntr, int duration_ms) |
| { |
| u64 dc, dt; |
| |
| dt = ktime_get(); |
| dc = READ_ONCE(*cntr); |
| usleep_range(1000 * duration_ms, 2000 * duration_ms); |
| dc = READ_ONCE(*cntr) - dc; |
| dt = ktime_get() - dt; |
| |
| return div64_u64(1000 * 1000 * dc, dt); |
| } |
| |
| static u64 measure_frequency_at(struct intel_rps *rps, u32 *cntr, int *freq) |
| { |
| u64 x[5]; |
| int i; |
| |
| *freq = rps_set_check(rps, *freq); |
| for (i = 0; i < 5; i++) |
| x[i] = __measure_frequency(cntr, 2); |
| *freq = (*freq + read_cagf(rps)) / 2; |
| |
| /* A simple triangle filter for better result stability */ |
| sort(x, 5, sizeof(*x), cmp_u64, NULL); |
| return div_u64(x[1] + 2 * x[2] + x[3], 4); |
| } |
| |
| static u64 __measure_cs_frequency(struct intel_engine_cs *engine, |
| int duration_ms) |
| { |
| u64 dc, dt; |
| |
| dt = ktime_get(); |
| dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0)); |
| usleep_range(1000 * duration_ms, 2000 * duration_ms); |
| dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0)) - dc; |
| dt = ktime_get() - dt; |
| |
| return div64_u64(1000 * 1000 * dc, dt); |
| } |
| |
| static u64 measure_cs_frequency_at(struct intel_rps *rps, |
| struct intel_engine_cs *engine, |
| int *freq) |
| { |
| u64 x[5]; |
| int i; |
| |
| *freq = rps_set_check(rps, *freq); |
| for (i = 0; i < 5; i++) |
| x[i] = __measure_cs_frequency(engine, 2); |
| *freq = (*freq + read_cagf(rps)) / 2; |
| |
| /* A simple triangle filter for better result stability */ |
| sort(x, 5, sizeof(*x), cmp_u64, NULL); |
| return div_u64(x[1] + 2 * x[2] + x[3], 4); |
| } |
| |
| static bool scaled_within(u64 x, u64 y, u32 f_n, u32 f_d) |
| { |
| return f_d * x > f_n * y && f_n * x < f_d * y; |
| } |
| |
| int live_rps_frequency_cs(void *arg) |
| { |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| struct intel_engine_cs *engine; |
| struct pm_qos_request qos; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| /* |
| * The premise is that the GPU does change frequency at our behest. |
| * Let's check there is a correspondence between the requested |
| * frequency, the actual frequency, and the observed clock rate. |
| */ |
| |
| if (!intel_rps_is_enabled(rps)) |
| return 0; |
| |
| if (GRAPHICS_VER(gt->i915) < 8) /* for CS simplicity */ |
| return 0; |
| |
| if (CPU_LATENCY >= 0) |
| cpu_latency_qos_add_request(&qos, CPU_LATENCY); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| struct i915_vma *vma; |
| u32 *cancel, *cntr; |
| struct { |
| u64 count; |
| int freq; |
| } min, max; |
| |
| st_engine_heartbeat_disable(engine); |
| |
| vma = create_spin_counter(engine, |
| engine->kernel_context->vm, false, |
| &cancel, &cntr); |
| if (IS_ERR(vma)) { |
| err = PTR_ERR(vma); |
| st_engine_heartbeat_enable(engine); |
| break; |
| } |
| |
| rq = intel_engine_create_kernel_request(engine); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err_vma; |
| } |
| |
| err = i915_request_await_object(rq, vma->obj, false); |
| if (!err) |
| err = i915_vma_move_to_active(vma, rq, 0); |
| if (!err) |
| err = rq->engine->emit_bb_start(rq, |
| vma->node.start, |
| PAGE_SIZE, 0); |
| i915_request_add(rq); |
| if (err) |
| goto err_vma; |
| |
| if (wait_for(intel_uncore_read(engine->uncore, CS_GPR(0)), |
| 10)) { |
| pr_err("%s: timed loop did not start\n", |
| engine->name); |
| goto err_vma; |
| } |
| |
| min.freq = rps->min_freq; |
| min.count = measure_cs_frequency_at(rps, engine, &min.freq); |
| |
| max.freq = rps->max_freq; |
| max.count = measure_cs_frequency_at(rps, engine, &max.freq); |
| |
| pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n", |
| engine->name, |
| min.count, intel_gpu_freq(rps, min.freq), |
| max.count, intel_gpu_freq(rps, max.freq), |
| (int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count, |
| max.freq * min.count)); |
| |
| if (!scaled_within(max.freq * min.count, |
| min.freq * max.count, |
| 2, 3)) { |
| int f; |
| |
| pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n", |
| engine->name, |
| max.freq * min.count, |
| min.freq * max.count); |
| show_pcu_config(rps); |
| |
| for (f = min.freq + 1; f <= rps->max_freq; f++) { |
| int act = f; |
| u64 count; |
| |
| count = measure_cs_frequency_at(rps, engine, &act); |
| if (act < f) |
| break; |
| |
| pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n", |
| engine->name, |
| act, intel_gpu_freq(rps, act), count, |
| (int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count, |
| act * min.count)); |
| |
| f = act; /* may skip ahead [pcu granularity] */ |
| } |
| |
| err = -EINTR; /* ignore error, continue on with test */ |
| } |
| |
| err_vma: |
| *cancel = MI_BATCH_BUFFER_END; |
| i915_gem_object_flush_map(vma->obj); |
| i915_gem_object_unpin_map(vma->obj); |
| i915_vma_unpin(vma); |
| i915_vma_unlock(vma); |
| i915_vma_put(vma); |
| |
| st_engine_heartbeat_enable(engine); |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| if (err) |
| break; |
| } |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| if (CPU_LATENCY >= 0) |
| cpu_latency_qos_remove_request(&qos); |
| |
| return err; |
| } |
| |
| int live_rps_frequency_srm(void *arg) |
| { |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| struct intel_engine_cs *engine; |
| struct pm_qos_request qos; |
| enum intel_engine_id id; |
| int err = 0; |
| |
| /* |
| * The premise is that the GPU does change frequency at our behest. |
| * Let's check there is a correspondence between the requested |
| * frequency, the actual frequency, and the observed clock rate. |
| */ |
| |
| if (!intel_rps_is_enabled(rps)) |
| return 0; |
| |
| if (GRAPHICS_VER(gt->i915) < 8) /* for CS simplicity */ |
| return 0; |
| |
| if (CPU_LATENCY >= 0) |
| cpu_latency_qos_add_request(&qos, CPU_LATENCY); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| struct i915_vma *vma; |
| u32 *cancel, *cntr; |
| struct { |
| u64 count; |
| int freq; |
| } min, max; |
| |
| st_engine_heartbeat_disable(engine); |
| |
| vma = create_spin_counter(engine, |
| engine->kernel_context->vm, true, |
| &cancel, &cntr); |
| if (IS_ERR(vma)) { |
| err = PTR_ERR(vma); |
| st_engine_heartbeat_enable(engine); |
| break; |
| } |
| |
| rq = intel_engine_create_kernel_request(engine); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err_vma; |
| } |
| |
| err = i915_request_await_object(rq, vma->obj, false); |
| if (!err) |
| err = i915_vma_move_to_active(vma, rq, 0); |
| if (!err) |
| err = rq->engine->emit_bb_start(rq, |
| vma->node.start, |
| PAGE_SIZE, 0); |
| i915_request_add(rq); |
| if (err) |
| goto err_vma; |
| |
| if (wait_for(READ_ONCE(*cntr), 10)) { |
| pr_err("%s: timed loop did not start\n", |
| engine->name); |
| goto err_vma; |
| } |
| |
| min.freq = rps->min_freq; |
| min.count = measure_frequency_at(rps, cntr, &min.freq); |
| |
| max.freq = rps->max_freq; |
| max.count = measure_frequency_at(rps, cntr, &max.freq); |
| |
| pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n", |
| engine->name, |
| min.count, intel_gpu_freq(rps, min.freq), |
| max.count, intel_gpu_freq(rps, max.freq), |
| (int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count, |
| max.freq * min.count)); |
| |
| if (!scaled_within(max.freq * min.count, |
| min.freq * max.count, |
| 1, 2)) { |
| int f; |
| |
| pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n", |
| engine->name, |
| max.freq * min.count, |
| min.freq * max.count); |
| show_pcu_config(rps); |
| |
| for (f = min.freq + 1; f <= rps->max_freq; f++) { |
| int act = f; |
| u64 count; |
| |
| count = measure_frequency_at(rps, cntr, &act); |
| if (act < f) |
| break; |
| |
| pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n", |
| engine->name, |
| act, intel_gpu_freq(rps, act), count, |
| (int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count, |
| act * min.count)); |
| |
| f = act; /* may skip ahead [pcu granularity] */ |
| } |
| |
| err = -EINTR; /* ignore error, continue on with test */ |
| } |
| |
| err_vma: |
| *cancel = MI_BATCH_BUFFER_END; |
| i915_gem_object_flush_map(vma->obj); |
| i915_gem_object_unpin_map(vma->obj); |
| i915_vma_unpin(vma); |
| i915_vma_unlock(vma); |
| i915_vma_put(vma); |
| |
| st_engine_heartbeat_enable(engine); |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| if (err) |
| break; |
| } |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| if (CPU_LATENCY >= 0) |
| cpu_latency_qos_remove_request(&qos); |
| |
| return err; |
| } |
| |
| static void sleep_for_ei(struct intel_rps *rps, int timeout_us) |
| { |
| /* Flush any previous EI */ |
| usleep_range(timeout_us, 2 * timeout_us); |
| |
| /* Reset the interrupt status */ |
| rps_disable_interrupts(rps); |
| GEM_BUG_ON(rps->pm_iir); |
| rps_enable_interrupts(rps); |
| |
| /* And then wait for the timeout, for real this time */ |
| usleep_range(2 * timeout_us, 3 * timeout_us); |
| } |
| |
| static int __rps_up_interrupt(struct intel_rps *rps, |
| struct intel_engine_cs *engine, |
| struct igt_spinner *spin) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| struct i915_request *rq; |
| u32 timeout; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| return 0; |
| |
| rps_set_check(rps, rps->min_freq); |
| |
| rq = igt_spinner_create_request(spin, engine->kernel_context, MI_NOOP); |
| if (IS_ERR(rq)) |
| return PTR_ERR(rq); |
| |
| i915_request_get(rq); |
| i915_request_add(rq); |
| |
| if (!igt_wait_for_spinner(spin, rq)) { |
| pr_err("%s: RPS spinner did not start\n", |
| engine->name); |
| i915_request_put(rq); |
| intel_gt_set_wedged(engine->gt); |
| return -EIO; |
| } |
| |
| if (!intel_rps_is_active(rps)) { |
| pr_err("%s: RPS not enabled on starting spinner\n", |
| engine->name); |
| igt_spinner_end(spin); |
| i915_request_put(rq); |
| return -EINVAL; |
| } |
| |
| if (!(rps->pm_events & GEN6_PM_RP_UP_THRESHOLD)) { |
| pr_err("%s: RPS did not register UP interrupt\n", |
| engine->name); |
| i915_request_put(rq); |
| return -EINVAL; |
| } |
| |
| if (rps->last_freq != rps->min_freq) { |
| pr_err("%s: RPS did not program min frequency\n", |
| engine->name); |
| i915_request_put(rq); |
| return -EINVAL; |
| } |
| |
| timeout = intel_uncore_read(uncore, GEN6_RP_UP_EI); |
| timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout); |
| timeout = DIV_ROUND_UP(timeout, 1000); |
| |
| sleep_for_ei(rps, timeout); |
| GEM_BUG_ON(i915_request_completed(rq)); |
| |
| igt_spinner_end(spin); |
| i915_request_put(rq); |
| |
| if (rps->cur_freq != rps->min_freq) { |
| pr_err("%s: Frequency unexpectedly changed [up], now %d!\n", |
| engine->name, intel_rps_read_actual_frequency(rps)); |
| return -EINVAL; |
| } |
| |
| if (!(rps->pm_iir & GEN6_PM_RP_UP_THRESHOLD)) { |
| pr_err("%s: UP interrupt not recorded for spinner, pm_iir:%x, prev_up:%x, up_threshold:%x, up_ei:%x\n", |
| engine->name, rps->pm_iir, |
| intel_uncore_read(uncore, GEN6_RP_PREV_UP), |
| intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD), |
| intel_uncore_read(uncore, GEN6_RP_UP_EI)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __rps_down_interrupt(struct intel_rps *rps, |
| struct intel_engine_cs *engine) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| u32 timeout; |
| |
| rps_set_check(rps, rps->max_freq); |
| |
| if (!(rps->pm_events & GEN6_PM_RP_DOWN_THRESHOLD)) { |
| pr_err("%s: RPS did not register DOWN interrupt\n", |
| engine->name); |
| return -EINVAL; |
| } |
| |
| if (rps->last_freq != rps->max_freq) { |
| pr_err("%s: RPS did not program max frequency\n", |
| engine->name); |
| return -EINVAL; |
| } |
| |
| timeout = intel_uncore_read(uncore, GEN6_RP_DOWN_EI); |
| timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout); |
| timeout = DIV_ROUND_UP(timeout, 1000); |
| |
| sleep_for_ei(rps, timeout); |
| |
| if (rps->cur_freq != rps->max_freq) { |
| pr_err("%s: Frequency unexpectedly changed [down], now %d!\n", |
| engine->name, |
| intel_rps_read_actual_frequency(rps)); |
| return -EINVAL; |
| } |
| |
| if (!(rps->pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT))) { |
| pr_err("%s: DOWN interrupt not recorded for idle, pm_iir:%x, prev_down:%x, down_threshold:%x, down_ei:%x [prev_up:%x, up_threshold:%x, up_ei:%x]\n", |
| engine->name, rps->pm_iir, |
| intel_uncore_read(uncore, GEN6_RP_PREV_DOWN), |
| intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD), |
| intel_uncore_read(uncore, GEN6_RP_DOWN_EI), |
| intel_uncore_read(uncore, GEN6_RP_PREV_UP), |
| intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD), |
| intel_uncore_read(uncore, GEN6_RP_UP_EI)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int live_rps_interrupt(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| u32 pm_events; |
| int err = 0; |
| |
| /* |
| * First, let's check whether or not we are receiving interrupts. |
| */ |
| |
| if (!intel_rps_has_interrupts(rps) || GRAPHICS_VER(gt->i915) < 6) |
| return 0; |
| |
| intel_gt_pm_get(gt); |
| pm_events = rps->pm_events; |
| intel_gt_pm_put(gt); |
| if (!pm_events) { |
| pr_err("No RPS PM events registered, but RPS is enabled?\n"); |
| return -ENODEV; |
| } |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| for_each_engine(engine, gt, id) { |
| /* Keep the engine busy with a spinner; expect an UP! */ |
| if (pm_events & GEN6_PM_RP_UP_THRESHOLD) { |
| intel_gt_pm_wait_for_idle(engine->gt); |
| GEM_BUG_ON(intel_rps_is_active(rps)); |
| |
| st_engine_heartbeat_disable(engine); |
| |
| err = __rps_up_interrupt(rps, engine, &spin); |
| |
| st_engine_heartbeat_enable(engine); |
| if (err) |
| goto out; |
| |
| intel_gt_pm_wait_for_idle(engine->gt); |
| } |
| |
| /* Keep the engine awake but idle and check for DOWN */ |
| if (pm_events & GEN6_PM_RP_DOWN_THRESHOLD) { |
| st_engine_heartbeat_disable(engine); |
| intel_rc6_disable(>->rc6); |
| |
| err = __rps_down_interrupt(rps, engine); |
| |
| intel_rc6_enable(>->rc6); |
| st_engine_heartbeat_enable(engine); |
| if (err) |
| goto out; |
| } |
| } |
| |
| out: |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| |
| igt_spinner_fini(&spin); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| return err; |
| } |
| |
| static u64 __measure_power(int duration_ms) |
| { |
| u64 dE, dt; |
| |
| dt = ktime_get(); |
| dE = librapl_energy_uJ(); |
| usleep_range(1000 * duration_ms, 2000 * duration_ms); |
| dE = librapl_energy_uJ() - dE; |
| dt = ktime_get() - dt; |
| |
| return div64_u64(1000 * 1000 * dE, dt); |
| } |
| |
| static u64 measure_power_at(struct intel_rps *rps, int *freq) |
| { |
| u64 x[5]; |
| int i; |
| |
| *freq = rps_set_check(rps, *freq); |
| for (i = 0; i < 5; i++) |
| x[i] = __measure_power(5); |
| *freq = (*freq + read_cagf(rps)) / 2; |
| |
| /* A simple triangle filter for better result stability */ |
| sort(x, 5, sizeof(*x), cmp_u64, NULL); |
| return div_u64(x[1] + 2 * x[2] + x[3], 4); |
| } |
| |
| int live_rps_power(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| void (*saved_work)(struct work_struct *wrk); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| int err = 0; |
| |
| /* |
| * Our fundamental assumption is that running at lower frequency |
| * actually saves power. Let's see if our RAPL measurement support |
| * that theory. |
| */ |
| |
| if (!intel_rps_is_enabled(rps) || GRAPHICS_VER(gt->i915) < 6) |
| return 0; |
| |
| if (!librapl_supported(gt->i915)) |
| return 0; |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| intel_gt_pm_wait_for_idle(gt); |
| saved_work = rps->work.func; |
| rps->work.func = dummy_rps_work; |
| |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| struct { |
| u64 power; |
| int freq; |
| } min, max; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| continue; |
| |
| st_engine_heartbeat_disable(engine); |
| |
| rq = igt_spinner_create_request(&spin, |
| engine->kernel_context, |
| MI_NOOP); |
| if (IS_ERR(rq)) { |
| st_engine_heartbeat_enable(engine); |
| err = PTR_ERR(rq); |
| break; |
| } |
| |
| i915_request_add(rq); |
| |
| if (!igt_wait_for_spinner(&spin, rq)) { |
| pr_err("%s: RPS spinner did not start\n", |
| engine->name); |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| intel_gt_set_wedged(engine->gt); |
| err = -EIO; |
| break; |
| } |
| |
| max.freq = rps->max_freq; |
| max.power = measure_power_at(rps, &max.freq); |
| |
| min.freq = rps->min_freq; |
| min.power = measure_power_at(rps, &min.freq); |
| |
| igt_spinner_end(&spin); |
| st_engine_heartbeat_enable(engine); |
| |
| pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n", |
| engine->name, |
| min.power, intel_gpu_freq(rps, min.freq), |
| max.power, intel_gpu_freq(rps, max.freq)); |
| |
| if (10 * min.freq >= 9 * max.freq) { |
| pr_notice("Could not control frequency, ran at [%d:%uMHz, %d:%uMhz]\n", |
| min.freq, intel_gpu_freq(rps, min.freq), |
| max.freq, intel_gpu_freq(rps, max.freq)); |
| continue; |
| } |
| |
| if (11 * min.power > 10 * max.power) { |
| pr_err("%s: did not conserve power when setting lower frequency!\n", |
| engine->name); |
| err = -EINVAL; |
| break; |
| } |
| |
| if (igt_flush_test(gt->i915)) { |
| err = -EIO; |
| break; |
| } |
| } |
| |
| igt_spinner_fini(&spin); |
| |
| intel_gt_pm_wait_for_idle(gt); |
| rps->work.func = saved_work; |
| |
| return err; |
| } |
| |
| int live_rps_dynamic(void *arg) |
| { |
| struct intel_gt *gt = arg; |
| struct intel_rps *rps = >->rps; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct igt_spinner spin; |
| int err = 0; |
| |
| /* |
| * We've looked at the bascs, and have established that we |
| * can change the clock frequency and that the HW will generate |
| * interrupts based on load. Now we check how we integrate those |
| * moving parts into dynamic reclocking based on load. |
| */ |
| |
| if (!intel_rps_is_enabled(rps) || GRAPHICS_VER(gt->i915) < 6) |
| return 0; |
| |
| if (igt_spinner_init(&spin, gt)) |
| return -ENOMEM; |
| |
| if (intel_rps_has_interrupts(rps)) |
| pr_info("RPS has interrupt support\n"); |
| if (intel_rps_uses_timer(rps)) |
| pr_info("RPS has timer support\n"); |
| |
| for_each_engine(engine, gt, id) { |
| struct i915_request *rq; |
| struct { |
| ktime_t dt; |
| u8 freq; |
| } min, max; |
| |
| if (!intel_engine_can_store_dword(engine)) |
| continue; |
| |
| intel_gt_pm_wait_for_idle(gt); |
| GEM_BUG_ON(intel_rps_is_active(rps)); |
| rps->cur_freq = rps->min_freq; |
| |
| intel_engine_pm_get(engine); |
| intel_rc6_disable(>->rc6); |
| GEM_BUG_ON(rps->last_freq != rps->min_freq); |
| |
| rq = igt_spinner_create_request(&spin, |
| engine->kernel_context, |
| MI_NOOP); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err; |
| } |
| |
| i915_request_add(rq); |
| |
| max.dt = ktime_get(); |
| max.freq = wait_for_freq(rps, rps->max_freq, 500); |
| max.dt = ktime_sub(ktime_get(), max.dt); |
| |
| igt_spinner_end(&spin); |
| |
| min.dt = ktime_get(); |
| min.freq = wait_for_freq(rps, rps->min_freq, 2000); |
| min.dt = ktime_sub(ktime_get(), min.dt); |
| |
| pr_info("%s: dynamically reclocked to %u:%uMHz while busy in %lluns, and %u:%uMHz while idle in %lluns\n", |
| engine->name, |
| max.freq, intel_gpu_freq(rps, max.freq), |
| ktime_to_ns(max.dt), |
| min.freq, intel_gpu_freq(rps, min.freq), |
| ktime_to_ns(min.dt)); |
| if (min.freq >= max.freq) { |
| pr_err("%s: dynamic reclocking of spinner failed\n!", |
| engine->name); |
| err = -EINVAL; |
| } |
| |
| err: |
| intel_rc6_enable(>->rc6); |
| intel_engine_pm_put(engine); |
| |
| if (igt_flush_test(gt->i915)) |
| err = -EIO; |
| if (err) |
| break; |
| } |
| |
| igt_spinner_fini(&spin); |
| |
| return err; |
| } |