| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * R-Car Display Unit CRTCs |
| * |
| * Copyright (C) 2013-2015 Renesas Electronics Corporation |
| * |
| * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/mutex.h> |
| #include <linux/platform_device.h> |
| #include <linux/sys_soc.h> |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_bridge.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_device.h> |
| #include <drm/drm_fb_cma_helper.h> |
| #include <drm/drm_gem_cma_helper.h> |
| #include <drm/drm_plane_helper.h> |
| #include <drm/drm_vblank.h> |
| |
| #include "rcar_cmm.h" |
| #include "rcar_du_crtc.h" |
| #include "rcar_du_drv.h" |
| #include "rcar_du_encoder.h" |
| #include "rcar_du_kms.h" |
| #include "rcar_du_plane.h" |
| #include "rcar_du_regs.h" |
| #include "rcar_du_vsp.h" |
| #include "rcar_lvds.h" |
| |
| static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); |
| } |
| |
| static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); |
| } |
| |
| static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| rcar_du_write(rcdu, rcrtc->mmio_offset + reg, |
| rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); |
| } |
| |
| static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| rcar_du_write(rcdu, rcrtc->mmio_offset + reg, |
| rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); |
| } |
| |
| void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set; |
| rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Hardware Setup |
| */ |
| |
| struct dpll_info { |
| unsigned int output; |
| unsigned int fdpll; |
| unsigned int n; |
| unsigned int m; |
| }; |
| |
| static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc, |
| struct dpll_info *dpll, |
| unsigned long input, |
| unsigned long target) |
| { |
| unsigned long best_diff = (unsigned long)-1; |
| unsigned long diff; |
| unsigned int fdpll; |
| unsigned int m; |
| unsigned int n; |
| |
| /* |
| * fin fvco fout fclkout |
| * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out |
| * +-> | | | |
| * | | |
| * +---------------- [1/N] <------------+ |
| * |
| * fclkout = fvco / P / FDPLL -- (1) |
| * |
| * fin/M = fvco/P/N |
| * |
| * fvco = fin * P * N / M -- (2) |
| * |
| * (1) + (2) indicates |
| * |
| * fclkout = fin * N / M / FDPLL |
| * |
| * NOTES |
| * N : (n + 1) |
| * M : (m + 1) |
| * FDPLL : (fdpll + 1) |
| * P : 2 |
| * 2kHz < fvco < 4096MHz |
| * |
| * To minimize the jitter, |
| * N : as large as possible |
| * M : as small as possible |
| */ |
| for (m = 0; m < 4; m++) { |
| for (n = 119; n > 38; n--) { |
| /* |
| * This code only runs on 64-bit architectures, the |
| * unsigned long type can thus be used for 64-bit |
| * computation. It will still compile without any |
| * warning on 32-bit architectures. |
| * |
| * To optimize calculations, use fout instead of fvco |
| * to verify the VCO frequency constraint. |
| */ |
| unsigned long fout = input * (n + 1) / (m + 1); |
| |
| if (fout < 1000 || fout > 2048 * 1000 * 1000U) |
| continue; |
| |
| for (fdpll = 1; fdpll < 32; fdpll++) { |
| unsigned long output; |
| |
| output = fout / (fdpll + 1); |
| if (output >= 400 * 1000 * 1000) |
| continue; |
| |
| diff = abs((long)output - (long)target); |
| if (best_diff > diff) { |
| best_diff = diff; |
| dpll->n = n; |
| dpll->m = m; |
| dpll->fdpll = fdpll; |
| dpll->output = output; |
| } |
| |
| if (diff == 0) |
| goto done; |
| } |
| } |
| } |
| |
| done: |
| dev_dbg(rcrtc->dev->dev, |
| "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n", |
| dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff); |
| } |
| |
| struct du_clk_params { |
| struct clk *clk; |
| unsigned long rate; |
| unsigned long diff; |
| u32 escr; |
| }; |
| |
| static void rcar_du_escr_divider(struct clk *clk, unsigned long target, |
| u32 escr, struct du_clk_params *params) |
| { |
| unsigned long rate; |
| unsigned long diff; |
| u32 div; |
| |
| /* |
| * If the target rate has already been achieved perfectly we can't do |
| * better. |
| */ |
| if (params->diff == 0) |
| return; |
| |
| /* |
| * Compute the input clock rate and internal divisor values to obtain |
| * the clock rate closest to the target frequency. |
| */ |
| rate = clk_round_rate(clk, target); |
| div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1; |
| diff = abs(rate / (div + 1) - target); |
| |
| /* |
| * Store the parameters if the resulting frequency is better than any |
| * previously calculated value. |
| */ |
| if (diff < params->diff) { |
| params->clk = clk; |
| params->rate = rate; |
| params->diff = diff; |
| params->escr = escr | div; |
| } |
| } |
| |
| static const struct soc_device_attribute rcar_du_r8a7795_es1[] = { |
| { .soc_id = "r8a7795", .revision = "ES1.*" }, |
| { /* sentinel */ } |
| }; |
| |
| static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) |
| { |
| const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| unsigned long mode_clock = mode->clock * 1000; |
| unsigned int hdse_offset; |
| u32 dsmr; |
| u32 escr; |
| |
| if (rcdu->info->dpll_mask & (1 << rcrtc->index)) { |
| unsigned long target = mode_clock; |
| struct dpll_info dpll = { 0 }; |
| unsigned long extclk; |
| u32 dpllcr; |
| u32 div = 0; |
| |
| /* |
| * DU channels that have a display PLL can't use the internal |
| * system clock, and have no internal clock divider. |
| */ |
| |
| /* |
| * The H3 ES1.x exhibits dot clock duty cycle stability issues. |
| * We can work around them by configuring the DPLL to twice the |
| * desired frequency, coupled with a /2 post-divider. Restrict |
| * the workaround to H3 ES1.x as ES2.0 and all other SoCs have |
| * no post-divider when a display PLL is present (as shown by |
| * the workaround breaking HDMI output on M3-W during testing). |
| */ |
| if (soc_device_match(rcar_du_r8a7795_es1)) { |
| target *= 2; |
| div = 1; |
| } |
| |
| extclk = clk_get_rate(rcrtc->extclock); |
| rcar_du_dpll_divider(rcrtc, &dpll, extclk, target); |
| |
| dpllcr = DPLLCR_CODE | DPLLCR_CLKE |
| | DPLLCR_FDPLL(dpll.fdpll) |
| | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m) |
| | DPLLCR_STBY; |
| |
| if (rcrtc->index == 1) |
| dpllcr |= DPLLCR_PLCS1 |
| | DPLLCR_INCS_DOTCLKIN1; |
| else |
| dpllcr |= DPLLCR_PLCS0 |
| | DPLLCR_INCS_DOTCLKIN0; |
| |
| rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr); |
| |
| escr = ESCR_DCLKSEL_DCLKIN | div; |
| } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) || |
| rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) { |
| /* |
| * Use the external LVDS or DSI PLL output as the dot clock when |
| * outputting to the LVDS or DSI encoder on an SoC that supports |
| * this clock routing option. We use the clock directly in that |
| * case, without any additional divider. |
| */ |
| escr = ESCR_DCLKSEL_DCLKIN; |
| } else { |
| struct du_clk_params params = { .diff = (unsigned long)-1 }; |
| |
| rcar_du_escr_divider(rcrtc->clock, mode_clock, |
| ESCR_DCLKSEL_CLKS, ¶ms); |
| if (rcrtc->extclock) |
| rcar_du_escr_divider(rcrtc->extclock, mode_clock, |
| ESCR_DCLKSEL_DCLKIN, ¶ms); |
| |
| dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n", |
| mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext", |
| params.rate); |
| |
| clk_set_rate(params.clk, params.rate); |
| escr = params.escr; |
| } |
| |
| dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr); |
| |
| rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr); |
| rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0); |
| |
| /* Signal polarities */ |
| dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0) |
| | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0) |
| | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0) |
| | DSMR_DIPM_DISP | DSMR_CSPM; |
| rcar_du_crtc_write(rcrtc, DSMR, dsmr); |
| |
| /* |
| * When the CMM is enabled, an additional offset of 25 pixels must be |
| * subtracted from the HDS (horizontal display start) and HDE |
| * (horizontal display end) registers. |
| */ |
| hdse_offset = 19; |
| if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) |
| hdse_offset += 25; |
| |
| /* Display timings */ |
| rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - |
| hdse_offset); |
| rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + |
| mode->hdisplay - hdse_offset); |
| rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - |
| mode->hsync_start - 1); |
| rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); |
| |
| rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - |
| mode->crtc_vsync_end - 2); |
| rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - |
| mode->crtc_vsync_end + |
| mode->crtc_vdisplay - 2); |
| rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - |
| mode->crtc_vsync_end + |
| mode->crtc_vsync_start - 1); |
| rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); |
| |
| rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1); |
| rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); |
| } |
| |
| static unsigned int plane_zpos(struct rcar_du_plane *plane) |
| { |
| return plane->plane.state->normalized_zpos; |
| } |
| |
| static const struct rcar_du_format_info * |
| plane_format(struct rcar_du_plane *plane) |
| { |
| return to_rcar_plane_state(plane->plane.state)->format; |
| } |
| |
| static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) |
| { |
| struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| unsigned int num_planes = 0; |
| unsigned int dptsr_planes; |
| unsigned int hwplanes = 0; |
| unsigned int prio = 0; |
| unsigned int i; |
| u32 dspr = 0; |
| |
| for (i = 0; i < rcrtc->group->num_planes; ++i) { |
| struct rcar_du_plane *plane = &rcrtc->group->planes[i]; |
| unsigned int j; |
| |
| if (plane->plane.state->crtc != &rcrtc->crtc || |
| !plane->plane.state->visible) |
| continue; |
| |
| /* Insert the plane in the sorted planes array. */ |
| for (j = num_planes++; j > 0; --j) { |
| if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) |
| break; |
| planes[j] = planes[j-1]; |
| } |
| |
| planes[j] = plane; |
| prio += plane_format(plane)->planes * 4; |
| } |
| |
| for (i = 0; i < num_planes; ++i) { |
| struct rcar_du_plane *plane = planes[i]; |
| struct drm_plane_state *state = plane->plane.state; |
| unsigned int index = to_rcar_plane_state(state)->hwindex; |
| |
| prio -= 4; |
| dspr |= (index + 1) << prio; |
| hwplanes |= 1 << index; |
| |
| if (plane_format(plane)->planes == 2) { |
| index = (index + 1) % 8; |
| |
| prio -= 4; |
| dspr |= (index + 1) << prio; |
| hwplanes |= 1 << index; |
| } |
| } |
| |
| /* If VSP+DU integration is enabled the plane assignment is fixed. */ |
| if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { |
| if (rcdu->info->gen < 3) { |
| dspr = (rcrtc->index % 2) + 1; |
| hwplanes = 1 << (rcrtc->index % 2); |
| } else { |
| dspr = (rcrtc->index % 2) ? 3 : 1; |
| hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0); |
| } |
| } |
| |
| /* |
| * Update the planes to display timing and dot clock generator |
| * associations. |
| * |
| * Updating the DPTSR register requires restarting the CRTC group, |
| * resulting in visible flicker. To mitigate the issue only update the |
| * association if needed by enabled planes. Planes being disabled will |
| * keep their current association. |
| */ |
| mutex_lock(&rcrtc->group->lock); |
| |
| dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes |
| : rcrtc->group->dptsr_planes & ~hwplanes; |
| |
| if (dptsr_planes != rcrtc->group->dptsr_planes) { |
| rcar_du_group_write(rcrtc->group, DPTSR, |
| (dptsr_planes << 16) | dptsr_planes); |
| rcrtc->group->dptsr_planes = dptsr_planes; |
| |
| if (rcrtc->group->used_crtcs) |
| rcar_du_group_restart(rcrtc->group); |
| } |
| |
| /* Restart the group if plane sources have changed. */ |
| if (rcrtc->group->need_restart) |
| rcar_du_group_restart(rcrtc->group); |
| |
| mutex_unlock(&rcrtc->group->lock); |
| |
| rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, |
| dspr); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Page Flip |
| */ |
| |
| void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) |
| { |
| struct drm_pending_vblank_event *event; |
| struct drm_device *dev = rcrtc->crtc.dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| event = rcrtc->event; |
| rcrtc->event = NULL; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| if (event == NULL) |
| return; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| drm_crtc_send_vblank_event(&rcrtc->crtc, event); |
| wake_up(&rcrtc->flip_wait); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| drm_crtc_vblank_put(&rcrtc->crtc); |
| } |
| |
| static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) |
| { |
| struct drm_device *dev = rcrtc->crtc.dev; |
| unsigned long flags; |
| bool pending; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| pending = rcrtc->event != NULL; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| return pending; |
| } |
| |
| static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| if (wait_event_timeout(rcrtc->flip_wait, |
| !rcar_du_crtc_page_flip_pending(rcrtc), |
| msecs_to_jiffies(50))) |
| return; |
| |
| dev_warn(rcdu->dev, "page flip timeout\n"); |
| |
| rcar_du_crtc_finish_page_flip(rcrtc); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Color Management Module (CMM) |
| */ |
| |
| static int rcar_du_cmm_check(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| struct drm_property_blob *drm_lut = state->gamma_lut; |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct device *dev = rcrtc->dev->dev; |
| |
| if (!drm_lut) |
| return 0; |
| |
| /* We only accept fully populated LUT tables. */ |
| if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) { |
| dev_err(dev, "invalid gamma lut size: %zu bytes\n", |
| drm_lut->length); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void rcar_du_cmm_setup(struct drm_crtc *crtc) |
| { |
| struct drm_property_blob *drm_lut = crtc->state->gamma_lut; |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct rcar_cmm_config cmm_config = {}; |
| |
| if (!rcrtc->cmm) |
| return; |
| |
| if (drm_lut) |
| cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data; |
| |
| rcar_cmm_setup(rcrtc->cmm, &cmm_config); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Start/Stop and Suspend/Resume |
| */ |
| |
| static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc) |
| { |
| /* Set display off and background to black */ |
| rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); |
| rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); |
| |
| /* Configure display timings and output routing */ |
| rcar_du_crtc_set_display_timing(rcrtc); |
| rcar_du_group_set_routing(rcrtc->group); |
| |
| /* Start with all planes disabled. */ |
| rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); |
| |
| /* Enable the VSP compositor. */ |
| if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) |
| rcar_du_vsp_enable(rcrtc); |
| |
| /* Turn vertical blanking interrupt reporting on. */ |
| drm_crtc_vblank_on(&rcrtc->crtc); |
| } |
| |
| static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) |
| { |
| int ret; |
| |
| /* |
| * Guard against double-get, as the function is called from both the |
| * .atomic_enable() and .atomic_begin() handlers. |
| */ |
| if (rcrtc->initialized) |
| return 0; |
| |
| ret = clk_prepare_enable(rcrtc->clock); |
| if (ret < 0) |
| return ret; |
| |
| ret = clk_prepare_enable(rcrtc->extclock); |
| if (ret < 0) |
| goto error_clock; |
| |
| ret = rcar_du_group_get(rcrtc->group); |
| if (ret < 0) |
| goto error_group; |
| |
| rcar_du_crtc_setup(rcrtc); |
| rcrtc->initialized = true; |
| |
| return 0; |
| |
| error_group: |
| clk_disable_unprepare(rcrtc->extclock); |
| error_clock: |
| clk_disable_unprepare(rcrtc->clock); |
| return ret; |
| } |
| |
| static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) |
| { |
| rcar_du_group_put(rcrtc->group); |
| |
| clk_disable_unprepare(rcrtc->extclock); |
| clk_disable_unprepare(rcrtc->clock); |
| |
| rcrtc->initialized = false; |
| } |
| |
| static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) |
| { |
| bool interlaced; |
| |
| /* |
| * Select master sync mode. This enables display operation in master |
| * sync mode (with the HSYNC and VSYNC signals configured as outputs and |
| * actively driven). |
| */ |
| interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; |
| rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK, |
| (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | |
| DSYSR_TVM_MASTER); |
| |
| rcar_du_group_start_stop(rcrtc->group, true); |
| } |
| |
| static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| struct drm_crtc *crtc = &rcrtc->crtc; |
| u32 status; |
| |
| /* Make sure vblank interrupts are enabled. */ |
| drm_crtc_vblank_get(crtc); |
| |
| /* |
| * Disable planes and calculate how many vertical blanking interrupts we |
| * have to wait for. If a vertical blanking interrupt has been triggered |
| * but not processed yet, we don't know whether it occurred before or |
| * after the planes got disabled. We thus have to wait for two vblank |
| * interrupts in that case. |
| */ |
| spin_lock_irq(&rcrtc->vblank_lock); |
| rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); |
| status = rcar_du_crtc_read(rcrtc, DSSR); |
| rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1; |
| spin_unlock_irq(&rcrtc->vblank_lock); |
| |
| if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0, |
| msecs_to_jiffies(100))) |
| dev_warn(rcdu->dev, "vertical blanking timeout\n"); |
| |
| drm_crtc_vblank_put(crtc); |
| } |
| |
| static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) |
| { |
| struct drm_crtc *crtc = &rcrtc->crtc; |
| |
| /* |
| * Disable all planes and wait for the change to take effect. This is |
| * required as the plane enable registers are updated on vblank, and no |
| * vblank will occur once the CRTC is stopped. Disabling planes when |
| * starting the CRTC thus wouldn't be enough as it would start scanning |
| * out immediately from old frame buffers until the next vblank. |
| * |
| * This increases the CRTC stop delay, especially when multiple CRTCs |
| * are stopped in one operation as we now wait for one vblank per CRTC. |
| * Whether this can be improved needs to be researched. |
| */ |
| rcar_du_crtc_disable_planes(rcrtc); |
| |
| /* |
| * Disable vertical blanking interrupt reporting. We first need to wait |
| * for page flip completion before stopping the CRTC as userspace |
| * expects page flips to eventually complete. |
| */ |
| rcar_du_crtc_wait_page_flip(rcrtc); |
| drm_crtc_vblank_off(crtc); |
| |
| /* Disable the VSP compositor. */ |
| if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) |
| rcar_du_vsp_disable(rcrtc); |
| |
| if (rcrtc->cmm) |
| rcar_cmm_disable(rcrtc->cmm); |
| |
| /* |
| * Select switch sync mode. This stops display operation and configures |
| * the HSYNC and VSYNC signals as inputs. |
| * |
| * TODO: Find another way to stop the display for DUs that don't support |
| * TVM sync. |
| */ |
| if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC)) |
| rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK, |
| DSYSR_TVM_SWITCH); |
| |
| rcar_du_group_start_stop(rcrtc->group, false); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * CRTC Functions |
| */ |
| |
| static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, |
| crtc); |
| struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state); |
| struct drm_encoder *encoder; |
| int ret; |
| |
| ret = rcar_du_cmm_check(crtc, crtc_state); |
| if (ret) |
| return ret; |
| |
| /* Store the routes from the CRTC output to the DU outputs. */ |
| rstate->outputs = 0; |
| |
| drm_for_each_encoder_mask(encoder, crtc->dev, |
| crtc_state->encoder_mask) { |
| struct rcar_du_encoder *renc; |
| |
| /* Skip the writeback encoder. */ |
| if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) |
| continue; |
| |
| renc = to_rcar_encoder(encoder); |
| rstate->outputs |= BIT(renc->output); |
| } |
| |
| return 0; |
| } |
| |
| static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state); |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| if (rcrtc->cmm) |
| rcar_cmm_enable(rcrtc->cmm); |
| rcar_du_crtc_get(rcrtc); |
| |
| /* |
| * On D3/E3 the dot clock is provided by the LVDS encoder attached to |
| * the DU channel. We need to enable its clock output explicitly if |
| * the LVDS output is disabled. |
| */ |
| if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && |
| rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { |
| struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; |
| const struct drm_display_mode *mode = |
| &crtc->state->adjusted_mode; |
| |
| rcar_lvds_clk_enable(bridge, mode->clock * 1000); |
| } |
| |
| rcar_du_crtc_start(rcrtc); |
| |
| /* |
| * TODO: The chip manual indicates that CMM tables should be written |
| * after the DU channel has been activated. Investigate the impact |
| * of this restriction on the first displayed frame. |
| */ |
| rcar_du_cmm_setup(crtc); |
| } |
| |
| static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, |
| crtc); |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state); |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| |
| rcar_du_crtc_stop(rcrtc); |
| rcar_du_crtc_put(rcrtc); |
| |
| if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && |
| rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { |
| struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; |
| |
| /* |
| * Disable the LVDS clock output, see |
| * rcar_du_crtc_atomic_enable(). |
| */ |
| rcar_lvds_clk_disable(bridge); |
| } |
| |
| spin_lock_irq(&crtc->dev->event_lock); |
| if (crtc->state->event) { |
| drm_crtc_send_vblank_event(crtc, crtc->state->event); |
| crtc->state->event = NULL; |
| } |
| spin_unlock_irq(&crtc->dev->event_lock); |
| } |
| |
| static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| |
| WARN_ON(!crtc->state->enable); |
| |
| /* |
| * If a mode set is in progress we can be called with the CRTC disabled. |
| * We thus need to first get and setup the CRTC in order to configure |
| * planes. We must *not* put the CRTC in .atomic_flush(), as it must be |
| * kept awake until the .atomic_enable() call that will follow. The get |
| * operation in .atomic_enable() will in that case be a no-op, and the |
| * CRTC will be put later in .atomic_disable(). |
| * |
| * If a mode set is not in progress the CRTC is enabled, and the |
| * following get call will be a no-op. There is thus no need to balance |
| * it in .atomic_flush() either. |
| */ |
| rcar_du_crtc_get(rcrtc); |
| |
| /* If the active state changed, we let .atomic_enable handle CMM. */ |
| if (crtc->state->color_mgmt_changed && !crtc->state->active_changed) |
| rcar_du_cmm_setup(crtc); |
| |
| if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) |
| rcar_du_vsp_atomic_begin(rcrtc); |
| } |
| |
| static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, |
| struct drm_atomic_state *state) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct drm_device *dev = rcrtc->crtc.dev; |
| unsigned long flags; |
| |
| rcar_du_crtc_update_planes(rcrtc); |
| |
| if (crtc->state->event) { |
| WARN_ON(drm_crtc_vblank_get(crtc) != 0); |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| rcrtc->event = crtc->state->event; |
| crtc->state->event = NULL; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) |
| rcar_du_vsp_atomic_flush(rcrtc); |
| } |
| |
| static enum drm_mode_status |
| rcar_du_crtc_mode_valid(struct drm_crtc *crtc, |
| const struct drm_display_mode *mode) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| unsigned int min_sync_porch; |
| unsigned int vbp; |
| |
| if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED)) |
| return MODE_NO_INTERLACE; |
| |
| /* |
| * The hardware requires a minimum combined horizontal sync and back |
| * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is |
| * used), and a minimum vertical back porch of 3 lines. |
| */ |
| min_sync_porch = 20; |
| if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) |
| min_sync_porch += 25; |
| |
| if (mode->htotal - mode->hsync_start < min_sync_porch) |
| return MODE_HBLANK_NARROW; |
| |
| vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1); |
| if (vbp < 3) |
| return MODE_VBLANK_NARROW; |
| |
| return MODE_OK; |
| } |
| |
| static const struct drm_crtc_helper_funcs crtc_helper_funcs = { |
| .atomic_check = rcar_du_crtc_atomic_check, |
| .atomic_begin = rcar_du_crtc_atomic_begin, |
| .atomic_flush = rcar_du_crtc_atomic_flush, |
| .atomic_enable = rcar_du_crtc_atomic_enable, |
| .atomic_disable = rcar_du_crtc_atomic_disable, |
| .mode_valid = rcar_du_crtc_mode_valid, |
| }; |
| |
| static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc) |
| { |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| const char **sources; |
| unsigned int count; |
| int i = -1; |
| |
| /* CRC available only on Gen3 HW. */ |
| if (rcdu->info->gen < 3) |
| return; |
| |
| /* Reserve 1 for "auto" source. */ |
| count = rcrtc->vsp->num_planes + 1; |
| |
| sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL); |
| if (!sources) |
| return; |
| |
| sources[0] = kstrdup("auto", GFP_KERNEL); |
| if (!sources[0]) |
| goto error; |
| |
| for (i = 0; i < rcrtc->vsp->num_planes; ++i) { |
| struct drm_plane *plane = &rcrtc->vsp->planes[i].plane; |
| char name[16]; |
| |
| sprintf(name, "plane%u", plane->base.id); |
| sources[i + 1] = kstrdup(name, GFP_KERNEL); |
| if (!sources[i + 1]) |
| goto error; |
| } |
| |
| rcrtc->sources = sources; |
| rcrtc->sources_count = count; |
| return; |
| |
| error: |
| while (i >= 0) { |
| kfree(sources[i]); |
| i--; |
| } |
| kfree(sources); |
| } |
| |
| static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc) |
| { |
| unsigned int i; |
| |
| if (!rcrtc->sources) |
| return; |
| |
| for (i = 0; i < rcrtc->sources_count; i++) |
| kfree(rcrtc->sources[i]); |
| kfree(rcrtc->sources); |
| |
| rcrtc->sources = NULL; |
| rcrtc->sources_count = 0; |
| } |
| |
| static struct drm_crtc_state * |
| rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc) |
| { |
| struct rcar_du_crtc_state *state; |
| struct rcar_du_crtc_state *copy; |
| |
| if (WARN_ON(!crtc->state)) |
| return NULL; |
| |
| state = to_rcar_crtc_state(crtc->state); |
| copy = kmemdup(state, sizeof(*state), GFP_KERNEL); |
| if (copy == NULL) |
| return NULL; |
| |
| __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state); |
| |
| return ©->state; |
| } |
| |
| static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| __drm_atomic_helper_crtc_destroy_state(state); |
| kfree(to_rcar_crtc_state(state)); |
| } |
| |
| static void rcar_du_crtc_cleanup(struct drm_crtc *crtc) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| |
| rcar_du_crtc_crc_cleanup(rcrtc); |
| |
| return drm_crtc_cleanup(crtc); |
| } |
| |
| static void rcar_du_crtc_reset(struct drm_crtc *crtc) |
| { |
| struct rcar_du_crtc_state *state; |
| |
| if (crtc->state) { |
| rcar_du_crtc_atomic_destroy_state(crtc, crtc->state); |
| crtc->state = NULL; |
| } |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (state == NULL) |
| return; |
| |
| state->crc.source = VSP1_DU_CRC_NONE; |
| state->crc.index = 0; |
| |
| __drm_atomic_helper_crtc_reset(crtc, &state->state); |
| } |
| |
| static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| |
| rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); |
| rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); |
| rcrtc->vblank_enable = true; |
| |
| return 0; |
| } |
| |
| static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| |
| rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); |
| rcrtc->vblank_enable = false; |
| } |
| |
| static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc, |
| const char *source_name, |
| enum vsp1_du_crc_source *source) |
| { |
| unsigned int index; |
| int ret; |
| |
| /* |
| * Parse the source name. Supported values are "plane%u" to compute the |
| * CRC on an input plane (%u is the plane ID), and "auto" to compute the |
| * CRC on the composer (VSP) output. |
| */ |
| |
| if (!source_name) { |
| *source = VSP1_DU_CRC_NONE; |
| return 0; |
| } else if (!strcmp(source_name, "auto")) { |
| *source = VSP1_DU_CRC_OUTPUT; |
| return 0; |
| } else if (strstarts(source_name, "plane")) { |
| unsigned int i; |
| |
| *source = VSP1_DU_CRC_PLANE; |
| |
| ret = kstrtouint(source_name + strlen("plane"), 10, &index); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < rcrtc->vsp->num_planes; ++i) { |
| if (index == rcrtc->vsp->planes[i].plane.base.id) |
| return i; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc, |
| const char *source_name, |
| size_t *values_cnt) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| enum vsp1_du_crc_source source; |
| |
| if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) { |
| DRM_DEBUG_DRIVER("unknown source %s\n", source_name); |
| return -EINVAL; |
| } |
| |
| *values_cnt = 1; |
| return 0; |
| } |
| |
| static const char *const * |
| rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| |
| *count = rcrtc->sources_count; |
| return rcrtc->sources; |
| } |
| |
| static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc, |
| const char *source_name) |
| { |
| struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); |
| struct drm_modeset_acquire_ctx ctx; |
| struct drm_crtc_state *crtc_state; |
| struct drm_atomic_state *state; |
| enum vsp1_du_crc_source source; |
| unsigned int index; |
| int ret; |
| |
| ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source); |
| if (ret < 0) |
| return ret; |
| |
| index = ret; |
| |
| /* Perform an atomic commit to set the CRC source. */ |
| drm_modeset_acquire_init(&ctx, 0); |
| |
| state = drm_atomic_state_alloc(crtc->dev); |
| if (!state) { |
| ret = -ENOMEM; |
| goto unlock; |
| } |
| |
| state->acquire_ctx = &ctx; |
| |
| retry: |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (!IS_ERR(crtc_state)) { |
| struct rcar_du_crtc_state *rcrtc_state; |
| |
| rcrtc_state = to_rcar_crtc_state(crtc_state); |
| rcrtc_state->crc.source = source; |
| rcrtc_state->crc.index = index; |
| |
| ret = drm_atomic_commit(state); |
| } else { |
| ret = PTR_ERR(crtc_state); |
| } |
| |
| if (ret == -EDEADLK) { |
| drm_atomic_state_clear(state); |
| drm_modeset_backoff(&ctx); |
| goto retry; |
| } |
| |
| drm_atomic_state_put(state); |
| |
| unlock: |
| drm_modeset_drop_locks(&ctx); |
| drm_modeset_acquire_fini(&ctx); |
| |
| return ret; |
| } |
| |
| static const struct drm_crtc_funcs crtc_funcs_gen2 = { |
| .reset = rcar_du_crtc_reset, |
| .destroy = drm_crtc_cleanup, |
| .set_config = drm_atomic_helper_set_config, |
| .page_flip = drm_atomic_helper_page_flip, |
| .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, |
| .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, |
| .enable_vblank = rcar_du_crtc_enable_vblank, |
| .disable_vblank = rcar_du_crtc_disable_vblank, |
| }; |
| |
| static const struct drm_crtc_funcs crtc_funcs_gen3 = { |
| .reset = rcar_du_crtc_reset, |
| .destroy = rcar_du_crtc_cleanup, |
| .set_config = drm_atomic_helper_set_config, |
| .page_flip = drm_atomic_helper_page_flip, |
| .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, |
| .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, |
| .enable_vblank = rcar_du_crtc_enable_vblank, |
| .disable_vblank = rcar_du_crtc_disable_vblank, |
| .set_crc_source = rcar_du_crtc_set_crc_source, |
| .verify_crc_source = rcar_du_crtc_verify_crc_source, |
| .get_crc_sources = rcar_du_crtc_get_crc_sources, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Interrupt Handling |
| */ |
| |
| static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) |
| { |
| struct rcar_du_crtc *rcrtc = arg; |
| struct rcar_du_device *rcdu = rcrtc->dev; |
| irqreturn_t ret = IRQ_NONE; |
| u32 status; |
| |
| spin_lock(&rcrtc->vblank_lock); |
| |
| status = rcar_du_crtc_read(rcrtc, DSSR); |
| rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); |
| |
| if (status & DSSR_VBK) { |
| /* |
| * Wake up the vblank wait if the counter reaches 0. This must |
| * be protected by the vblank_lock to avoid races in |
| * rcar_du_crtc_disable_planes(). |
| */ |
| if (rcrtc->vblank_count) { |
| if (--rcrtc->vblank_count == 0) |
| wake_up(&rcrtc->vblank_wait); |
| } |
| } |
| |
| spin_unlock(&rcrtc->vblank_lock); |
| |
| if (status & DSSR_VBK) { |
| if (rcdu->info->gen < 3) { |
| drm_crtc_handle_vblank(&rcrtc->crtc); |
| rcar_du_crtc_finish_page_flip(rcrtc); |
| } |
| |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Initialization |
| */ |
| |
| int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex, |
| unsigned int hwindex) |
| { |
| static const unsigned int mmio_offsets[] = { |
| DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET |
| }; |
| |
| struct rcar_du_device *rcdu = rgrp->dev; |
| struct platform_device *pdev = to_platform_device(rcdu->dev); |
| struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex]; |
| struct drm_crtc *crtc = &rcrtc->crtc; |
| struct drm_plane *primary; |
| unsigned int irqflags; |
| struct clk *clk; |
| char clk_name[9]; |
| char *name; |
| int irq; |
| int ret; |
| |
| /* Get the CRTC clock and the optional external clock. */ |
| if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) { |
| sprintf(clk_name, "du.%u", hwindex); |
| name = clk_name; |
| } else { |
| name = NULL; |
| } |
| |
| rcrtc->clock = devm_clk_get(rcdu->dev, name); |
| if (IS_ERR(rcrtc->clock)) { |
| dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex); |
| return PTR_ERR(rcrtc->clock); |
| } |
| |
| sprintf(clk_name, "dclkin.%u", hwindex); |
| clk = devm_clk_get(rcdu->dev, clk_name); |
| if (!IS_ERR(clk)) { |
| rcrtc->extclock = clk; |
| } else if (PTR_ERR(clk) == -EPROBE_DEFER) { |
| return -EPROBE_DEFER; |
| } else if (rcdu->info->dpll_mask & BIT(hwindex)) { |
| /* |
| * DU channels that have a display PLL can't use the internal |
| * system clock and thus require an external clock. |
| */ |
| ret = PTR_ERR(clk); |
| dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret); |
| return ret; |
| } |
| |
| init_waitqueue_head(&rcrtc->flip_wait); |
| init_waitqueue_head(&rcrtc->vblank_wait); |
| spin_lock_init(&rcrtc->vblank_lock); |
| |
| rcrtc->dev = rcdu; |
| rcrtc->group = rgrp; |
| rcrtc->mmio_offset = mmio_offsets[hwindex]; |
| rcrtc->index = hwindex; |
| rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES; |
| |
| if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC)) |
| rcrtc->dsysr |= DSYSR_TVM_TVSYNC; |
| |
| if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) |
| primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane; |
| else |
| primary = &rgrp->planes[swindex % 2].plane; |
| |
| ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL, |
| rcdu->info->gen <= 2 ? |
| &crtc_funcs_gen2 : &crtc_funcs_gen3, |
| NULL); |
| if (ret < 0) |
| return ret; |
| |
| /* CMM might be disabled for this CRTC. */ |
| if (rcdu->cmms[swindex]) { |
| rcrtc->cmm = rcdu->cmms[swindex]; |
| rgrp->cmms_mask |= BIT(hwindex % 2); |
| |
| drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE); |
| drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE); |
| } |
| |
| drm_crtc_helper_add(crtc, &crtc_helper_funcs); |
| |
| /* Register the interrupt handler. */ |
| if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) { |
| /* The IRQ's are associated with the CRTC (sw)index. */ |
| irq = platform_get_irq(pdev, swindex); |
| irqflags = 0; |
| } else { |
| irq = platform_get_irq(pdev, 0); |
| irqflags = IRQF_SHARED; |
| } |
| |
| if (irq < 0) { |
| dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex); |
| return irq; |
| } |
| |
| ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, |
| dev_name(rcdu->dev), rcrtc); |
| if (ret < 0) { |
| dev_err(rcdu->dev, |
| "failed to register IRQ for CRTC %u\n", swindex); |
| return ret; |
| } |
| |
| rcar_du_crtc_crc_init(rcrtc); |
| |
| return 0; |
| } |