| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Resource Director Technology(RDT) |
| * - Monitoring code |
| * |
| * Copyright (C) 2017 Intel Corporation |
| * |
| * Author: |
| * Vikas Shivappa <vikas.shivappa@intel.com> |
| * |
| * This replaces the cqm.c based on perf but we reuse a lot of |
| * code and datastructures originally from Peter Zijlstra and Matt Fleming. |
| * |
| * More information about RDT be found in the Intel (R) x86 Architecture |
| * Software Developer Manual June 2016, volume 3, section 17.17. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <asm/cpu_device_id.h> |
| #include "internal.h" |
| |
| struct rmid_entry { |
| u32 rmid; |
| int busy; |
| struct list_head list; |
| }; |
| |
| /** |
| * @rmid_free_lru A least recently used list of free RMIDs |
| * These RMIDs are guaranteed to have an occupancy less than the |
| * threshold occupancy |
| */ |
| static LIST_HEAD(rmid_free_lru); |
| |
| /** |
| * @rmid_limbo_count count of currently unused but (potentially) |
| * dirty RMIDs. |
| * This counts RMIDs that no one is currently using but that |
| * may have a occupancy value > intel_cqm_threshold. User can change |
| * the threshold occupancy value. |
| */ |
| static unsigned int rmid_limbo_count; |
| |
| /** |
| * @rmid_entry - The entry in the limbo and free lists. |
| */ |
| static struct rmid_entry *rmid_ptrs; |
| |
| /* |
| * Global boolean for rdt_monitor which is true if any |
| * resource monitoring is enabled. |
| */ |
| bool rdt_mon_capable; |
| |
| /* |
| * Global to indicate which monitoring events are enabled. |
| */ |
| unsigned int rdt_mon_features; |
| |
| /* |
| * This is the threshold cache occupancy at which we will consider an |
| * RMID available for re-allocation. |
| */ |
| unsigned int resctrl_cqm_threshold; |
| |
| static inline struct rmid_entry *__rmid_entry(u32 rmid) |
| { |
| struct rmid_entry *entry; |
| |
| entry = &rmid_ptrs[rmid]; |
| WARN_ON(entry->rmid != rmid); |
| |
| return entry; |
| } |
| |
| static u64 __rmid_read(u32 rmid, u32 eventid) |
| { |
| u64 val; |
| |
| /* |
| * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured |
| * with a valid event code for supported resource type and the bits |
| * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, |
| * IA32_QM_CTR.data (bits 61:0) reports the monitored data. |
| * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) |
| * are error bits. |
| */ |
| wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); |
| rdmsrl(MSR_IA32_QM_CTR, val); |
| |
| return val; |
| } |
| |
| static bool rmid_dirty(struct rmid_entry *entry) |
| { |
| u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); |
| |
| return val >= resctrl_cqm_threshold; |
| } |
| |
| /* |
| * Check the RMIDs that are marked as busy for this domain. If the |
| * reported LLC occupancy is below the threshold clear the busy bit and |
| * decrement the count. If the busy count gets to zero on an RMID, we |
| * free the RMID |
| */ |
| void __check_limbo(struct rdt_domain *d, bool force_free) |
| { |
| struct rmid_entry *entry; |
| struct rdt_resource *r; |
| u32 crmid = 1, nrmid; |
| |
| r = &rdt_resources_all[RDT_RESOURCE_L3]; |
| |
| /* |
| * Skip RMID 0 and start from RMID 1 and check all the RMIDs that |
| * are marked as busy for occupancy < threshold. If the occupancy |
| * is less than the threshold decrement the busy counter of the |
| * RMID and move it to the free list when the counter reaches 0. |
| */ |
| for (;;) { |
| nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); |
| if (nrmid >= r->num_rmid) |
| break; |
| |
| entry = __rmid_entry(nrmid); |
| if (force_free || !rmid_dirty(entry)) { |
| clear_bit(entry->rmid, d->rmid_busy_llc); |
| if (!--entry->busy) { |
| rmid_limbo_count--; |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| } |
| crmid = nrmid + 1; |
| } |
| } |
| |
| bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) |
| { |
| return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; |
| } |
| |
| /* |
| * As of now the RMIDs allocation is global. |
| * However we keep track of which packages the RMIDs |
| * are used to optimize the limbo list management. |
| */ |
| int alloc_rmid(void) |
| { |
| struct rmid_entry *entry; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| if (list_empty(&rmid_free_lru)) |
| return rmid_limbo_count ? -EBUSY : -ENOSPC; |
| |
| entry = list_first_entry(&rmid_free_lru, |
| struct rmid_entry, list); |
| list_del(&entry->list); |
| |
| return entry->rmid; |
| } |
| |
| static void add_rmid_to_limbo(struct rmid_entry *entry) |
| { |
| struct rdt_resource *r; |
| struct rdt_domain *d; |
| int cpu; |
| u64 val; |
| |
| r = &rdt_resources_all[RDT_RESOURCE_L3]; |
| |
| entry->busy = 0; |
| cpu = get_cpu(); |
| list_for_each_entry(d, &r->domains, list) { |
| if (cpumask_test_cpu(cpu, &d->cpu_mask)) { |
| val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); |
| if (val <= resctrl_cqm_threshold) |
| continue; |
| } |
| |
| /* |
| * For the first limbo RMID in the domain, |
| * setup up the limbo worker. |
| */ |
| if (!has_busy_rmid(r, d)) |
| cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); |
| set_bit(entry->rmid, d->rmid_busy_llc); |
| entry->busy++; |
| } |
| put_cpu(); |
| |
| if (entry->busy) |
| rmid_limbo_count++; |
| else |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| |
| void free_rmid(u32 rmid) |
| { |
| struct rmid_entry *entry; |
| |
| if (!rmid) |
| return; |
| |
| lockdep_assert_held(&rdtgroup_mutex); |
| |
| entry = __rmid_entry(rmid); |
| |
| if (is_llc_occupancy_enabled()) |
| add_rmid_to_limbo(entry); |
| else |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| |
| static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr) |
| { |
| u64 shift = 64 - MBM_CNTR_WIDTH, chunks; |
| |
| chunks = (cur_msr << shift) - (prev_msr << shift); |
| return chunks >>= shift; |
| } |
| |
| static int __mon_event_count(u32 rmid, struct rmid_read *rr) |
| { |
| struct mbm_state *m; |
| u64 chunks, tval; |
| |
| tval = __rmid_read(rmid, rr->evtid); |
| if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { |
| rr->val = tval; |
| return -EINVAL; |
| } |
| switch (rr->evtid) { |
| case QOS_L3_OCCUP_EVENT_ID: |
| rr->val += tval; |
| return 0; |
| case QOS_L3_MBM_TOTAL_EVENT_ID: |
| m = &rr->d->mbm_total[rmid]; |
| break; |
| case QOS_L3_MBM_LOCAL_EVENT_ID: |
| m = &rr->d->mbm_local[rmid]; |
| break; |
| default: |
| /* |
| * Code would never reach here because |
| * an invalid event id would fail the __rmid_read. |
| */ |
| return -EINVAL; |
| } |
| |
| if (rr->first) { |
| memset(m, 0, sizeof(struct mbm_state)); |
| m->prev_bw_msr = m->prev_msr = tval; |
| return 0; |
| } |
| |
| chunks = mbm_overflow_count(m->prev_msr, tval); |
| m->chunks += chunks; |
| m->prev_msr = tval; |
| |
| rr->val += m->chunks; |
| return 0; |
| } |
| |
| /* |
| * Supporting function to calculate the memory bandwidth |
| * and delta bandwidth in MBps. |
| */ |
| static void mbm_bw_count(u32 rmid, struct rmid_read *rr) |
| { |
| struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; |
| struct mbm_state *m = &rr->d->mbm_local[rmid]; |
| u64 tval, cur_bw, chunks; |
| |
| tval = __rmid_read(rmid, rr->evtid); |
| if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) |
| return; |
| |
| chunks = mbm_overflow_count(m->prev_bw_msr, tval); |
| m->chunks_bw += chunks; |
| m->chunks = m->chunks_bw; |
| cur_bw = (chunks * r->mon_scale) >> 20; |
| |
| if (m->delta_comp) |
| m->delta_bw = abs(cur_bw - m->prev_bw); |
| m->delta_comp = false; |
| m->prev_bw = cur_bw; |
| m->prev_bw_msr = tval; |
| } |
| |
| /* |
| * This is called via IPI to read the CQM/MBM counters |
| * on a domain. |
| */ |
| void mon_event_count(void *info) |
| { |
| struct rdtgroup *rdtgrp, *entry; |
| struct rmid_read *rr = info; |
| struct list_head *head; |
| |
| rdtgrp = rr->rgrp; |
| |
| if (__mon_event_count(rdtgrp->mon.rmid, rr)) |
| return; |
| |
| /* |
| * For Ctrl groups read data from child monitor groups. |
| */ |
| head = &rdtgrp->mon.crdtgrp_list; |
| |
| if (rdtgrp->type == RDTCTRL_GROUP) { |
| list_for_each_entry(entry, head, mon.crdtgrp_list) { |
| if (__mon_event_count(entry->mon.rmid, rr)) |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Feedback loop for MBA software controller (mba_sc) |
| * |
| * mba_sc is a feedback loop where we periodically read MBM counters and |
| * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so |
| * that: |
| * |
| * current bandwdith(cur_bw) < user specified bandwidth(user_bw) |
| * |
| * This uses the MBM counters to measure the bandwidth and MBA throttle |
| * MSRs to control the bandwidth for a particular rdtgrp. It builds on the |
| * fact that resctrl rdtgroups have both monitoring and control. |
| * |
| * The frequency of the checks is 1s and we just tag along the MBM overflow |
| * timer. Having 1s interval makes the calculation of bandwidth simpler. |
| * |
| * Although MBA's goal is to restrict the bandwidth to a maximum, there may |
| * be a need to increase the bandwidth to avoid uncecessarily restricting |
| * the L2 <-> L3 traffic. |
| * |
| * Since MBA controls the L2 external bandwidth where as MBM measures the |
| * L3 external bandwidth the following sequence could lead to such a |
| * situation. |
| * |
| * Consider an rdtgroup which had high L3 <-> memory traffic in initial |
| * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but |
| * after some time rdtgroup has mostly L2 <-> L3 traffic. |
| * |
| * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its |
| * throttle MSRs already have low percentage values. To avoid |
| * unnecessarily restricting such rdtgroups, we also increase the bandwidth. |
| */ |
| static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) |
| { |
| u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; |
| struct mbm_state *pmbm_data, *cmbm_data; |
| u32 cur_bw, delta_bw, user_bw; |
| struct rdt_resource *r_mba; |
| struct rdt_domain *dom_mba; |
| struct list_head *head; |
| struct rdtgroup *entry; |
| |
| if (!is_mbm_local_enabled()) |
| return; |
| |
| r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; |
| closid = rgrp->closid; |
| rmid = rgrp->mon.rmid; |
| pmbm_data = &dom_mbm->mbm_local[rmid]; |
| |
| dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); |
| if (!dom_mba) { |
| pr_warn_once("Failure to get domain for MBA update\n"); |
| return; |
| } |
| |
| cur_bw = pmbm_data->prev_bw; |
| user_bw = dom_mba->mbps_val[closid]; |
| delta_bw = pmbm_data->delta_bw; |
| cur_msr_val = dom_mba->ctrl_val[closid]; |
| |
| /* |
| * For Ctrl groups read data from child monitor groups. |
| */ |
| head = &rgrp->mon.crdtgrp_list; |
| list_for_each_entry(entry, head, mon.crdtgrp_list) { |
| cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; |
| cur_bw += cmbm_data->prev_bw; |
| delta_bw += cmbm_data->delta_bw; |
| } |
| |
| /* |
| * Scale up/down the bandwidth linearly for the ctrl group. The |
| * bandwidth step is the bandwidth granularity specified by the |
| * hardware. |
| * |
| * The delta_bw is used when increasing the bandwidth so that we |
| * dont alternately increase and decrease the control values |
| * continuously. |
| * |
| * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if |
| * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep |
| * switching between 90 and 110 continuously if we only check |
| * cur_bw < user_bw. |
| */ |
| if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { |
| new_msr_val = cur_msr_val - r_mba->membw.bw_gran; |
| } else if (cur_msr_val < MAX_MBA_BW && |
| (user_bw > (cur_bw + delta_bw))) { |
| new_msr_val = cur_msr_val + r_mba->membw.bw_gran; |
| } else { |
| return; |
| } |
| |
| cur_msr = r_mba->msr_base + closid; |
| wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); |
| dom_mba->ctrl_val[closid] = new_msr_val; |
| |
| /* |
| * Delta values are updated dynamically package wise for each |
| * rdtgrp everytime the throttle MSR changes value. |
| * |
| * This is because (1)the increase in bandwidth is not perfectly |
| * linear and only "approximately" linear even when the hardware |
| * says it is linear.(2)Also since MBA is a core specific |
| * mechanism, the delta values vary based on number of cores used |
| * by the rdtgrp. |
| */ |
| pmbm_data->delta_comp = true; |
| list_for_each_entry(entry, head, mon.crdtgrp_list) { |
| cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; |
| cmbm_data->delta_comp = true; |
| } |
| } |
| |
| static void mbm_update(struct rdt_domain *d, int rmid) |
| { |
| struct rmid_read rr; |
| |
| rr.first = false; |
| rr.d = d; |
| |
| /* |
| * This is protected from concurrent reads from user |
| * as both the user and we hold the global mutex. |
| */ |
| if (is_mbm_total_enabled()) { |
| rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; |
| __mon_event_count(rmid, &rr); |
| } |
| if (is_mbm_local_enabled()) { |
| rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; |
| |
| /* |
| * Call the MBA software controller only for the |
| * control groups and when user has enabled |
| * the software controller explicitly. |
| */ |
| if (!is_mba_sc(NULL)) |
| __mon_event_count(rmid, &rr); |
| else |
| mbm_bw_count(rmid, &rr); |
| } |
| } |
| |
| /* |
| * Handler to scan the limbo list and move the RMIDs |
| * to free list whose occupancy < threshold_occupancy. |
| */ |
| void cqm_handle_limbo(struct work_struct *work) |
| { |
| unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); |
| int cpu = smp_processor_id(); |
| struct rdt_resource *r; |
| struct rdt_domain *d; |
| |
| mutex_lock(&rdtgroup_mutex); |
| |
| r = &rdt_resources_all[RDT_RESOURCE_L3]; |
| d = get_domain_from_cpu(cpu, r); |
| |
| if (!d) { |
| pr_warn_once("Failure to get domain for limbo worker\n"); |
| goto out_unlock; |
| } |
| |
| __check_limbo(d, false); |
| |
| if (has_busy_rmid(r, d)) |
| schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); |
| |
| out_unlock: |
| mutex_unlock(&rdtgroup_mutex); |
| } |
| |
| void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) |
| { |
| unsigned long delay = msecs_to_jiffies(delay_ms); |
| int cpu; |
| |
| cpu = cpumask_any(&dom->cpu_mask); |
| dom->cqm_work_cpu = cpu; |
| |
| schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); |
| } |
| |
| void mbm_handle_overflow(struct work_struct *work) |
| { |
| unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); |
| struct rdtgroup *prgrp, *crgrp; |
| int cpu = smp_processor_id(); |
| struct list_head *head; |
| struct rdt_domain *d; |
| |
| mutex_lock(&rdtgroup_mutex); |
| |
| if (!static_branch_likely(&rdt_enable_key)) |
| goto out_unlock; |
| |
| d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]); |
| if (!d) |
| goto out_unlock; |
| |
| list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { |
| mbm_update(d, prgrp->mon.rmid); |
| |
| head = &prgrp->mon.crdtgrp_list; |
| list_for_each_entry(crgrp, head, mon.crdtgrp_list) |
| mbm_update(d, crgrp->mon.rmid); |
| |
| if (is_mba_sc(NULL)) |
| update_mba_bw(prgrp, d); |
| } |
| |
| schedule_delayed_work_on(cpu, &d->mbm_over, delay); |
| |
| out_unlock: |
| mutex_unlock(&rdtgroup_mutex); |
| } |
| |
| void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) |
| { |
| unsigned long delay = msecs_to_jiffies(delay_ms); |
| int cpu; |
| |
| if (!static_branch_likely(&rdt_enable_key)) |
| return; |
| cpu = cpumask_any(&dom->cpu_mask); |
| dom->mbm_work_cpu = cpu; |
| schedule_delayed_work_on(cpu, &dom->mbm_over, delay); |
| } |
| |
| static int dom_data_init(struct rdt_resource *r) |
| { |
| struct rmid_entry *entry = NULL; |
| int i, nr_rmids; |
| |
| nr_rmids = r->num_rmid; |
| rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); |
| if (!rmid_ptrs) |
| return -ENOMEM; |
| |
| for (i = 0; i < nr_rmids; i++) { |
| entry = &rmid_ptrs[i]; |
| INIT_LIST_HEAD(&entry->list); |
| |
| entry->rmid = i; |
| list_add_tail(&entry->list, &rmid_free_lru); |
| } |
| |
| /* |
| * RMID 0 is special and is always allocated. It's used for all |
| * tasks that are not monitored. |
| */ |
| entry = __rmid_entry(0); |
| list_del(&entry->list); |
| |
| return 0; |
| } |
| |
| static struct mon_evt llc_occupancy_event = { |
| .name = "llc_occupancy", |
| .evtid = QOS_L3_OCCUP_EVENT_ID, |
| }; |
| |
| static struct mon_evt mbm_total_event = { |
| .name = "mbm_total_bytes", |
| .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, |
| }; |
| |
| static struct mon_evt mbm_local_event = { |
| .name = "mbm_local_bytes", |
| .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, |
| }; |
| |
| /* |
| * Initialize the event list for the resource. |
| * |
| * Note that MBM events are also part of RDT_RESOURCE_L3 resource |
| * because as per the SDM the total and local memory bandwidth |
| * are enumerated as part of L3 monitoring. |
| */ |
| static void l3_mon_evt_init(struct rdt_resource *r) |
| { |
| INIT_LIST_HEAD(&r->evt_list); |
| |
| if (is_llc_occupancy_enabled()) |
| list_add_tail(&llc_occupancy_event.list, &r->evt_list); |
| if (is_mbm_total_enabled()) |
| list_add_tail(&mbm_total_event.list, &r->evt_list); |
| if (is_mbm_local_enabled()) |
| list_add_tail(&mbm_local_event.list, &r->evt_list); |
| } |
| |
| int rdt_get_mon_l3_config(struct rdt_resource *r) |
| { |
| unsigned int cl_size = boot_cpu_data.x86_cache_size; |
| int ret; |
| |
| r->mon_scale = boot_cpu_data.x86_cache_occ_scale; |
| r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; |
| |
| /* |
| * A reasonable upper limit on the max threshold is the number |
| * of lines tagged per RMID if all RMIDs have the same number of |
| * lines tagged in the LLC. |
| * |
| * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. |
| */ |
| resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; |
| |
| /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ |
| resctrl_cqm_threshold /= r->mon_scale; |
| |
| ret = dom_data_init(r); |
| if (ret) |
| return ret; |
| |
| l3_mon_evt_init(r); |
| |
| r->mon_capable = true; |
| r->mon_enabled = true; |
| |
| return 0; |
| } |