| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * DesignWare MIPI DSI Host Controller v1.02 driver |
| * |
| * Copyright (c) 2016 Linaro Limited. |
| * Copyright (c) 2014-2016 Hisilicon Limited. |
| * |
| * Author: |
| * Xinliang Liu <z.liuxinliang@hisilicon.com> |
| * Xinliang Liu <xinliang.liu@linaro.org> |
| * Xinwei Kong <kong.kongxinwei@hisilicon.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/component.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_device.h> |
| #include <drm/drm_encoder_slave.h> |
| #include <drm/drm_mipi_dsi.h> |
| #include <drm/drm_of.h> |
| #include <drm/drm_print.h> |
| #include <drm/drm_probe_helper.h> |
| |
| #include "dw_dsi_reg.h" |
| |
| #define MAX_TX_ESC_CLK 10 |
| #define ROUND(x, y) ((x) / (y) + \ |
| ((x) % (y) * 10 / (y) >= 5 ? 1 : 0)) |
| #define PHY_REF_CLK_RATE 19200000 |
| #define PHY_REF_CLK_PERIOD_PS (1000000000 / (PHY_REF_CLK_RATE / 1000)) |
| |
| #define encoder_to_dsi(encoder) \ |
| container_of(encoder, struct dw_dsi, encoder) |
| #define host_to_dsi(host) \ |
| container_of(host, struct dw_dsi, host) |
| |
| struct mipi_phy_params { |
| u32 clk_t_lpx; |
| u32 clk_t_hs_prepare; |
| u32 clk_t_hs_zero; |
| u32 clk_t_hs_trial; |
| u32 clk_t_wakeup; |
| u32 data_t_lpx; |
| u32 data_t_hs_prepare; |
| u32 data_t_hs_zero; |
| u32 data_t_hs_trial; |
| u32 data_t_ta_go; |
| u32 data_t_ta_get; |
| u32 data_t_wakeup; |
| u32 hstx_ckg_sel; |
| u32 pll_fbd_div5f; |
| u32 pll_fbd_div1f; |
| u32 pll_fbd_2p; |
| u32 pll_enbwt; |
| u32 pll_fbd_p; |
| u32 pll_fbd_s; |
| u32 pll_pre_div1p; |
| u32 pll_pre_p; |
| u32 pll_vco_750M; |
| u32 pll_lpf_rs; |
| u32 pll_lpf_cs; |
| u32 clklp2hs_time; |
| u32 clkhs2lp_time; |
| u32 lp2hs_time; |
| u32 hs2lp_time; |
| u32 clk_to_data_delay; |
| u32 data_to_clk_delay; |
| u32 lane_byte_clk_kHz; |
| u32 clk_division; |
| }; |
| |
| struct dsi_hw_ctx { |
| void __iomem *base; |
| struct clk *pclk; |
| }; |
| |
| struct dw_dsi { |
| struct drm_encoder encoder; |
| struct drm_bridge *bridge; |
| struct mipi_dsi_host host; |
| struct drm_display_mode cur_mode; |
| struct dsi_hw_ctx *ctx; |
| struct mipi_phy_params phy; |
| |
| u32 lanes; |
| enum mipi_dsi_pixel_format format; |
| unsigned long mode_flags; |
| bool enable; |
| }; |
| |
| struct dsi_data { |
| struct dw_dsi dsi; |
| struct dsi_hw_ctx ctx; |
| }; |
| |
| struct dsi_phy_range { |
| u32 min_range_kHz; |
| u32 max_range_kHz; |
| u32 pll_vco_750M; |
| u32 hstx_ckg_sel; |
| }; |
| |
| static const struct dsi_phy_range dphy_range_info[] = { |
| { 46875, 62500, 1, 7 }, |
| { 62500, 93750, 0, 7 }, |
| { 93750, 125000, 1, 6 }, |
| { 125000, 187500, 0, 6 }, |
| { 187500, 250000, 1, 5 }, |
| { 250000, 375000, 0, 5 }, |
| { 375000, 500000, 1, 4 }, |
| { 500000, 750000, 0, 4 }, |
| { 750000, 1000000, 1, 0 }, |
| { 1000000, 1500000, 0, 0 } |
| }; |
| |
| static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy) |
| { |
| u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; |
| u32 tmp_kHz = req_kHz; |
| u32 i = 0; |
| u32 q_pll = 1; |
| u32 m_pll = 0; |
| u32 n_pll = 0; |
| u32 r_pll = 1; |
| u32 m_n = 0; |
| u32 m_n_int = 0; |
| u32 f_kHz = 0; |
| u64 temp; |
| |
| /* |
| * Find a rate >= req_kHz. |
| */ |
| do { |
| f_kHz = tmp_kHz; |
| |
| for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++) |
| if (f_kHz >= dphy_range_info[i].min_range_kHz && |
| f_kHz <= dphy_range_info[i].max_range_kHz) |
| break; |
| |
| if (i == ARRAY_SIZE(dphy_range_info)) { |
| DRM_ERROR("%dkHz out of range\n", f_kHz); |
| return 0; |
| } |
| |
| phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M; |
| phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel; |
| |
| if (phy->hstx_ckg_sel <= 7 && |
| phy->hstx_ckg_sel >= 4) |
| q_pll = 0x10 >> (7 - phy->hstx_ckg_sel); |
| |
| temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps; |
| m_n_int = temp / (u64)1000000000; |
| m_n = (temp % (u64)1000000000) / (u64)100000000; |
| |
| if (m_n_int % 2 == 0) { |
| if (m_n * 6 >= 50) { |
| n_pll = 2; |
| m_pll = (m_n_int + 1) * n_pll; |
| } else if (m_n * 6 >= 30) { |
| n_pll = 3; |
| m_pll = m_n_int * n_pll + 2; |
| } else { |
| n_pll = 1; |
| m_pll = m_n_int * n_pll; |
| } |
| } else { |
| if (m_n * 6 >= 50) { |
| n_pll = 1; |
| m_pll = (m_n_int + 1) * n_pll; |
| } else if (m_n * 6 >= 30) { |
| n_pll = 1; |
| m_pll = (m_n_int + 1) * n_pll; |
| } else if (m_n * 6 >= 10) { |
| n_pll = 3; |
| m_pll = m_n_int * n_pll + 1; |
| } else { |
| n_pll = 2; |
| m_pll = m_n_int * n_pll; |
| } |
| } |
| |
| if (n_pll == 1) { |
| phy->pll_fbd_p = 0; |
| phy->pll_pre_div1p = 1; |
| } else { |
| phy->pll_fbd_p = n_pll; |
| phy->pll_pre_div1p = 0; |
| } |
| |
| if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4) |
| r_pll = 0x10 >> (7 - phy->pll_fbd_2p); |
| |
| if (m_pll == 2) { |
| phy->pll_pre_p = 0; |
| phy->pll_fbd_s = 0; |
| phy->pll_fbd_div1f = 0; |
| phy->pll_fbd_div5f = 1; |
| } else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) { |
| phy->pll_pre_p = m_pll / (2 * r_pll); |
| phy->pll_fbd_s = 0; |
| phy->pll_fbd_div1f = 1; |
| phy->pll_fbd_div5f = 0; |
| } else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) { |
| if (((m_pll / (2 * r_pll)) % 2) == 0) { |
| phy->pll_pre_p = |
| (m_pll / (2 * r_pll)) / 2 - 1; |
| phy->pll_fbd_s = |
| (m_pll / (2 * r_pll)) % 2 + 2; |
| } else { |
| phy->pll_pre_p = |
| (m_pll / (2 * r_pll)) / 2; |
| phy->pll_fbd_s = |
| (m_pll / (2 * r_pll)) % 2; |
| } |
| phy->pll_fbd_div1f = 0; |
| phy->pll_fbd_div5f = 0; |
| } else { |
| phy->pll_pre_p = 0; |
| phy->pll_fbd_s = 0; |
| phy->pll_fbd_div1f = 0; |
| phy->pll_fbd_div5f = 1; |
| } |
| |
| f_kHz = (u64)1000000000 * (u64)m_pll / |
| ((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll); |
| |
| if (f_kHz >= req_kHz) |
| break; |
| |
| tmp_kHz += 10; |
| |
| } while (true); |
| |
| return f_kHz; |
| } |
| |
| static void dsi_get_phy_params(u32 phy_req_kHz, |
| struct mipi_phy_params *phy) |
| { |
| u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; |
| u32 phy_rate_kHz; |
| u32 ui; |
| |
| memset(phy, 0, sizeof(*phy)); |
| |
| phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy); |
| if (!phy_rate_kHz) |
| return; |
| |
| ui = 1000000 / phy_rate_kHz; |
| |
| phy->clk_t_lpx = ROUND(50, 8 * ui); |
| phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1; |
| |
| phy->clk_t_hs_zero = ROUND(262, 8 * ui); |
| phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1); |
| phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1); |
| if (phy->clk_t_wakeup > 0xff) |
| phy->clk_t_wakeup = 0xff; |
| phy->data_t_wakeup = phy->clk_t_wakeup; |
| phy->data_t_lpx = phy->clk_t_lpx; |
| phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1; |
| phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui); |
| phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1); |
| phy->data_t_ta_go = 3; |
| phy->data_t_ta_get = 4; |
| |
| phy->pll_enbwt = 1; |
| phy->clklp2hs_time = ROUND(407, 8 * ui) + 12; |
| phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui); |
| phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1; |
| phy->hs2lp_time = phy->clkhs2lp_time; |
| phy->clk_to_data_delay = 1 + phy->clklp2hs_time; |
| phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) + |
| phy->clkhs2lp_time; |
| |
| phy->lane_byte_clk_kHz = phy_rate_kHz / 8; |
| phy->clk_division = |
| DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK); |
| } |
| |
| static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format) |
| { |
| u32 val; |
| |
| /* |
| * TODO: only support RGB888 now, to support more |
| */ |
| switch (format) { |
| case MIPI_DSI_FMT_RGB888: |
| val = DSI_24BITS_1; |
| break; |
| default: |
| val = DSI_24BITS_1; |
| break; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * dsi phy reg write function |
| */ |
| static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val) |
| { |
| u32 reg_write = 0x10000 + reg; |
| |
| /* |
| * latch reg first |
| */ |
| writel(reg_write, base + PHY_TST_CTRL1); |
| writel(0x02, base + PHY_TST_CTRL0); |
| writel(0x00, base + PHY_TST_CTRL0); |
| |
| /* |
| * then latch value |
| */ |
| writel(val, base + PHY_TST_CTRL1); |
| writel(0x02, base + PHY_TST_CTRL0); |
| writel(0x00, base + PHY_TST_CTRL0); |
| } |
| |
| static void dsi_set_phy_timer(void __iomem *base, |
| struct mipi_phy_params *phy, |
| u32 lanes) |
| { |
| u32 val; |
| |
| /* |
| * Set lane value and phy stop wait time. |
| */ |
| val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8); |
| writel(val, base + PHY_IF_CFG); |
| |
| /* |
| * Set phy clk division. |
| */ |
| val = readl(base + CLKMGR_CFG) | phy->clk_division; |
| writel(val, base + CLKMGR_CFG); |
| |
| /* |
| * Set lp and hs switching params. |
| */ |
| dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time); |
| dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time); |
| dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10), |
| phy->clkhs2lp_time); |
| dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10), |
| phy->clklp2hs_time); |
| dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8), |
| phy->data_to_clk_delay); |
| dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8), |
| phy->clk_to_data_delay); |
| } |
| |
| static void dsi_set_mipi_phy(void __iomem *base, |
| struct mipi_phy_params *phy, |
| u32 lanes) |
| { |
| u32 delay_count; |
| u32 val; |
| u32 i; |
| |
| /* phy timer setting */ |
| dsi_set_phy_timer(base, phy, lanes); |
| |
| /* |
| * Reset to clean up phy tst params. |
| */ |
| writel(0, base + PHY_RSTZ); |
| writel(0, base + PHY_TST_CTRL0); |
| writel(1, base + PHY_TST_CTRL0); |
| writel(0, base + PHY_TST_CTRL0); |
| |
| /* |
| * Clock lane timing control setting: TLPX, THS-PREPARE, |
| * THS-ZERO, THS-TRAIL, TWAKEUP. |
| */ |
| dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx); |
| dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare); |
| dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero); |
| dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial); |
| dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup); |
| |
| /* |
| * Data lane timing control setting: TLPX, THS-PREPARE, |
| * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP. |
| */ |
| for (i = 0; i < lanes; i++) { |
| dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx); |
| dsi_phy_tst_set(base, DATA_THS_PREPARE(i), |
| phy->data_t_hs_prepare); |
| dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero); |
| dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial); |
| dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go); |
| dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get); |
| dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup); |
| } |
| |
| /* |
| * physical configuration: I, pll I, pll II, pll III, |
| * pll IV, pll V. |
| */ |
| dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel); |
| val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) + |
| (phy->pll_fbd_2p << 1) + phy->pll_enbwt; |
| dsi_phy_tst_set(base, PHY_CFG_PLL_I, val); |
| dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p); |
| dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s); |
| val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p; |
| dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val); |
| val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) + |
| phy->pll_lpf_cs; |
| dsi_phy_tst_set(base, PHY_CFG_PLL_V, val); |
| |
| writel(PHY_ENABLECLK, base + PHY_RSTZ); |
| udelay(1); |
| writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); |
| udelay(1); |
| writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); |
| usleep_range(1000, 1500); |
| |
| /* |
| * wait for phy's clock ready |
| */ |
| delay_count = 100; |
| while (delay_count) { |
| val = readl(base + PHY_STATUS); |
| if ((BIT(0) | BIT(2)) & val) |
| break; |
| |
| udelay(1); |
| delay_count--; |
| } |
| |
| if (!delay_count) |
| DRM_INFO("phylock and phystopstateclklane is not ready.\n"); |
| } |
| |
| static void dsi_set_mode_timing(void __iomem *base, |
| u32 lane_byte_clk_kHz, |
| struct drm_display_mode *mode, |
| enum mipi_dsi_pixel_format format) |
| { |
| u32 hfp, hbp, hsw, vfp, vbp, vsw; |
| u32 hline_time; |
| u32 hsa_time; |
| u32 hbp_time; |
| u32 pixel_clk_kHz; |
| int htot, vtot; |
| u32 val; |
| u64 tmp; |
| |
| val = dsi_get_dpi_color_coding(format); |
| writel(val, base + DPI_COLOR_CODING); |
| |
| val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2; |
| val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1; |
| writel(val, base + DPI_CFG_POL); |
| |
| /* |
| * The DSI IP accepts vertical timing using lines as normal, |
| * but horizontal timing is a mixture of pixel-clocks for the |
| * active region and byte-lane clocks for the blanking-related |
| * timings. hfp is specified as the total hline_time in byte- |
| * lane clocks minus hsa, hbp and active. |
| */ |
| pixel_clk_kHz = mode->clock; |
| htot = mode->htotal; |
| vtot = mode->vtotal; |
| hfp = mode->hsync_start - mode->hdisplay; |
| hbp = mode->htotal - mode->hsync_end; |
| hsw = mode->hsync_end - mode->hsync_start; |
| vfp = mode->vsync_start - mode->vdisplay; |
| vbp = mode->vtotal - mode->vsync_end; |
| vsw = mode->vsync_end - mode->vsync_start; |
| if (vsw > 15) { |
| DRM_DEBUG_DRIVER("vsw exceeded 15\n"); |
| vsw = 15; |
| } |
| |
| hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz; |
| hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz; |
| tmp = (u64)htot * (u64)lane_byte_clk_kHz; |
| hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz); |
| |
| /* all specified in byte-lane clocks */ |
| writel(hsa_time, base + VID_HSA_TIME); |
| writel(hbp_time, base + VID_HBP_TIME); |
| writel(hline_time, base + VID_HLINE_TIME); |
| |
| writel(vsw, base + VID_VSA_LINES); |
| writel(vbp, base + VID_VBP_LINES); |
| writel(vfp, base + VID_VFP_LINES); |
| writel(mode->vdisplay, base + VID_VACTIVE_LINES); |
| writel(mode->hdisplay, base + VID_PKT_SIZE); |
| |
| DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n", |
| htot, hfp, hbp, hsw); |
| DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n", |
| vtot, vfp, vbp, vsw); |
| DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n", |
| hsa_time, hbp_time, hline_time); |
| } |
| |
| static void dsi_set_video_mode(void __iomem *base, unsigned long flags) |
| { |
| u32 val; |
| u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | |
| MIPI_DSI_MODE_VIDEO_SYNC_PULSE; |
| u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO | |
| MIPI_DSI_MODE_VIDEO_SYNC_PULSE; |
| u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO; |
| |
| /* |
| * choose video mode type |
| */ |
| if ((flags & mode_mask) == non_burst_sync_pulse) |
| val = DSI_NON_BURST_SYNC_PULSES; |
| else if ((flags & mode_mask) == non_burst_sync_event) |
| val = DSI_NON_BURST_SYNC_EVENTS; |
| else |
| val = DSI_BURST_SYNC_PULSES_1; |
| writel(val, base + VID_MODE_CFG); |
| |
| writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL); |
| writel(DSI_VIDEO_MODE, base + MODE_CFG); |
| } |
| |
| static void dsi_mipi_init(struct dw_dsi *dsi) |
| { |
| struct dsi_hw_ctx *ctx = dsi->ctx; |
| struct mipi_phy_params *phy = &dsi->phy; |
| struct drm_display_mode *mode = &dsi->cur_mode; |
| u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); |
| void __iomem *base = ctx->base; |
| u32 dphy_req_kHz; |
| |
| /* |
| * count phy params |
| */ |
| dphy_req_kHz = mode->clock * bpp / dsi->lanes; |
| dsi_get_phy_params(dphy_req_kHz, phy); |
| |
| /* reset Core */ |
| writel(RESET, base + PWR_UP); |
| |
| /* set dsi phy params */ |
| dsi_set_mipi_phy(base, phy, dsi->lanes); |
| |
| /* set dsi mode timing */ |
| dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format); |
| |
| /* set dsi video mode */ |
| dsi_set_video_mode(base, dsi->mode_flags); |
| |
| /* dsi wake up */ |
| writel(POWERUP, base + PWR_UP); |
| |
| DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n", |
| dsi->lanes, mode->clock, phy->lane_byte_clk_kHz); |
| } |
| |
| static void dsi_encoder_disable(struct drm_encoder *encoder) |
| { |
| struct dw_dsi *dsi = encoder_to_dsi(encoder); |
| struct dsi_hw_ctx *ctx = dsi->ctx; |
| void __iomem *base = ctx->base; |
| |
| if (!dsi->enable) |
| return; |
| |
| writel(0, base + PWR_UP); |
| writel(0, base + LPCLK_CTRL); |
| writel(0, base + PHY_RSTZ); |
| clk_disable_unprepare(ctx->pclk); |
| |
| dsi->enable = false; |
| } |
| |
| static void dsi_encoder_enable(struct drm_encoder *encoder) |
| { |
| struct dw_dsi *dsi = encoder_to_dsi(encoder); |
| struct dsi_hw_ctx *ctx = dsi->ctx; |
| int ret; |
| |
| if (dsi->enable) |
| return; |
| |
| ret = clk_prepare_enable(ctx->pclk); |
| if (ret) { |
| DRM_ERROR("fail to enable pclk: %d\n", ret); |
| return; |
| } |
| |
| dsi_mipi_init(dsi); |
| |
| dsi->enable = true; |
| } |
| |
| static enum drm_mode_status dsi_encoder_phy_mode_valid( |
| struct drm_encoder *encoder, |
| const struct drm_display_mode *mode) |
| { |
| struct dw_dsi *dsi = encoder_to_dsi(encoder); |
| struct mipi_phy_params phy; |
| u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); |
| u32 req_kHz, act_kHz, lane_byte_clk_kHz; |
| |
| /* Calculate the lane byte clk using the adjusted mode clk */ |
| memset(&phy, 0, sizeof(phy)); |
| req_kHz = mode->clock * bpp / dsi->lanes; |
| act_kHz = dsi_calc_phy_rate(req_kHz, &phy); |
| lane_byte_clk_kHz = act_kHz / 8; |
| |
| DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...", |
| mode->hdisplay, mode->vdisplay, bpp, |
| drm_mode_vrefresh(mode), mode->clock); |
| |
| /* |
| * Make sure the adjusted mode clock and the lane byte clk |
| * have a common denominator base frequency |
| */ |
| if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) { |
| DRM_DEBUG_DRIVER("OK!\n"); |
| return MODE_OK; |
| } |
| |
| DRM_DEBUG_DRIVER("BAD!\n"); |
| return MODE_BAD; |
| } |
| |
| static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder, |
| const struct drm_display_mode *mode) |
| |
| { |
| const struct drm_crtc_helper_funcs *crtc_funcs = NULL; |
| struct drm_crtc *crtc = NULL; |
| struct drm_display_mode adj_mode; |
| enum drm_mode_status ret; |
| |
| /* |
| * The crtc might adjust the mode, so go through the |
| * possible crtcs (technically just one) and call |
| * mode_fixup to figure out the adjusted mode before we |
| * validate it. |
| */ |
| drm_for_each_crtc(crtc, encoder->dev) { |
| /* |
| * reset adj_mode to the mode value each time, |
| * so we don't adjust the mode twice |
| */ |
| drm_mode_copy(&adj_mode, mode); |
| |
| crtc_funcs = crtc->helper_private; |
| if (crtc_funcs && crtc_funcs->mode_fixup) |
| if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode)) |
| return MODE_BAD; |
| |
| ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode); |
| if (ret != MODE_OK) |
| return ret; |
| } |
| return MODE_OK; |
| } |
| |
| static void dsi_encoder_mode_set(struct drm_encoder *encoder, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adj_mode) |
| { |
| struct dw_dsi *dsi = encoder_to_dsi(encoder); |
| |
| drm_mode_copy(&dsi->cur_mode, adj_mode); |
| } |
| |
| static int dsi_encoder_atomic_check(struct drm_encoder *encoder, |
| struct drm_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| /* do nothing */ |
| return 0; |
| } |
| |
| static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = { |
| .atomic_check = dsi_encoder_atomic_check, |
| .mode_valid = dsi_encoder_mode_valid, |
| .mode_set = dsi_encoder_mode_set, |
| .enable = dsi_encoder_enable, |
| .disable = dsi_encoder_disable |
| }; |
| |
| static const struct drm_encoder_funcs dw_encoder_funcs = { |
| .destroy = drm_encoder_cleanup, |
| }; |
| |
| static int dw_drm_encoder_init(struct device *dev, |
| struct drm_device *drm_dev, |
| struct drm_encoder *encoder) |
| { |
| int ret; |
| u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node); |
| |
| if (!crtc_mask) { |
| DRM_ERROR("failed to find crtc mask\n"); |
| return -EINVAL; |
| } |
| |
| encoder->possible_crtcs = crtc_mask; |
| ret = drm_encoder_init(drm_dev, encoder, &dw_encoder_funcs, |
| DRM_MODE_ENCODER_DSI, NULL); |
| if (ret) { |
| DRM_ERROR("failed to init dsi encoder\n"); |
| return ret; |
| } |
| |
| drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs); |
| |
| return 0; |
| } |
| |
| static int dsi_host_attach(struct mipi_dsi_host *host, |
| struct mipi_dsi_device *mdsi) |
| { |
| struct dw_dsi *dsi = host_to_dsi(host); |
| |
| if (mdsi->lanes < 1 || mdsi->lanes > 4) { |
| DRM_ERROR("dsi device params invalid\n"); |
| return -EINVAL; |
| } |
| |
| dsi->lanes = mdsi->lanes; |
| dsi->format = mdsi->format; |
| dsi->mode_flags = mdsi->mode_flags; |
| |
| return 0; |
| } |
| |
| static int dsi_host_detach(struct mipi_dsi_host *host, |
| struct mipi_dsi_device *mdsi) |
| { |
| /* do nothing */ |
| return 0; |
| } |
| |
| static const struct mipi_dsi_host_ops dsi_host_ops = { |
| .attach = dsi_host_attach, |
| .detach = dsi_host_detach, |
| }; |
| |
| static int dsi_host_init(struct device *dev, struct dw_dsi *dsi) |
| { |
| struct mipi_dsi_host *host = &dsi->host; |
| int ret; |
| |
| host->dev = dev; |
| host->ops = &dsi_host_ops; |
| ret = mipi_dsi_host_register(host); |
| if (ret) { |
| DRM_ERROR("failed to register dsi host\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi) |
| { |
| struct drm_encoder *encoder = &dsi->encoder; |
| struct drm_bridge *bridge = dsi->bridge; |
| int ret; |
| |
| /* associate the bridge to dsi encoder */ |
| ret = drm_bridge_attach(encoder, bridge, NULL); |
| if (ret) { |
| DRM_ERROR("failed to attach external bridge\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int dsi_bind(struct device *dev, struct device *master, void *data) |
| { |
| struct dsi_data *ddata = dev_get_drvdata(dev); |
| struct dw_dsi *dsi = &ddata->dsi; |
| struct drm_device *drm_dev = data; |
| int ret; |
| |
| ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder); |
| if (ret) |
| return ret; |
| |
| ret = dsi_host_init(dev, dsi); |
| if (ret) |
| return ret; |
| |
| ret = dsi_bridge_init(drm_dev, dsi); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void dsi_unbind(struct device *dev, struct device *master, void *data) |
| { |
| /* do nothing */ |
| } |
| |
| static const struct component_ops dsi_ops = { |
| .bind = dsi_bind, |
| .unbind = dsi_unbind, |
| }; |
| |
| static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi) |
| { |
| struct dsi_hw_ctx *ctx = dsi->ctx; |
| struct device_node *np = pdev->dev.of_node; |
| struct resource *res; |
| int ret; |
| |
| /* |
| * Get the endpoint node. In our case, dsi has one output port1 |
| * to which the external HDMI bridge is connected. |
| */ |
| ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &dsi->bridge); |
| if (ret) |
| return ret; |
| |
| ctx->pclk = devm_clk_get(&pdev->dev, "pclk"); |
| if (IS_ERR(ctx->pclk)) { |
| DRM_ERROR("failed to get pclk clock\n"); |
| return PTR_ERR(ctx->pclk); |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| ctx->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(ctx->base)) { |
| DRM_ERROR("failed to remap dsi io region\n"); |
| return PTR_ERR(ctx->base); |
| } |
| |
| return 0; |
| } |
| |
| static int dsi_probe(struct platform_device *pdev) |
| { |
| struct dsi_data *data; |
| struct dw_dsi *dsi; |
| struct dsi_hw_ctx *ctx; |
| int ret; |
| |
| data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); |
| if (!data) { |
| DRM_ERROR("failed to allocate dsi data.\n"); |
| return -ENOMEM; |
| } |
| dsi = &data->dsi; |
| ctx = &data->ctx; |
| dsi->ctx = ctx; |
| |
| ret = dsi_parse_dt(pdev, dsi); |
| if (ret) |
| return ret; |
| |
| platform_set_drvdata(pdev, data); |
| |
| return component_add(&pdev->dev, &dsi_ops); |
| } |
| |
| static int dsi_remove(struct platform_device *pdev) |
| { |
| component_del(&pdev->dev, &dsi_ops); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id dsi_of_match[] = { |
| {.compatible = "hisilicon,hi6220-dsi"}, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, dsi_of_match); |
| |
| static struct platform_driver dsi_driver = { |
| .probe = dsi_probe, |
| .remove = dsi_remove, |
| .driver = { |
| .name = "dw-dsi", |
| .of_match_table = dsi_of_match, |
| }, |
| }; |
| |
| module_platform_driver(dsi_driver); |
| |
| MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>"); |
| MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>"); |
| MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>"); |
| MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver"); |
| MODULE_LICENSE("GPL v2"); |