blob: 89750f74e3a2de2ffb7dbe8e8118d3f830198a1f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* This is a module which is used for queueing packets and communicating with
* userspace via nfnetlink.
*
* (C) 2005 by Harald Welte <laforge@netfilter.org>
* (C) 2007 by Patrick McHardy <kaber@trash.net>
*
* Based on the old ipv4-only ip_queue.c:
* (C) 2000-2002 James Morris <jmorris@intercode.com.au>
* (C) 2003-2005 Netfilter Core Team <coreteam@netfilter.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/netfilter.h>
#include <linux/proc_fs.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_ipv6.h>
#include <linux/netfilter_bridge.h>
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_queue.h>
#include <linux/netfilter/nf_conntrack_common.h>
#include <linux/list.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/netfilter/nf_queue.h>
#include <net/netns/generic.h>
#include <linux/atomic.h>
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
#include "../bridge/br_private.h"
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack.h>
#endif
#define NFQNL_QMAX_DEFAULT 1024
/* We're using struct nlattr which has 16bit nla_len. Note that nla_len
* includes the header length. Thus, the maximum packet length that we
* support is 65531 bytes. We send truncated packets if the specified length
* is larger than that. Userspace can check for presence of NFQA_CAP_LEN
* attribute to detect truncation.
*/
#define NFQNL_MAX_COPY_RANGE (0xffff - NLA_HDRLEN)
struct nfqnl_instance {
struct hlist_node hlist; /* global list of queues */
struct rcu_head rcu;
u32 peer_portid;
unsigned int queue_maxlen;
unsigned int copy_range;
unsigned int queue_dropped;
unsigned int queue_user_dropped;
u_int16_t queue_num; /* number of this queue */
u_int8_t copy_mode;
u_int32_t flags; /* Set using NFQA_CFG_FLAGS */
/*
* Following fields are dirtied for each queued packet,
* keep them in same cache line if possible.
*/
spinlock_t lock ____cacheline_aligned_in_smp;
unsigned int queue_total;
unsigned int id_sequence; /* 'sequence' of pkt ids */
struct list_head queue_list; /* packets in queue */
};
typedef int (*nfqnl_cmpfn)(struct nf_queue_entry *, unsigned long);
static unsigned int nfnl_queue_net_id __read_mostly;
#define INSTANCE_BUCKETS 16
struct nfnl_queue_net {
spinlock_t instances_lock;
struct hlist_head instance_table[INSTANCE_BUCKETS];
};
static struct nfnl_queue_net *nfnl_queue_pernet(struct net *net)
{
return net_generic(net, nfnl_queue_net_id);
}
static inline u_int8_t instance_hashfn(u_int16_t queue_num)
{
return ((queue_num >> 8) ^ queue_num) % INSTANCE_BUCKETS;
}
static struct nfqnl_instance *
instance_lookup(struct nfnl_queue_net *q, u_int16_t queue_num)
{
struct hlist_head *head;
struct nfqnl_instance *inst;
head = &q->instance_table[instance_hashfn(queue_num)];
hlist_for_each_entry_rcu(inst, head, hlist) {
if (inst->queue_num == queue_num)
return inst;
}
return NULL;
}
static struct nfqnl_instance *
instance_create(struct nfnl_queue_net *q, u_int16_t queue_num, u32 portid)
{
struct nfqnl_instance *inst;
unsigned int h;
int err;
spin_lock(&q->instances_lock);
if (instance_lookup(q, queue_num)) {
err = -EEXIST;
goto out_unlock;
}
inst = kzalloc(sizeof(*inst), GFP_ATOMIC);
if (!inst) {
err = -ENOMEM;
goto out_unlock;
}
inst->queue_num = queue_num;
inst->peer_portid = portid;
inst->queue_maxlen = NFQNL_QMAX_DEFAULT;
inst->copy_range = NFQNL_MAX_COPY_RANGE;
inst->copy_mode = NFQNL_COPY_NONE;
spin_lock_init(&inst->lock);
INIT_LIST_HEAD(&inst->queue_list);
if (!try_module_get(THIS_MODULE)) {
err = -EAGAIN;
goto out_free;
}
h = instance_hashfn(queue_num);
hlist_add_head_rcu(&inst->hlist, &q->instance_table[h]);
spin_unlock(&q->instances_lock);
return inst;
out_free:
kfree(inst);
out_unlock:
spin_unlock(&q->instances_lock);
return ERR_PTR(err);
}
static void nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn,
unsigned long data);
static void
instance_destroy_rcu(struct rcu_head *head)
{
struct nfqnl_instance *inst = container_of(head, struct nfqnl_instance,
rcu);
nfqnl_flush(inst, NULL, 0);
kfree(inst);
module_put(THIS_MODULE);
}
static void
__instance_destroy(struct nfqnl_instance *inst)
{
hlist_del_rcu(&inst->hlist);
call_rcu(&inst->rcu, instance_destroy_rcu);
}
static void
instance_destroy(struct nfnl_queue_net *q, struct nfqnl_instance *inst)
{
spin_lock(&q->instances_lock);
__instance_destroy(inst);
spin_unlock(&q->instances_lock);
}
static inline void
__enqueue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
{
list_add_tail(&entry->list, &queue->queue_list);
queue->queue_total++;
}
static void
__dequeue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
{
list_del(&entry->list);
queue->queue_total--;
}
static struct nf_queue_entry *
find_dequeue_entry(struct nfqnl_instance *queue, unsigned int id)
{
struct nf_queue_entry *entry = NULL, *i;
spin_lock_bh(&queue->lock);
list_for_each_entry(i, &queue->queue_list, list) {
if (i->id == id) {
entry = i;
break;
}
}
if (entry)
__dequeue_entry(queue, entry);
spin_unlock_bh(&queue->lock);
return entry;
}
static void nfqnl_reinject(struct nf_queue_entry *entry, unsigned int verdict)
{
struct nf_ct_hook *ct_hook;
int err;
if (verdict == NF_ACCEPT ||
verdict == NF_REPEAT ||
verdict == NF_STOP) {
rcu_read_lock();
ct_hook = rcu_dereference(nf_ct_hook);
if (ct_hook) {
err = ct_hook->update(entry->state.net, entry->skb);
if (err < 0)
verdict = NF_DROP;
}
rcu_read_unlock();
}
nf_reinject(entry, verdict);
}
static void
nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn, unsigned long data)
{
struct nf_queue_entry *entry, *next;
spin_lock_bh(&queue->lock);
list_for_each_entry_safe(entry, next, &queue->queue_list, list) {
if (!cmpfn || cmpfn(entry, data)) {
list_del(&entry->list);
queue->queue_total--;
nfqnl_reinject(entry, NF_DROP);
}
}
spin_unlock_bh(&queue->lock);
}
static int
nfqnl_put_packet_info(struct sk_buff *nlskb, struct sk_buff *packet,
bool csum_verify)
{
__u32 flags = 0;
if (packet->ip_summed == CHECKSUM_PARTIAL)
flags = NFQA_SKB_CSUMNOTREADY;
else if (csum_verify)
flags = NFQA_SKB_CSUM_NOTVERIFIED;
if (skb_is_gso(packet))
flags |= NFQA_SKB_GSO;
return flags ? nla_put_be32(nlskb, NFQA_SKB_INFO, htonl(flags)) : 0;
}
static int nfqnl_put_sk_uidgid(struct sk_buff *skb, struct sock *sk)
{
const struct cred *cred;
if (!sk_fullsock(sk))
return 0;
read_lock_bh(&sk->sk_callback_lock);
if (sk->sk_socket && sk->sk_socket->file) {
cred = sk->sk_socket->file->f_cred;
if (nla_put_be32(skb, NFQA_UID,
htonl(from_kuid_munged(&init_user_ns, cred->fsuid))))
goto nla_put_failure;
if (nla_put_be32(skb, NFQA_GID,
htonl(from_kgid_munged(&init_user_ns, cred->fsgid))))
goto nla_put_failure;
}
read_unlock_bh(&sk->sk_callback_lock);
return 0;
nla_put_failure:
read_unlock_bh(&sk->sk_callback_lock);
return -1;
}
static u32 nfqnl_get_sk_secctx(struct sk_buff *skb, char **secdata)
{
u32 seclen = 0;
#if IS_ENABLED(CONFIG_NETWORK_SECMARK)
if (!skb || !sk_fullsock(skb->sk))
return 0;
read_lock_bh(&skb->sk->sk_callback_lock);
if (skb->secmark)
security_secid_to_secctx(skb->secmark, secdata, &seclen);
read_unlock_bh(&skb->sk->sk_callback_lock);
#endif
return seclen;
}
static u32 nfqnl_get_bridge_size(struct nf_queue_entry *entry)
{
struct sk_buff *entskb = entry->skb;
u32 nlalen = 0;
if (entry->state.pf != PF_BRIDGE || !skb_mac_header_was_set(entskb))
return 0;
if (skb_vlan_tag_present(entskb))
nlalen += nla_total_size(nla_total_size(sizeof(__be16)) +
nla_total_size(sizeof(__be16)));
if (entskb->network_header > entskb->mac_header)
nlalen += nla_total_size((entskb->network_header -
entskb->mac_header));
return nlalen;
}
static int nfqnl_put_bridge(struct nf_queue_entry *entry, struct sk_buff *skb)
{
struct sk_buff *entskb = entry->skb;
if (entry->state.pf != PF_BRIDGE || !skb_mac_header_was_set(entskb))
return 0;
if (skb_vlan_tag_present(entskb)) {
struct nlattr *nest;
nest = nla_nest_start(skb, NFQA_VLAN);
if (!nest)
goto nla_put_failure;
if (nla_put_be16(skb, NFQA_VLAN_TCI, htons(entskb->vlan_tci)) ||
nla_put_be16(skb, NFQA_VLAN_PROTO, entskb->vlan_proto))
goto nla_put_failure;
nla_nest_end(skb, nest);
}
if (entskb->mac_header < entskb->network_header) {
int len = (int)(entskb->network_header - entskb->mac_header);
if (nla_put(skb, NFQA_L2HDR, len, skb_mac_header(entskb)))
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -1;
}
static struct sk_buff *
nfqnl_build_packet_message(struct net *net, struct nfqnl_instance *queue,
struct nf_queue_entry *entry,
__be32 **packet_id_ptr)
{
size_t size;
size_t data_len = 0, cap_len = 0;
unsigned int hlen = 0;
struct sk_buff *skb;
struct nlattr *nla;
struct nfqnl_msg_packet_hdr *pmsg;
struct nlmsghdr *nlh;
struct nfgenmsg *nfmsg;
struct sk_buff *entskb = entry->skb;
struct net_device *indev;
struct net_device *outdev;
struct nf_conn *ct = NULL;
enum ip_conntrack_info uninitialized_var(ctinfo);
struct nfnl_ct_hook *nfnl_ct;
bool csum_verify;
char *secdata = NULL;
u32 seclen = 0;
size = nlmsg_total_size(sizeof(struct nfgenmsg))
+ nla_total_size(sizeof(struct nfqnl_msg_packet_hdr))
+ nla_total_size(sizeof(u_int32_t)) /* ifindex */
+ nla_total_size(sizeof(u_int32_t)) /* ifindex */
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
+ nla_total_size(sizeof(u_int32_t)) /* ifindex */
+ nla_total_size(sizeof(u_int32_t)) /* ifindex */
#endif
+ nla_total_size(sizeof(u_int32_t)) /* mark */
+ nla_total_size(sizeof(struct nfqnl_msg_packet_hw))
+ nla_total_size(sizeof(u_int32_t)) /* skbinfo */
+ nla_total_size(sizeof(u_int32_t)); /* cap_len */
if (entskb->tstamp)
size += nla_total_size(sizeof(struct nfqnl_msg_packet_timestamp));
size += nfqnl_get_bridge_size(entry);
if (entry->state.hook <= NF_INET_FORWARD ||
(entry->state.hook == NF_INET_POST_ROUTING && entskb->sk == NULL))
csum_verify = !skb_csum_unnecessary(entskb);
else
csum_verify = false;
outdev = entry->state.out;
switch ((enum nfqnl_config_mode)READ_ONCE(queue->copy_mode)) {
case NFQNL_COPY_META:
case NFQNL_COPY_NONE:
break;
case NFQNL_COPY_PACKET:
if (!(queue->flags & NFQA_CFG_F_GSO) &&
entskb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_help(entskb))
return NULL;
data_len = READ_ONCE(queue->copy_range);
if (data_len > entskb->len)
data_len = entskb->len;
hlen = skb_zerocopy_headlen(entskb);
hlen = min_t(unsigned int, hlen, data_len);
size += sizeof(struct nlattr) + hlen;
cap_len = entskb->len;
break;
}
nfnl_ct = rcu_dereference(nfnl_ct_hook);
if (queue->flags & NFQA_CFG_F_CONNTRACK) {
if (nfnl_ct != NULL) {
ct = nfnl_ct->get_ct(entskb, &ctinfo);
if (ct != NULL)
size += nfnl_ct->build_size(ct);
}
}
if (queue->flags & NFQA_CFG_F_UID_GID) {
size += (nla_total_size(sizeof(u_int32_t)) /* uid */
+ nla_total_size(sizeof(u_int32_t))); /* gid */
}
if ((queue->flags & NFQA_CFG_F_SECCTX) && entskb->sk) {
seclen = nfqnl_get_sk_secctx(entskb, &secdata);
if (seclen)
size += nla_total_size(seclen);
}
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb) {
skb_tx_error(entskb);
goto nlmsg_failure;
}
nlh = nlmsg_put(skb, 0, 0,
nfnl_msg_type(NFNL_SUBSYS_QUEUE, NFQNL_MSG_PACKET),
sizeof(struct nfgenmsg), 0);
if (!nlh) {
skb_tx_error(entskb);
kfree_skb(skb);
goto nlmsg_failure;
}
nfmsg = nlmsg_data(nlh);
nfmsg->nfgen_family = entry->state.pf;
nfmsg->version = NFNETLINK_V0;
nfmsg->res_id = htons(queue->queue_num);
nla = __nla_reserve(skb, NFQA_PACKET_HDR, sizeof(*pmsg));
pmsg = nla_data(nla);
pmsg->hw_protocol = entskb->protocol;
pmsg->hook = entry->state.hook;
*packet_id_ptr = &pmsg->packet_id;
indev = entry->state.in;
if (indev) {
#if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
if (nla_put_be32(skb, NFQA_IFINDEX_INDEV, htonl(indev->ifindex)))
goto nla_put_failure;
#else
if (entry->state.pf == PF_BRIDGE) {
/* Case 1: indev is physical input device, we need to
* look for bridge group (when called from
* netfilter_bridge) */
if (nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
htonl(indev->ifindex)) ||
/* this is the bridge group "brX" */
/* rcu_read_lock()ed by __nf_queue */
nla_put_be32(skb, NFQA_IFINDEX_INDEV,
htonl(br_port_get_rcu(indev)->br->dev->ifindex)))
goto nla_put_failure;
} else {
int physinif;
/* Case 2: indev is bridge group, we need to look for
* physical device (when called from ipv4) */
if (nla_put_be32(skb, NFQA_IFINDEX_INDEV,
htonl(indev->ifindex)))
goto nla_put_failure;
physinif = nf_bridge_get_physinif(entskb);
if (physinif &&
nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
htonl(physinif)))
goto nla_put_failure;
}
#endif
}
if (outdev) {
#if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->ifindex)))
goto nla_put_failure;
#else
if (entry->state.pf == PF_BRIDGE) {
/* Case 1: outdev is physical output device, we need to
* look for bridge group (when called from
* netfilter_bridge) */
if (nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
htonl(outdev->ifindex)) ||
/* this is the bridge group "brX" */
/* rcu_read_lock()ed by __nf_queue */
nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
htonl(br_port_get_rcu(outdev)->br->dev->ifindex)))
goto nla_put_failure;
} else {
int physoutif;
/* Case 2: outdev is bridge group, we need to look for
* physical output device (when called from ipv4) */
if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
htonl(outdev->ifindex)))
goto nla_put_failure;
physoutif = nf_bridge_get_physoutif(entskb);
if (physoutif &&
nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
htonl(physoutif)))
goto nla_put_failure;
}
#endif
}
if (entskb->mark &&
nla_put_be32(skb, NFQA_MARK, htonl(entskb->mark)))
goto nla_put_failure;
if (indev && entskb->dev &&
entskb->mac_header != entskb->network_header) {
struct nfqnl_msg_packet_hw phw;
int len;
memset(&phw, 0, sizeof(phw));
len = dev_parse_header(entskb, phw.hw_addr);
if (len) {
phw.hw_addrlen = htons(len);
if (nla_put(skb, NFQA_HWADDR, sizeof(phw), &phw))
goto nla_put_failure;
}
}
if (nfqnl_put_bridge(entry, skb) < 0)
goto nla_put_failure;
if (entry->state.hook <= NF_INET_FORWARD && entskb->tstamp) {
struct nfqnl_msg_packet_timestamp ts;
struct timespec64 kts = ktime_to_timespec64(entskb->tstamp);
ts.sec = cpu_to_be64(kts.tv_sec);
ts.usec = cpu_to_be64(kts.tv_nsec / NSEC_PER_USEC);
if (nla_put(skb, NFQA_TIMESTAMP, sizeof(ts), &ts))
goto nla_put_failure;
}
if ((queue->flags & NFQA_CFG_F_UID_GID) && entskb->sk &&
nfqnl_put_sk_uidgid(skb, entskb->sk) < 0)
goto nla_put_failure;
if (seclen && nla_put(skb, NFQA_SECCTX, seclen, secdata))
goto nla_put_failure;
if (ct && nfnl_ct->build(skb, ct, ctinfo, NFQA_CT, NFQA_CT_INFO) < 0)
goto nla_put_failure;
if (cap_len > data_len &&
nla_put_be32(skb, NFQA_CAP_LEN, htonl(cap_len)))
goto nla_put_failure;
if (nfqnl_put_packet_info(skb, entskb, csum_verify))
goto nla_put_failure;
if (data_len) {
struct nlattr *nla;
if (skb_tailroom(skb) < sizeof(*nla) + hlen)
goto nla_put_failure;
nla = skb_put(skb, sizeof(*nla));
nla->nla_type = NFQA_PAYLOAD;
nla->nla_len = nla_attr_size(data_len);
if (skb_zerocopy(skb, entskb, data_len, hlen))
goto nla_put_failure;
}
nlh->nlmsg_len = skb->len;
if (seclen)
security_release_secctx(secdata, seclen);
return skb;
nla_put_failure:
skb_tx_error(entskb);
kfree_skb(skb);
net_err_ratelimited("nf_queue: error creating packet message\n");
nlmsg_failure:
if (seclen)
security_release_secctx(secdata, seclen);
return NULL;
}
static bool nf_ct_drop_unconfirmed(const struct nf_queue_entry *entry)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
static const unsigned long flags = IPS_CONFIRMED | IPS_DYING;
const struct nf_conn *ct = (void *)skb_nfct(entry->skb);
if (ct && ((ct->status & flags) == IPS_DYING))
return true;
#endif
return false;
}
static int
__nfqnl_enqueue_packet(struct net *net, struct nfqnl_instance *queue,
struct nf_queue_entry *entry)
{
struct sk_buff *nskb;
int err = -ENOBUFS;
__be32 *packet_id_ptr;
int failopen = 0;
nskb = nfqnl_build_packet_message(net, queue, entry, &packet_id_ptr);
if (nskb == NULL) {
err = -ENOMEM;
goto err_out;
}
spin_lock_bh(&queue->lock);
if (nf_ct_drop_unconfirmed(entry))
goto err_out_free_nskb;
if (queue->queue_total >= queue->queue_maxlen) {
if (queue->flags & NFQA_CFG_F_FAIL_OPEN) {
failopen = 1;
err = 0;
} else {
queue->queue_dropped++;
net_warn_ratelimited("nf_queue: full at %d entries, dropping packets(s)\n",
queue->queue_total);
}
goto err_out_free_nskb;
}
entry->id = ++queue->id_sequence;
*packet_id_ptr = htonl(entry->id);
/* nfnetlink_unicast will either free the nskb or add it to a socket */
err = nfnetlink_unicast(nskb, net, queue->peer_portid, MSG_DONTWAIT);
if (err < 0) {
if (queue->flags & NFQA_CFG_F_FAIL_OPEN) {
failopen = 1;
err = 0;
} else {
queue->queue_user_dropped++;
}
goto err_out_unlock;
}
__enqueue_entry(queue, entry);
spin_unlock_bh(&queue->lock);
return 0;
err_out_free_nskb:
kfree_skb(nskb);
err_out_unlock:
spin_unlock_bh(&queue->lock);
if (failopen)
nfqnl_reinject(entry, NF_ACCEPT);
err_out:
return err;
}
static struct nf_queue_entry *
nf_queue_entry_dup(struct nf_queue_entry *e)
{
struct nf_queue_entry *entry = kmemdup(e, e->size, GFP_ATOMIC);
if (entry)
nf_queue_entry_get_refs(entry);
return entry;
}
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
/* When called from bridge netfilter, skb->data must point to MAC header
* before calling skb_gso_segment(). Else, original MAC header is lost
* and segmented skbs will be sent to wrong destination.
*/
static void nf_bridge_adjust_skb_data(struct sk_buff *skb)
{
if (nf_bridge_info_get(skb))
__skb_push(skb, skb->network_header - skb->mac_header);
}
static void nf_bridge_adjust_segmented_data(struct sk_buff *skb)
{
if (nf_bridge_info_get(skb))
__skb_pull(skb, skb->network_header - skb->mac_header);
}
#else
#define nf_bridge_adjust_skb_data(s) do {} while (0)
#define nf_bridge_adjust_segmented_data(s) do {} while (0)
#endif
static void free_entry(struct nf_queue_entry *entry)
{
nf_queue_entry_release_refs(entry);
kfree(entry);
}
static int
__nfqnl_enqueue_packet_gso(struct net *net, struct nfqnl_instance *queue,
struct sk_buff *skb, struct nf_queue_entry *entry)
{
int ret = -ENOMEM;
struct nf_queue_entry *entry_seg;
nf_bridge_adjust_segmented_data(skb);
if (skb->next == NULL) { /* last packet, no need to copy entry */
struct sk_buff *gso_skb = entry->skb;
entry->skb = skb;
ret = __nfqnl_enqueue_packet(net, queue, entry);
if (ret)
entry->skb = gso_skb;
return ret;
}
skb_mark_not_on_list(skb);
entry_seg = nf_queue_entry_dup(entry);
if (entry_seg) {
entry_seg->skb = skb;
ret = __nfqnl_enqueue_packet(net, queue, entry_seg);
if (ret)
free_entry(entry_seg);
}
return ret;
}
static int
nfqnl_enqueue_packet(struct nf_queue_entry *entry, unsigned int queuenum)
{
unsigned int queued;
struct nfqnl_instance *queue;
struct sk_buff *skb, *segs;
int err = -ENOBUFS;
struct net *net = entry->state.net;
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
/* rcu_read_lock()ed by nf_hook_thresh */
queue = instance_lookup(q, queuenum);
if (!queue)
return -ESRCH;
if (queue->copy_mode == NFQNL_COPY_NONE)
return -EINVAL;
skb = entry->skb;
switch (entry->state.pf) {
case NFPROTO_IPV4:
skb->protocol = htons(ETH_P_IP);
break;
case NFPROTO_IPV6:
skb->protocol = htons(ETH_P_IPV6);
break;
}
if ((queue->flags & NFQA_CFG_F_GSO) || !skb_is_gso(skb))
return __nfqnl_enqueue_packet(net, queue, entry);
nf_bridge_adjust_skb_data(skb);
segs = skb_gso_segment(skb, 0);
/* Does not use PTR_ERR to limit the number of error codes that can be
* returned by nf_queue. For instance, callers rely on -ESRCH to
* mean 'ignore this hook'.
*/
if (IS_ERR_OR_NULL(segs))
goto out_err;
queued = 0;
err = 0;
do {
struct sk_buff *nskb = segs->next;
if (err == 0)
err = __nfqnl_enqueue_packet_gso(net, queue,
segs, entry);
if (err == 0)
queued++;
else
kfree_skb(segs);
segs = nskb;
} while (segs);
if (queued) {
if (err) /* some segments are already queued */
free_entry(entry);
kfree_skb(skb);
return 0;
}
out_err:
nf_bridge_adjust_segmented_data(skb);
return err;
}
static int
nfqnl_mangle(void *data, int data_len, struct nf_queue_entry *e, int diff)
{
struct sk_buff *nskb;
if (diff < 0) {
if (pskb_trim(e->skb, data_len))
return -ENOMEM;
} else if (diff > 0) {
if (data_len > 0xFFFF)
return -EINVAL;
if (diff > skb_tailroom(e->skb)) {
nskb = skb_copy_expand(e->skb, skb_headroom(e->skb),
diff, GFP_ATOMIC);
if (!nskb)
return -ENOMEM;
kfree_skb(e->skb);
e->skb = nskb;
}
skb_put(e->skb, diff);
}
if (!skb_make_writable(e->skb, data_len))
return -ENOMEM;
skb_copy_to_linear_data(e->skb, data, data_len);
e->skb->ip_summed = CHECKSUM_NONE;
return 0;
}
static int
nfqnl_set_mode(struct nfqnl_instance *queue,
unsigned char mode, unsigned int range)
{
int status = 0;
spin_lock_bh(&queue->lock);
switch (mode) {
case NFQNL_COPY_NONE:
case NFQNL_COPY_META:
queue->copy_mode = mode;
queue->copy_range = 0;
break;
case NFQNL_COPY_PACKET:
queue->copy_mode = mode;
if (range == 0 || range > NFQNL_MAX_COPY_RANGE)
queue->copy_range = NFQNL_MAX_COPY_RANGE;
else
queue->copy_range = range;
break;
default:
status = -EINVAL;
}
spin_unlock_bh(&queue->lock);
return status;
}
static int
dev_cmp(struct nf_queue_entry *entry, unsigned long ifindex)
{
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
int physinif, physoutif;
physinif = nf_bridge_get_physinif(entry->skb);
physoutif = nf_bridge_get_physoutif(entry->skb);
if (physinif == ifindex || physoutif == ifindex)
return 1;
#endif
if (entry->state.in)
if (entry->state.in->ifindex == ifindex)
return 1;
if (entry->state.out)
if (entry->state.out->ifindex == ifindex)
return 1;
return 0;
}
/* drop all packets with either indev or outdev == ifindex from all queue
* instances */
static void
nfqnl_dev_drop(struct net *net, int ifindex)
{
int i;
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
rcu_read_lock();
for (i = 0; i < INSTANCE_BUCKETS; i++) {
struct nfqnl_instance *inst;
struct hlist_head *head = &q->instance_table[i];
hlist_for_each_entry_rcu(inst, head, hlist)
nfqnl_flush(inst, dev_cmp, ifindex);
}
rcu_read_unlock();
}
static int
nfqnl_rcv_dev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
/* Drop any packets associated with the downed device */
if (event == NETDEV_DOWN)
nfqnl_dev_drop(dev_net(dev), dev->ifindex);
return NOTIFY_DONE;
}
static struct notifier_block nfqnl_dev_notifier = {
.notifier_call = nfqnl_rcv_dev_event,
};
static void nfqnl_nf_hook_drop(struct net *net)
{
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
int i;
for (i = 0; i < INSTANCE_BUCKETS; i++) {
struct nfqnl_instance *inst;
struct hlist_head *head = &q->instance_table[i];
hlist_for_each_entry_rcu(inst, head, hlist)
nfqnl_flush(inst, NULL, 0);
}
}
static int
nfqnl_rcv_nl_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct netlink_notify *n = ptr;
struct nfnl_queue_net *q = nfnl_queue_pernet(n->net);
if (event == NETLINK_URELEASE && n->protocol == NETLINK_NETFILTER) {
int i;
/* destroy all instances for this portid */
spin_lock(&q->instances_lock);
for (i = 0; i < INSTANCE_BUCKETS; i++) {
struct hlist_node *t2;
struct nfqnl_instance *inst;
struct hlist_head *head = &q->instance_table[i];
hlist_for_each_entry_safe(inst, t2, head, hlist) {
if (n->portid == inst->peer_portid)
__instance_destroy(inst);
}
}
spin_unlock(&q->instances_lock);
}
return NOTIFY_DONE;
}
static struct notifier_block nfqnl_rtnl_notifier = {
.notifier_call = nfqnl_rcv_nl_event,
};
static const struct nla_policy nfqa_vlan_policy[NFQA_VLAN_MAX + 1] = {
[NFQA_VLAN_TCI] = { .type = NLA_U16},
[NFQA_VLAN_PROTO] = { .type = NLA_U16},
};
static const struct nla_policy nfqa_verdict_policy[NFQA_MAX+1] = {
[NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
[NFQA_MARK] = { .type = NLA_U32 },
[NFQA_PAYLOAD] = { .type = NLA_UNSPEC },
[NFQA_CT] = { .type = NLA_UNSPEC },
[NFQA_EXP] = { .type = NLA_UNSPEC },
[NFQA_VLAN] = { .type = NLA_NESTED },
};
static const struct nla_policy nfqa_verdict_batch_policy[NFQA_MAX+1] = {
[NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
[NFQA_MARK] = { .type = NLA_U32 },
};
static struct nfqnl_instance *
verdict_instance_lookup(struct nfnl_queue_net *q, u16 queue_num, u32 nlportid)
{
struct nfqnl_instance *queue;
queue = instance_lookup(q, queue_num);
if (!queue)
return ERR_PTR(-ENODEV);
if (queue->peer_portid != nlportid)
return ERR_PTR(-EPERM);
return queue;
}
static struct nfqnl_msg_verdict_hdr*
verdicthdr_get(const struct nlattr * const nfqa[])
{
struct nfqnl_msg_verdict_hdr *vhdr;
unsigned int verdict;
if (!nfqa[NFQA_VERDICT_HDR])
return NULL;
vhdr = nla_data(nfqa[NFQA_VERDICT_HDR]);
verdict = ntohl(vhdr->verdict) & NF_VERDICT_MASK;
if (verdict > NF_MAX_VERDICT || verdict == NF_STOLEN)
return NULL;
return vhdr;
}
static int nfq_id_after(unsigned int id, unsigned int max)
{
return (int)(id - max) > 0;
}
static int nfqnl_recv_verdict_batch(struct net *net, struct sock *ctnl,
struct sk_buff *skb,
const struct nlmsghdr *nlh,
const struct nlattr * const nfqa[],
struct netlink_ext_ack *extack)
{
struct nfgenmsg *nfmsg = nlmsg_data(nlh);
struct nf_queue_entry *entry, *tmp;
unsigned int verdict, maxid;
struct nfqnl_msg_verdict_hdr *vhdr;
struct nfqnl_instance *queue;
LIST_HEAD(batch_list);
u16 queue_num = ntohs(nfmsg->res_id);
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
queue = verdict_instance_lookup(q, queue_num,
NETLINK_CB(skb).portid);
if (IS_ERR(queue))
return PTR_ERR(queue);
vhdr = verdicthdr_get(nfqa);
if (!vhdr)
return -EINVAL;
verdict = ntohl(vhdr->verdict);
maxid = ntohl(vhdr->id);
spin_lock_bh(&queue->lock);
list_for_each_entry_safe(entry, tmp, &queue->queue_list, list) {
if (nfq_id_after(entry->id, maxid))
break;
__dequeue_entry(queue, entry);
list_add_tail(&entry->list, &batch_list);
}
spin_unlock_bh(&queue->lock);
if (list_empty(&batch_list))
return -ENOENT;
list_for_each_entry_safe(entry, tmp, &batch_list, list) {
if (nfqa[NFQA_MARK])
entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
nfqnl_reinject(entry, verdict);
}
return 0;
}
static struct nf_conn *nfqnl_ct_parse(struct nfnl_ct_hook *nfnl_ct,
const struct nlmsghdr *nlh,
const struct nlattr * const nfqa[],
struct nf_queue_entry *entry,
enum ip_conntrack_info *ctinfo)
{
struct nf_conn *ct;
ct = nfnl_ct->get_ct(entry->skb, ctinfo);
if (ct == NULL)
return NULL;
if (nfnl_ct->parse(nfqa[NFQA_CT], ct) < 0)
return NULL;
if (nfqa[NFQA_EXP])
nfnl_ct->attach_expect(nfqa[NFQA_EXP], ct,
NETLINK_CB(entry->skb).portid,
nlmsg_report(nlh));
return ct;
}
static int nfqa_parse_bridge(struct nf_queue_entry *entry,
const struct nlattr * const nfqa[])
{
if (nfqa[NFQA_VLAN]) {
struct nlattr *tb[NFQA_VLAN_MAX + 1];
int err;
err = nla_parse_nested_deprecated(tb, NFQA_VLAN_MAX,
nfqa[NFQA_VLAN],
nfqa_vlan_policy, NULL);
if (err < 0)
return err;
if (!tb[NFQA_VLAN_TCI] || !tb[NFQA_VLAN_PROTO])
return -EINVAL;
__vlan_hwaccel_put_tag(entry->skb,
nla_get_be16(tb[NFQA_VLAN_PROTO]),
ntohs(nla_get_be16(tb[NFQA_VLAN_TCI])));
}
if (nfqa[NFQA_L2HDR]) {
int mac_header_len = entry->skb->network_header -
entry->skb->mac_header;
if (mac_header_len != nla_len(nfqa[NFQA_L2HDR]))
return -EINVAL;
else if (mac_header_len > 0)
memcpy(skb_mac_header(entry->skb),
nla_data(nfqa[NFQA_L2HDR]),
mac_header_len);
}
return 0;
}
static int nfqnl_recv_verdict(struct net *net, struct sock *ctnl,
struct sk_buff *skb,
const struct nlmsghdr *nlh,
const struct nlattr * const nfqa[],
struct netlink_ext_ack *extack)
{
struct nfgenmsg *nfmsg = nlmsg_data(nlh);
u_int16_t queue_num = ntohs(nfmsg->res_id);
struct nfqnl_msg_verdict_hdr *vhdr;
struct nfqnl_instance *queue;
unsigned int verdict;
struct nf_queue_entry *entry;
enum ip_conntrack_info uninitialized_var(ctinfo);
struct nfnl_ct_hook *nfnl_ct;
struct nf_conn *ct = NULL;
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
int err;
queue = verdict_instance_lookup(q, queue_num,
NETLINK_CB(skb).portid);
if (IS_ERR(queue))
return PTR_ERR(queue);
vhdr = verdicthdr_get(nfqa);
if (!vhdr)
return -EINVAL;
verdict = ntohl(vhdr->verdict);
entry = find_dequeue_entry(queue, ntohl(vhdr->id));
if (entry == NULL)
return -ENOENT;
/* rcu lock already held from nfnl->call_rcu. */
nfnl_ct = rcu_dereference(nfnl_ct_hook);
if (nfqa[NFQA_CT]) {
if (nfnl_ct != NULL)
ct = nfqnl_ct_parse(nfnl_ct, nlh, nfqa, entry, &ctinfo);
}
if (entry->state.pf == PF_BRIDGE) {
err = nfqa_parse_bridge(entry, nfqa);
if (err < 0)
return err;
}
if (nfqa[NFQA_PAYLOAD]) {
u16 payload_len = nla_len(nfqa[NFQA_PAYLOAD]);
int diff = payload_len - entry->skb->len;
if (nfqnl_mangle(nla_data(nfqa[NFQA_PAYLOAD]),
payload_len, entry, diff) < 0)
verdict = NF_DROP;
if (ct && diff)
nfnl_ct->seq_adjust(entry->skb, ct, ctinfo, diff);
}
if (nfqa[NFQA_MARK])
entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
nfqnl_reinject(entry, verdict);
return 0;
}
static int nfqnl_recv_unsupp(struct net *net, struct sock *ctnl,
struct sk_buff *skb, const struct nlmsghdr *nlh,
const struct nlattr * const nfqa[],
struct netlink_ext_ack *extack)
{
return -ENOTSUPP;
}
static const struct nla_policy nfqa_cfg_policy[NFQA_CFG_MAX+1] = {
[NFQA_CFG_CMD] = { .len = sizeof(struct nfqnl_msg_config_cmd) },
[NFQA_CFG_PARAMS] = { .len = sizeof(struct nfqnl_msg_config_params) },
[NFQA_CFG_QUEUE_MAXLEN] = { .type = NLA_U32 },
[NFQA_CFG_MASK] = { .type = NLA_U32 },
[NFQA_CFG_FLAGS] = { .type = NLA_U32 },
};
static const struct nf_queue_handler nfqh = {
.outfn = nfqnl_enqueue_packet,
.nf_hook_drop = nfqnl_nf_hook_drop,
};
static int nfqnl_recv_config(struct net *net, struct sock *ctnl,
struct sk_buff *skb, const struct nlmsghdr *nlh,
const struct nlattr * const nfqa[],
struct netlink_ext_ack *extack)
{
struct nfgenmsg *nfmsg = nlmsg_data(nlh);
u_int16_t queue_num = ntohs(nfmsg->res_id);
struct nfqnl_instance *queue;
struct nfqnl_msg_config_cmd *cmd = NULL;
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
__u32 flags = 0, mask = 0;
int ret = 0;
if (nfqa[NFQA_CFG_CMD]) {
cmd = nla_data(nfqa[NFQA_CFG_CMD]);
/* Obsolete commands without queue context */
switch (cmd->command) {
case NFQNL_CFG_CMD_PF_BIND: return 0;
case NFQNL_CFG_CMD_PF_UNBIND: return 0;
}
}
/* Check if we support these flags in first place, dependencies should
* be there too not to break atomicity.
*/
if (nfqa[NFQA_CFG_FLAGS]) {
if (!nfqa[NFQA_CFG_MASK]) {
/* A mask is needed to specify which flags are being
* changed.
*/
return -EINVAL;
}
flags = ntohl(nla_get_be32(nfqa[NFQA_CFG_FLAGS]));
mask = ntohl(nla_get_be32(nfqa[NFQA_CFG_MASK]));
if (flags >= NFQA_CFG_F_MAX)
return -EOPNOTSUPP;
#if !IS_ENABLED(CONFIG_NETWORK_SECMARK)
if (flags & mask & NFQA_CFG_F_SECCTX)
return -EOPNOTSUPP;
#endif
if ((flags & mask & NFQA_CFG_F_CONNTRACK) &&
!rcu_access_pointer(nfnl_ct_hook)) {
#ifdef CONFIG_MODULES
nfnl_unlock(NFNL_SUBSYS_QUEUE);
request_module("ip_conntrack_netlink");
nfnl_lock(NFNL_SUBSYS_QUEUE);
if (rcu_access_pointer(nfnl_ct_hook))
return -EAGAIN;
#endif
return -EOPNOTSUPP;
}
}
rcu_read_lock();
queue = instance_lookup(q, queue_num);
if (queue && queue->peer_portid != NETLINK_CB(skb).portid) {
ret = -EPERM;
goto err_out_unlock;
}
if (cmd != NULL) {
switch (cmd->command) {
case NFQNL_CFG_CMD_BIND:
if (queue) {
ret = -EBUSY;
goto err_out_unlock;
}
queue = instance_create(q, queue_num,
NETLINK_CB(skb).portid);
if (IS_ERR(queue)) {
ret = PTR_ERR(queue);
goto err_out_unlock;
}
break;
case NFQNL_CFG_CMD_UNBIND:
if (!queue) {
ret = -ENODEV;
goto err_out_unlock;
}
instance_destroy(q, queue);
goto err_out_unlock;
case NFQNL_CFG_CMD_PF_BIND:
case NFQNL_CFG_CMD_PF_UNBIND:
break;
default:
ret = -ENOTSUPP;
goto err_out_unlock;
}
}
if (!queue) {
ret = -ENODEV;
goto err_out_unlock;
}
if (nfqa[NFQA_CFG_PARAMS]) {
struct nfqnl_msg_config_params *params =
nla_data(nfqa[NFQA_CFG_PARAMS]);
nfqnl_set_mode(queue, params->copy_mode,
ntohl(params->copy_range));
}
if (nfqa[NFQA_CFG_QUEUE_MAXLEN]) {
__be32 *queue_maxlen = nla_data(nfqa[NFQA_CFG_QUEUE_MAXLEN]);
spin_lock_bh(&queue->lock);
queue->queue_maxlen = ntohl(*queue_maxlen);
spin_unlock_bh(&queue->lock);
}
if (nfqa[NFQA_CFG_FLAGS]) {
spin_lock_bh(&queue->lock);
queue->flags &= ~mask;
queue->flags |= flags & mask;
spin_unlock_bh(&queue->lock);
}
err_out_unlock:
rcu_read_unlock();
return ret;
}
static const struct nfnl_callback nfqnl_cb[NFQNL_MSG_MAX] = {
[NFQNL_MSG_PACKET] = { .call_rcu = nfqnl_recv_unsupp,
.attr_count = NFQA_MAX, },
[NFQNL_MSG_VERDICT] = { .call_rcu = nfqnl_recv_verdict,
.attr_count = NFQA_MAX,
.policy = nfqa_verdict_policy },
[NFQNL_MSG_CONFIG] = { .call = nfqnl_recv_config,
.attr_count = NFQA_CFG_MAX,
.policy = nfqa_cfg_policy },
[NFQNL_MSG_VERDICT_BATCH]={ .call_rcu = nfqnl_recv_verdict_batch,
.attr_count = NFQA_MAX,
.policy = nfqa_verdict_batch_policy },
};
static const struct nfnetlink_subsystem nfqnl_subsys = {
.name = "nf_queue",
.subsys_id = NFNL_SUBSYS_QUEUE,
.cb_count = NFQNL_MSG_MAX,
.cb = nfqnl_cb,
};
#ifdef CONFIG_PROC_FS
struct iter_state {
struct seq_net_private p;
unsigned int bucket;
};
static struct hlist_node *get_first(struct seq_file *seq)
{
struct iter_state *st = seq->private;
struct net *net;
struct nfnl_queue_net *q;
if (!st)
return NULL;
net = seq_file_net(seq);
q = nfnl_queue_pernet(net);
for (st->bucket = 0; st->bucket < INSTANCE_BUCKETS; st->bucket++) {
if (!hlist_empty(&q->instance_table[st->bucket]))
return q->instance_table[st->bucket].first;
}
return NULL;
}
static struct hlist_node *get_next(struct seq_file *seq, struct hlist_node *h)
{
struct iter_state *st = seq->private;
struct net *net = seq_file_net(seq);
h = h->next;
while (!h) {
struct nfnl_queue_net *q;
if (++st->bucket >= INSTANCE_BUCKETS)
return NULL;
q = nfnl_queue_pernet(net);
h = q->instance_table[st->bucket].first;
}
return h;
}
static struct hlist_node *get_idx(struct seq_file *seq, loff_t pos)
{
struct hlist_node *head;
head = get_first(seq);
if (head)
while (pos && (head = get_next(seq, head)))
pos--;
return pos ? NULL : head;
}
static void *seq_start(struct seq_file *s, loff_t *pos)
__acquires(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
{
spin_lock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
return get_idx(s, *pos);
}
static void *seq_next(struct seq_file *s, void *v, loff_t *pos)
{
(*pos)++;
return get_next(s, v);
}
static void seq_stop(struct seq_file *s, void *v)
__releases(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
{
spin_unlock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
}
static int seq_show(struct seq_file *s, void *v)
{
const struct nfqnl_instance *inst = v;
seq_printf(s, "%5u %6u %5u %1u %5u %5u %5u %8u %2d\n",
inst->queue_num,
inst->peer_portid, inst->queue_total,
inst->copy_mode, inst->copy_range,
inst->queue_dropped, inst->queue_user_dropped,
inst->id_sequence, 1);
return 0;
}
static const struct seq_operations nfqnl_seq_ops = {
.start = seq_start,
.next = seq_next,
.stop = seq_stop,
.show = seq_show,
};
#endif /* PROC_FS */
static int __net_init nfnl_queue_net_init(struct net *net)
{
unsigned int i;
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
for (i = 0; i < INSTANCE_BUCKETS; i++)
INIT_HLIST_HEAD(&q->instance_table[i]);
spin_lock_init(&q->instances_lock);
#ifdef CONFIG_PROC_FS
if (!proc_create_net("nfnetlink_queue", 0440, net->nf.proc_netfilter,
&nfqnl_seq_ops, sizeof(struct iter_state)))
return -ENOMEM;
#endif
nf_register_queue_handler(net, &nfqh);
return 0;
}
static void __net_exit nfnl_queue_net_exit(struct net *net)
{
struct nfnl_queue_net *q = nfnl_queue_pernet(net);
unsigned int i;
nf_unregister_queue_handler(net);
#ifdef CONFIG_PROC_FS
remove_proc_entry("nfnetlink_queue", net->nf.proc_netfilter);
#endif
for (i = 0; i < INSTANCE_BUCKETS; i++)
WARN_ON_ONCE(!hlist_empty(&q->instance_table[i]));
}
static void nfnl_queue_net_exit_batch(struct list_head *net_exit_list)
{
synchronize_rcu();
}
static struct pernet_operations nfnl_queue_net_ops = {
.init = nfnl_queue_net_init,
.exit = nfnl_queue_net_exit,
.exit_batch = nfnl_queue_net_exit_batch,
.id = &nfnl_queue_net_id,
.size = sizeof(struct nfnl_queue_net),
};
static int __init nfnetlink_queue_init(void)
{
int status;
status = register_pernet_subsys(&nfnl_queue_net_ops);
if (status < 0) {
pr_err("failed to register pernet ops\n");
goto out;
}
netlink_register_notifier(&nfqnl_rtnl_notifier);
status = nfnetlink_subsys_register(&nfqnl_subsys);
if (status < 0) {
pr_err("failed to create netlink socket\n");
goto cleanup_netlink_notifier;
}
status = register_netdevice_notifier(&nfqnl_dev_notifier);
if (status < 0) {
pr_err("failed to register netdevice notifier\n");
goto cleanup_netlink_subsys;
}
return status;
cleanup_netlink_subsys:
nfnetlink_subsys_unregister(&nfqnl_subsys);
cleanup_netlink_notifier:
netlink_unregister_notifier(&nfqnl_rtnl_notifier);
unregister_pernet_subsys(&nfnl_queue_net_ops);
out:
return status;
}
static void __exit nfnetlink_queue_fini(void)
{
unregister_netdevice_notifier(&nfqnl_dev_notifier);
nfnetlink_subsys_unregister(&nfqnl_subsys);
netlink_unregister_notifier(&nfqnl_rtnl_notifier);
unregister_pernet_subsys(&nfnl_queue_net_ops);
rcu_barrier(); /* Wait for completion of call_rcu()'s */
}
MODULE_DESCRIPTION("netfilter packet queue handler");
MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_QUEUE);
module_init(nfnetlink_queue_init);
module_exit(nfnetlink_queue_fini);