| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/uaccess.h> |
| |
| #include <clocksource/arm_arch_timer.h> |
| #include <asm/arch_timer.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| |
| #include <kvm/arm_vgic.h> |
| #include <kvm/arm_arch_timer.h> |
| |
| #include "trace.h" |
| |
| static struct timecounter *timecounter; |
| static unsigned int host_vtimer_irq; |
| static unsigned int host_ptimer_irq; |
| static u32 host_vtimer_irq_flags; |
| static u32 host_ptimer_irq_flags; |
| |
| static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); |
| |
| static const struct kvm_irq_level default_ptimer_irq = { |
| .irq = 30, |
| .level = 1, |
| }; |
| |
| static const struct kvm_irq_level default_vtimer_irq = { |
| .irq = 27, |
| .level = 1, |
| }; |
| |
| static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); |
| static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| struct arch_timer_context *timer_ctx); |
| static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); |
| static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg, |
| u64 val); |
| static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg); |
| |
| u64 kvm_phys_timer_read(void) |
| { |
| return timecounter->cc->read(timecounter->cc); |
| } |
| |
| static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) |
| { |
| if (has_vhe()) { |
| map->direct_vtimer = vcpu_vtimer(vcpu); |
| map->direct_ptimer = vcpu_ptimer(vcpu); |
| map->emul_ptimer = NULL; |
| } else { |
| map->direct_vtimer = vcpu_vtimer(vcpu); |
| map->direct_ptimer = NULL; |
| map->emul_ptimer = vcpu_ptimer(vcpu); |
| } |
| |
| trace_kvm_get_timer_map(vcpu->vcpu_id, map); |
| } |
| |
| static inline bool userspace_irqchip(struct kvm *kvm) |
| { |
| return static_branch_unlikely(&userspace_irqchip_in_use) && |
| unlikely(!irqchip_in_kernel(kvm)); |
| } |
| |
| static void soft_timer_start(struct hrtimer *hrt, u64 ns) |
| { |
| hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), |
| HRTIMER_MODE_ABS); |
| } |
| |
| static void soft_timer_cancel(struct hrtimer *hrt) |
| { |
| hrtimer_cancel(hrt); |
| } |
| |
| static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) |
| { |
| struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; |
| struct arch_timer_context *ctx; |
| struct timer_map map; |
| |
| /* |
| * We may see a timer interrupt after vcpu_put() has been called which |
| * sets the CPU's vcpu pointer to NULL, because even though the timer |
| * has been disabled in timer_save_state(), the hardware interrupt |
| * signal may not have been retired from the interrupt controller yet. |
| */ |
| if (!vcpu) |
| return IRQ_HANDLED; |
| |
| get_timer_map(vcpu, &map); |
| |
| if (irq == host_vtimer_irq) |
| ctx = map.direct_vtimer; |
| else |
| ctx = map.direct_ptimer; |
| |
| if (kvm_timer_should_fire(ctx)) |
| kvm_timer_update_irq(vcpu, true, ctx); |
| |
| if (userspace_irqchip(vcpu->kvm) && |
| !static_branch_unlikely(&has_gic_active_state)) |
| disable_percpu_irq(host_vtimer_irq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) |
| { |
| u64 cval, now; |
| |
| cval = timer_ctx->cnt_cval; |
| now = kvm_phys_timer_read() - timer_ctx->cntvoff; |
| |
| if (now < cval) { |
| u64 ns; |
| |
| ns = cyclecounter_cyc2ns(timecounter->cc, |
| cval - now, |
| timecounter->mask, |
| &timecounter->frac); |
| return ns; |
| } |
| |
| return 0; |
| } |
| |
| static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) |
| { |
| WARN_ON(timer_ctx && timer_ctx->loaded); |
| return timer_ctx && |
| !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) && |
| (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE); |
| } |
| |
| /* |
| * Returns the earliest expiration time in ns among guest timers. |
| * Note that it will return 0 if none of timers can fire. |
| */ |
| static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) |
| { |
| u64 min_delta = ULLONG_MAX; |
| int i; |
| |
| for (i = 0; i < NR_KVM_TIMERS; i++) { |
| struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; |
| |
| WARN(ctx->loaded, "timer %d loaded\n", i); |
| if (kvm_timer_irq_can_fire(ctx)) |
| min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); |
| } |
| |
| /* If none of timers can fire, then return 0 */ |
| if (min_delta == ULLONG_MAX) |
| return 0; |
| |
| return min_delta; |
| } |
| |
| static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) |
| { |
| struct arch_timer_cpu *timer; |
| struct kvm_vcpu *vcpu; |
| u64 ns; |
| |
| timer = container_of(hrt, struct arch_timer_cpu, bg_timer); |
| vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); |
| |
| /* |
| * Check that the timer has really expired from the guest's |
| * PoV (NTP on the host may have forced it to expire |
| * early). If we should have slept longer, restart it. |
| */ |
| ns = kvm_timer_earliest_exp(vcpu); |
| if (unlikely(ns)) { |
| hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| return HRTIMER_RESTART; |
| } |
| |
| kvm_vcpu_wake_up(vcpu); |
| return HRTIMER_NORESTART; |
| } |
| |
| static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) |
| { |
| struct arch_timer_context *ctx; |
| struct kvm_vcpu *vcpu; |
| u64 ns; |
| |
| ctx = container_of(hrt, struct arch_timer_context, hrtimer); |
| vcpu = ctx->vcpu; |
| |
| trace_kvm_timer_hrtimer_expire(ctx); |
| |
| /* |
| * Check that the timer has really expired from the guest's |
| * PoV (NTP on the host may have forced it to expire |
| * early). If not ready, schedule for a later time. |
| */ |
| ns = kvm_timer_compute_delta(ctx); |
| if (unlikely(ns)) { |
| hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| return HRTIMER_RESTART; |
| } |
| |
| kvm_timer_update_irq(vcpu, true, ctx); |
| return HRTIMER_NORESTART; |
| } |
| |
| static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) |
| { |
| enum kvm_arch_timers index; |
| u64 cval, now; |
| |
| if (!timer_ctx) |
| return false; |
| |
| index = arch_timer_ctx_index(timer_ctx); |
| |
| if (timer_ctx->loaded) { |
| u32 cnt_ctl = 0; |
| |
| switch (index) { |
| case TIMER_VTIMER: |
| cnt_ctl = read_sysreg_el0(cntv_ctl); |
| break; |
| case TIMER_PTIMER: |
| cnt_ctl = read_sysreg_el0(cntp_ctl); |
| break; |
| case NR_KVM_TIMERS: |
| /* GCC is braindead */ |
| cnt_ctl = 0; |
| break; |
| } |
| |
| return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && |
| (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && |
| !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); |
| } |
| |
| if (!kvm_timer_irq_can_fire(timer_ctx)) |
| return false; |
| |
| cval = timer_ctx->cnt_cval; |
| now = kvm_phys_timer_read() - timer_ctx->cntvoff; |
| |
| return cval <= now; |
| } |
| |
| bool kvm_timer_is_pending(struct kvm_vcpu *vcpu) |
| { |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| return kvm_timer_should_fire(map.direct_vtimer) || |
| kvm_timer_should_fire(map.direct_ptimer) || |
| kvm_timer_should_fire(map.emul_ptimer); |
| } |
| |
| /* |
| * Reflect the timer output level into the kvm_run structure |
| */ |
| void kvm_timer_update_run(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| struct kvm_sync_regs *regs = &vcpu->run->s.regs; |
| |
| /* Populate the device bitmap with the timer states */ |
| regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | |
| KVM_ARM_DEV_EL1_PTIMER); |
| if (kvm_timer_should_fire(vtimer)) |
| regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; |
| if (kvm_timer_should_fire(ptimer)) |
| regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; |
| } |
| |
| static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| struct arch_timer_context *timer_ctx) |
| { |
| int ret; |
| |
| timer_ctx->irq.level = new_level; |
| trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq, |
| timer_ctx->irq.level); |
| |
| if (!userspace_irqchip(vcpu->kvm)) { |
| ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, |
| timer_ctx->irq.irq, |
| timer_ctx->irq.level, |
| timer_ctx); |
| WARN_ON(ret); |
| } |
| } |
| |
| /* Only called for a fully emulated timer */ |
| static void timer_emulate(struct arch_timer_context *ctx) |
| { |
| bool should_fire = kvm_timer_should_fire(ctx); |
| |
| trace_kvm_timer_emulate(ctx, should_fire); |
| |
| if (should_fire != ctx->irq.level) { |
| kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); |
| return; |
| } |
| |
| /* |
| * If the timer can fire now, we don't need to have a soft timer |
| * scheduled for the future. If the timer cannot fire at all, |
| * then we also don't need a soft timer. |
| */ |
| if (!kvm_timer_irq_can_fire(ctx)) { |
| soft_timer_cancel(&ctx->hrtimer); |
| return; |
| } |
| |
| soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); |
| } |
| |
| static void timer_save_state(struct arch_timer_context *ctx) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| unsigned long flags; |
| |
| if (!timer->enabled) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (!ctx->loaded) |
| goto out; |
| |
| switch (index) { |
| case TIMER_VTIMER: |
| ctx->cnt_ctl = read_sysreg_el0(cntv_ctl); |
| ctx->cnt_cval = read_sysreg_el0(cntv_cval); |
| |
| /* Disable the timer */ |
| write_sysreg_el0(0, cntv_ctl); |
| isb(); |
| |
| break; |
| case TIMER_PTIMER: |
| ctx->cnt_ctl = read_sysreg_el0(cntp_ctl); |
| ctx->cnt_cval = read_sysreg_el0(cntp_cval); |
| |
| /* Disable the timer */ |
| write_sysreg_el0(0, cntp_ctl); |
| isb(); |
| |
| break; |
| case NR_KVM_TIMERS: |
| BUG(); |
| } |
| |
| trace_kvm_timer_save_state(ctx); |
| |
| ctx->loaded = false; |
| out: |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Schedule the background timer before calling kvm_vcpu_block, so that this |
| * thread is removed from its waitqueue and made runnable when there's a timer |
| * interrupt to handle. |
| */ |
| static void kvm_timer_blocking(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * If no timers are capable of raising interrupts (disabled or |
| * masked), then there's no more work for us to do. |
| */ |
| if (!kvm_timer_irq_can_fire(map.direct_vtimer) && |
| !kvm_timer_irq_can_fire(map.direct_ptimer) && |
| !kvm_timer_irq_can_fire(map.emul_ptimer)) |
| return; |
| |
| /* |
| * At least one guest time will expire. Schedule a background timer. |
| * Set the earliest expiration time among the guest timers. |
| */ |
| soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); |
| } |
| |
| static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| soft_timer_cancel(&timer->bg_timer); |
| } |
| |
| static void timer_restore_state(struct arch_timer_context *ctx) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| unsigned long flags; |
| |
| if (!timer->enabled) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (ctx->loaded) |
| goto out; |
| |
| switch (index) { |
| case TIMER_VTIMER: |
| write_sysreg_el0(ctx->cnt_cval, cntv_cval); |
| isb(); |
| write_sysreg_el0(ctx->cnt_ctl, cntv_ctl); |
| break; |
| case TIMER_PTIMER: |
| write_sysreg_el0(ctx->cnt_cval, cntp_cval); |
| isb(); |
| write_sysreg_el0(ctx->cnt_ctl, cntp_ctl); |
| break; |
| case NR_KVM_TIMERS: |
| BUG(); |
| } |
| |
| trace_kvm_timer_restore_state(ctx); |
| |
| ctx->loaded = true; |
| out: |
| local_irq_restore(flags); |
| } |
| |
| static void set_cntvoff(u64 cntvoff) |
| { |
| u32 low = lower_32_bits(cntvoff); |
| u32 high = upper_32_bits(cntvoff); |
| |
| /* |
| * Since kvm_call_hyp doesn't fully support the ARM PCS especially on |
| * 32-bit systems, but rather passes register by register shifted one |
| * place (we put the function address in r0/x0), we cannot simply pass |
| * a 64-bit value as an argument, but have to split the value in two |
| * 32-bit halves. |
| */ |
| kvm_call_hyp(__kvm_timer_set_cntvoff, low, high); |
| } |
| |
| static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) |
| { |
| int r; |
| r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); |
| WARN_ON(r); |
| } |
| |
| static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) |
| { |
| struct kvm_vcpu *vcpu = ctx->vcpu; |
| bool phys_active = false; |
| |
| /* |
| * Update the timer output so that it is likely to match the |
| * state we're about to restore. If the timer expires between |
| * this point and the register restoration, we'll take the |
| * interrupt anyway. |
| */ |
| kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) |
| phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq); |
| |
| phys_active |= ctx->irq.level; |
| |
| set_timer_irq_phys_active(ctx, phys_active); |
| } |
| |
| static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| |
| /* |
| * Update the timer output so that it is likely to match the |
| * state we're about to restore. If the timer expires between |
| * this point and the register restoration, we'll take the |
| * interrupt anyway. |
| */ |
| kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); |
| |
| /* |
| * When using a userspace irqchip with the architected timers and a |
| * host interrupt controller that doesn't support an active state, we |
| * must still prevent continuously exiting from the guest, and |
| * therefore mask the physical interrupt by disabling it on the host |
| * interrupt controller when the virtual level is high, such that the |
| * guest can make forward progress. Once we detect the output level |
| * being de-asserted, we unmask the interrupt again so that we exit |
| * from the guest when the timer fires. |
| */ |
| if (vtimer->irq.level) |
| disable_percpu_irq(host_vtimer_irq); |
| else |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| } |
| |
| void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| get_timer_map(vcpu, &map); |
| |
| if (static_branch_likely(&has_gic_active_state)) { |
| kvm_timer_vcpu_load_gic(map.direct_vtimer); |
| if (map.direct_ptimer) |
| kvm_timer_vcpu_load_gic(map.direct_ptimer); |
| } else { |
| kvm_timer_vcpu_load_nogic(vcpu); |
| } |
| |
| set_cntvoff(map.direct_vtimer->cntvoff); |
| |
| kvm_timer_unblocking(vcpu); |
| |
| timer_restore_state(map.direct_vtimer); |
| if (map.direct_ptimer) |
| timer_restore_state(map.direct_ptimer); |
| |
| if (map.emul_ptimer) |
| timer_emulate(map.emul_ptimer); |
| } |
| |
| bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| struct kvm_sync_regs *sregs = &vcpu->run->s.regs; |
| bool vlevel, plevel; |
| |
| if (likely(irqchip_in_kernel(vcpu->kvm))) |
| return false; |
| |
| vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; |
| plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; |
| |
| return kvm_timer_should_fire(vtimer) != vlevel || |
| kvm_timer_should_fire(ptimer) != plevel; |
| } |
| |
| void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| get_timer_map(vcpu, &map); |
| |
| timer_save_state(map.direct_vtimer); |
| if (map.direct_ptimer) |
| timer_save_state(map.direct_ptimer); |
| |
| /* |
| * Cancel soft timer emulation, because the only case where we |
| * need it after a vcpu_put is in the context of a sleeping VCPU, and |
| * in that case we already factor in the deadline for the physical |
| * timer when scheduling the bg_timer. |
| * |
| * In any case, we re-schedule the hrtimer for the physical timer when |
| * coming back to the VCPU thread in kvm_timer_vcpu_load(). |
| */ |
| if (map.emul_ptimer) |
| soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| |
| if (swait_active(kvm_arch_vcpu_wq(vcpu))) |
| kvm_timer_blocking(vcpu); |
| |
| /* |
| * The kernel may decide to run userspace after calling vcpu_put, so |
| * we reset cntvoff to 0 to ensure a consistent read between user |
| * accesses to the virtual counter and kernel access to the physical |
| * counter of non-VHE case. For VHE, the virtual counter uses a fixed |
| * virtual offset of zero, so no need to zero CNTVOFF_EL2 register. |
| */ |
| set_cntvoff(0); |
| } |
| |
| /* |
| * With a userspace irqchip we have to check if the guest de-asserted the |
| * timer and if so, unmask the timer irq signal on the host interrupt |
| * controller to ensure that we see future timer signals. |
| */ |
| static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| |
| if (!kvm_timer_should_fire(vtimer)) { |
| kvm_timer_update_irq(vcpu, false, vtimer); |
| if (static_branch_likely(&has_gic_active_state)) |
| set_timer_irq_phys_active(vtimer, false); |
| else |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| } |
| } |
| |
| void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| if (unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| unmask_vtimer_irq_user(vcpu); |
| } |
| |
| int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 |
| * and to 0 for ARMv7. We provide an implementation that always |
| * resets the timer to be disabled and unmasked and is compliant with |
| * the ARMv7 architecture. |
| */ |
| vcpu_vtimer(vcpu)->cnt_ctl = 0; |
| vcpu_ptimer(vcpu)->cnt_ctl = 0; |
| |
| if (timer->enabled) { |
| kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu)); |
| kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu)); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq); |
| if (map.direct_ptimer) |
| kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq); |
| } |
| } |
| |
| if (map.emul_ptimer) |
| soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| |
| return 0; |
| } |
| |
| /* Make the updates of cntvoff for all vtimer contexts atomic */ |
| static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff) |
| { |
| int i; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu *tmp; |
| |
| mutex_lock(&kvm->lock); |
| kvm_for_each_vcpu(i, tmp, kvm) |
| vcpu_vtimer(tmp)->cntvoff = cntvoff; |
| |
| /* |
| * When called from the vcpu create path, the CPU being created is not |
| * included in the loop above, so we just set it here as well. |
| */ |
| vcpu_vtimer(vcpu)->cntvoff = cntvoff; |
| mutex_unlock(&kvm->lock); |
| } |
| |
| void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| |
| /* Synchronize cntvoff across all vtimers of a VM. */ |
| update_vtimer_cntvoff(vcpu, kvm_phys_timer_read()); |
| ptimer->cntvoff = 0; |
| |
| hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| timer->bg_timer.function = kvm_bg_timer_expire; |
| |
| hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| vtimer->hrtimer.function = kvm_hrtimer_expire; |
| ptimer->hrtimer.function = kvm_hrtimer_expire; |
| |
| vtimer->irq.irq = default_vtimer_irq.irq; |
| ptimer->irq.irq = default_ptimer_irq.irq; |
| |
| vtimer->host_timer_irq = host_vtimer_irq; |
| ptimer->host_timer_irq = host_ptimer_irq; |
| |
| vtimer->host_timer_irq_flags = host_vtimer_irq_flags; |
| ptimer->host_timer_irq_flags = host_ptimer_irq_flags; |
| |
| vtimer->vcpu = vcpu; |
| ptimer->vcpu = vcpu; |
| } |
| |
| static void kvm_timer_init_interrupt(void *info) |
| { |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); |
| } |
| |
| int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) |
| { |
| struct arch_timer_context *timer; |
| |
| switch (regid) { |
| case KVM_REG_ARM_TIMER_CTL: |
| timer = vcpu_vtimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| break; |
| case KVM_REG_ARM_TIMER_CNT: |
| timer = vcpu_vtimer(vcpu); |
| update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value); |
| break; |
| case KVM_REG_ARM_TIMER_CVAL: |
| timer = vcpu_vtimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| break; |
| case KVM_REG_ARM_PTIMER_CTL: |
| timer = vcpu_ptimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| break; |
| case KVM_REG_ARM_PTIMER_CVAL: |
| timer = vcpu_ptimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static u64 read_timer_ctl(struct arch_timer_context *timer) |
| { |
| /* |
| * Set ISTATUS bit if it's expired. |
| * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is |
| * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit |
| * regardless of ENABLE bit for our implementation convenience. |
| */ |
| if (!kvm_timer_compute_delta(timer)) |
| return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT; |
| else |
| return timer->cnt_ctl; |
| } |
| |
| u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) |
| { |
| switch (regid) { |
| case KVM_REG_ARM_TIMER_CTL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CTL); |
| case KVM_REG_ARM_TIMER_CNT: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CNT); |
| case KVM_REG_ARM_TIMER_CVAL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CVAL); |
| case KVM_REG_ARM_PTIMER_CTL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_ptimer(vcpu), TIMER_REG_CTL); |
| case KVM_REG_ARM_PTIMER_CNT: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CNT); |
| case KVM_REG_ARM_PTIMER_CVAL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_ptimer(vcpu), TIMER_REG_CVAL); |
| } |
| return (u64)-1; |
| } |
| |
| static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg) |
| { |
| u64 val; |
| |
| switch (treg) { |
| case TIMER_REG_TVAL: |
| val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff; |
| break; |
| |
| case TIMER_REG_CTL: |
| val = read_timer_ctl(timer); |
| break; |
| |
| case TIMER_REG_CVAL: |
| val = timer->cnt_cval; |
| break; |
| |
| case TIMER_REG_CNT: |
| val = kvm_phys_timer_read() - timer->cntvoff; |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| return val; |
| } |
| |
| u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, |
| enum kvm_arch_timers tmr, |
| enum kvm_arch_timer_regs treg) |
| { |
| u64 val; |
| |
| preempt_disable(); |
| kvm_timer_vcpu_put(vcpu); |
| |
| val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg); |
| |
| kvm_timer_vcpu_load(vcpu); |
| preempt_enable(); |
| |
| return val; |
| } |
| |
| static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg, |
| u64 val) |
| { |
| switch (treg) { |
| case TIMER_REG_TVAL: |
| timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + val; |
| break; |
| |
| case TIMER_REG_CTL: |
| timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT; |
| break; |
| |
| case TIMER_REG_CVAL: |
| timer->cnt_cval = val; |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, |
| enum kvm_arch_timers tmr, |
| enum kvm_arch_timer_regs treg, |
| u64 val) |
| { |
| preempt_disable(); |
| kvm_timer_vcpu_put(vcpu); |
| |
| kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val); |
| |
| kvm_timer_vcpu_load(vcpu); |
| preempt_enable(); |
| } |
| |
| static int kvm_timer_starting_cpu(unsigned int cpu) |
| { |
| kvm_timer_init_interrupt(NULL); |
| return 0; |
| } |
| |
| static int kvm_timer_dying_cpu(unsigned int cpu) |
| { |
| disable_percpu_irq(host_vtimer_irq); |
| return 0; |
| } |
| |
| int kvm_timer_hyp_init(bool has_gic) |
| { |
| struct arch_timer_kvm_info *info; |
| int err; |
| |
| info = arch_timer_get_kvm_info(); |
| timecounter = &info->timecounter; |
| |
| if (!timecounter->cc) { |
| kvm_err("kvm_arch_timer: uninitialized timecounter\n"); |
| return -ENODEV; |
| } |
| |
| /* First, do the virtual EL1 timer irq */ |
| |
| if (info->virtual_irq <= 0) { |
| kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", |
| info->virtual_irq); |
| return -ENODEV; |
| } |
| host_vtimer_irq = info->virtual_irq; |
| |
| host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); |
| if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && |
| host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { |
| kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n", |
| host_vtimer_irq); |
| host_vtimer_irq_flags = IRQF_TRIGGER_LOW; |
| } |
| |
| err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, |
| "kvm guest vtimer", kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", |
| host_vtimer_irq, err); |
| return err; |
| } |
| |
| if (has_gic) { |
| err = irq_set_vcpu_affinity(host_vtimer_irq, |
| kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| goto out_free_irq; |
| } |
| |
| static_branch_enable(&has_gic_active_state); |
| } |
| |
| kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); |
| |
| /* Now let's do the physical EL1 timer irq */ |
| |
| if (info->physical_irq > 0) { |
| host_ptimer_irq = info->physical_irq; |
| host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq); |
| if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH && |
| host_ptimer_irq_flags != IRQF_TRIGGER_LOW) { |
| kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n", |
| host_ptimer_irq); |
| host_ptimer_irq_flags = IRQF_TRIGGER_LOW; |
| } |
| |
| err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, |
| "kvm guest ptimer", kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", |
| host_ptimer_irq, err); |
| return err; |
| } |
| |
| if (has_gic) { |
| err = irq_set_vcpu_affinity(host_ptimer_irq, |
| kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| goto out_free_irq; |
| } |
| } |
| |
| kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); |
| } else if (has_vhe()) { |
| kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", |
| info->physical_irq); |
| err = -ENODEV; |
| goto out_free_irq; |
| } |
| |
| cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, |
| "kvm/arm/timer:starting", kvm_timer_starting_cpu, |
| kvm_timer_dying_cpu); |
| return 0; |
| out_free_irq: |
| free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); |
| return err; |
| } |
| |
| void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| soft_timer_cancel(&timer->bg_timer); |
| } |
| |
| static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) |
| { |
| int vtimer_irq, ptimer_irq; |
| int i, ret; |
| |
| vtimer_irq = vcpu_vtimer(vcpu)->irq.irq; |
| ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu)); |
| if (ret) |
| return false; |
| |
| ptimer_irq = vcpu_ptimer(vcpu)->irq.irq; |
| ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu)); |
| if (ret) |
| return false; |
| |
| kvm_for_each_vcpu(i, vcpu, vcpu->kvm) { |
| if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq || |
| vcpu_ptimer(vcpu)->irq.irq != ptimer_irq) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool kvm_arch_timer_get_input_level(int vintid) |
| { |
| struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu(); |
| struct arch_timer_context *timer; |
| |
| if (vintid == vcpu_vtimer(vcpu)->irq.irq) |
| timer = vcpu_vtimer(vcpu); |
| else if (vintid == vcpu_ptimer(vcpu)->irq.irq) |
| timer = vcpu_ptimer(vcpu); |
| else |
| BUG(); |
| |
| return kvm_timer_should_fire(timer); |
| } |
| |
| int kvm_timer_enable(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| int ret; |
| |
| if (timer->enabled) |
| return 0; |
| |
| /* Without a VGIC we do not map virtual IRQs to physical IRQs */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| goto no_vgic; |
| |
| if (!vgic_initialized(vcpu->kvm)) |
| return -ENODEV; |
| |
| if (!timer_irqs_are_valid(vcpu)) { |
| kvm_debug("incorrectly configured timer irqs\n"); |
| return -EINVAL; |
| } |
| |
| get_timer_map(vcpu, &map); |
| |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map.direct_vtimer->host_timer_irq, |
| map.direct_vtimer->irq.irq, |
| kvm_arch_timer_get_input_level); |
| if (ret) |
| return ret; |
| |
| if (map.direct_ptimer) { |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map.direct_ptimer->host_timer_irq, |
| map.direct_ptimer->irq.irq, |
| kvm_arch_timer_get_input_level); |
| } |
| |
| if (ret) |
| return ret; |
| |
| no_vgic: |
| timer->enabled = 1; |
| return 0; |
| } |
| |
| /* |
| * On VHE system, we only need to configure the EL2 timer trap register once, |
| * not for every world switch. |
| * The host kernel runs at EL2 with HCR_EL2.TGE == 1, |
| * and this makes those bits have no effect for the host kernel execution. |
| */ |
| void kvm_timer_init_vhe(void) |
| { |
| /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */ |
| u32 cnthctl_shift = 10; |
| u64 val; |
| |
| /* |
| * VHE systems allow the guest direct access to the EL1 physical |
| * timer/counter. |
| */ |
| val = read_sysreg(cnthctl_el2); |
| val |= (CNTHCTL_EL1PCEN << cnthctl_shift); |
| val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); |
| write_sysreg(val, cnthctl_el2); |
| } |
| |
| static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| vcpu_vtimer(vcpu)->irq.irq = vtimer_irq; |
| vcpu_ptimer(vcpu)->irq.irq = ptimer_irq; |
| } |
| } |
| |
| int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| int irq; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| |
| if (get_user(irq, uaddr)) |
| return -EFAULT; |
| |
| if (!(irq_is_ppi(irq))) |
| return -EINVAL; |
| |
| if (vcpu->arch.timer_cpu.enabled) |
| return -EBUSY; |
| |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq); |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq); |
| break; |
| default: |
| return -ENXIO; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| struct arch_timer_context *timer; |
| int irq; |
| |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| timer = vcpu_vtimer(vcpu); |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| timer = vcpu_ptimer(vcpu); |
| break; |
| default: |
| return -ENXIO; |
| } |
| |
| irq = timer->irq.irq; |
| return put_user(irq, uaddr); |
| } |
| |
| int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| return 0; |
| } |
| |
| return -ENXIO; |
| } |