| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_btree_staging.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_bmap.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "xfs_trace.h" |
| #include "xfs_rmap.h" |
| #include "xfs_ag.h" |
| |
| static struct kmem_cache *xfs_bmbt_cur_cache; |
| |
| void |
| xfs_bmbt_init_block( |
| struct xfs_inode *ip, |
| struct xfs_btree_block *buf, |
| struct xfs_buf *bp, |
| __u16 level, |
| __u16 numrecs) |
| { |
| if (bp) |
| xfs_btree_init_buf(ip->i_mount, bp, &xfs_bmbt_ops, level, |
| numrecs, ip->i_ino); |
| else |
| xfs_btree_init_block(ip->i_mount, buf, &xfs_bmbt_ops, level, |
| numrecs, ip->i_ino); |
| } |
| |
| /* |
| * Convert on-disk form of btree root to in-memory form. |
| */ |
| void |
| xfs_bmdr_to_bmbt( |
| struct xfs_inode *ip, |
| xfs_bmdr_block_t *dblock, |
| int dblocklen, |
| struct xfs_btree_block *rblock, |
| int rblocklen) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| int dmxr; |
| xfs_bmbt_key_t *fkp; |
| __be64 *fpp; |
| xfs_bmbt_key_t *tkp; |
| __be64 *tpp; |
| |
| xfs_bmbt_init_block(ip, rblock, NULL, 0, 0); |
| rblock->bb_level = dblock->bb_level; |
| ASSERT(be16_to_cpu(rblock->bb_level) > 0); |
| rblock->bb_numrecs = dblock->bb_numrecs; |
| dmxr = xfs_bmdr_maxrecs(dblocklen, 0); |
| fkp = XFS_BMDR_KEY_ADDR(dblock, 1); |
| tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); |
| fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); |
| tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); |
| dmxr = be16_to_cpu(dblock->bb_numrecs); |
| memcpy(tkp, fkp, sizeof(*fkp) * dmxr); |
| memcpy(tpp, fpp, sizeof(*fpp) * dmxr); |
| } |
| |
| void |
| xfs_bmbt_disk_get_all( |
| const struct xfs_bmbt_rec *rec, |
| struct xfs_bmbt_irec *irec) |
| { |
| uint64_t l0 = get_unaligned_be64(&rec->l0); |
| uint64_t l1 = get_unaligned_be64(&rec->l1); |
| |
| irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; |
| irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21); |
| irec->br_blockcount = l1 & xfs_mask64lo(21); |
| if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) |
| irec->br_state = XFS_EXT_UNWRITTEN; |
| else |
| irec->br_state = XFS_EXT_NORM; |
| } |
| |
| /* |
| * Extract the blockcount field from an on disk bmap extent record. |
| */ |
| xfs_filblks_t |
| xfs_bmbt_disk_get_blockcount( |
| const struct xfs_bmbt_rec *r) |
| { |
| return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); |
| } |
| |
| /* |
| * Extract the startoff field from a disk format bmap extent record. |
| */ |
| xfs_fileoff_t |
| xfs_bmbt_disk_get_startoff( |
| const struct xfs_bmbt_rec *r) |
| { |
| return ((xfs_fileoff_t)be64_to_cpu(r->l0) & |
| xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; |
| } |
| |
| /* |
| * Set all the fields in a bmap extent record from the uncompressed form. |
| */ |
| void |
| xfs_bmbt_disk_set_all( |
| struct xfs_bmbt_rec *r, |
| struct xfs_bmbt_irec *s) |
| { |
| int extent_flag = (s->br_state != XFS_EXT_NORM); |
| |
| ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN); |
| ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN))); |
| ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN))); |
| ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN))); |
| |
| put_unaligned_be64( |
| ((xfs_bmbt_rec_base_t)extent_flag << 63) | |
| ((xfs_bmbt_rec_base_t)s->br_startoff << 9) | |
| ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0); |
| put_unaligned_be64( |
| ((xfs_bmbt_rec_base_t)s->br_startblock << 21) | |
| ((xfs_bmbt_rec_base_t)s->br_blockcount & |
| (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1); |
| } |
| |
| /* |
| * Convert in-memory form of btree root to on-disk form. |
| */ |
| void |
| xfs_bmbt_to_bmdr( |
| struct xfs_mount *mp, |
| struct xfs_btree_block *rblock, |
| int rblocklen, |
| xfs_bmdr_block_t *dblock, |
| int dblocklen) |
| { |
| int dmxr; |
| xfs_bmbt_key_t *fkp; |
| __be64 *fpp; |
| xfs_bmbt_key_t *tkp; |
| __be64 *tpp; |
| |
| if (xfs_has_crc(mp)) { |
| ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); |
| ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, |
| &mp->m_sb.sb_meta_uuid)); |
| ASSERT(rblock->bb_u.l.bb_blkno == |
| cpu_to_be64(XFS_BUF_DADDR_NULL)); |
| } else |
| ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); |
| ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); |
| ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); |
| ASSERT(rblock->bb_level != 0); |
| dblock->bb_level = rblock->bb_level; |
| dblock->bb_numrecs = rblock->bb_numrecs; |
| dmxr = xfs_bmdr_maxrecs(dblocklen, 0); |
| fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); |
| tkp = XFS_BMDR_KEY_ADDR(dblock, 1); |
| fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); |
| tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); |
| dmxr = be16_to_cpu(dblock->bb_numrecs); |
| memcpy(tkp, fkp, sizeof(*fkp) * dmxr); |
| memcpy(tpp, fpp, sizeof(*fpp) * dmxr); |
| } |
| |
| STATIC struct xfs_btree_cur * |
| xfs_bmbt_dup_cursor( |
| struct xfs_btree_cur *cur) |
| { |
| struct xfs_btree_cur *new; |
| |
| new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, |
| cur->bc_ino.ip, cur->bc_ino.whichfork); |
| new->bc_flags |= (cur->bc_flags & |
| (XFS_BTREE_BMBT_INVALID_OWNER | XFS_BTREE_BMBT_WASDEL)); |
| return new; |
| } |
| |
| STATIC void |
| xfs_bmbt_update_cursor( |
| struct xfs_btree_cur *src, |
| struct xfs_btree_cur *dst) |
| { |
| ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) || |
| (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME)); |
| |
| dst->bc_bmap.allocated += src->bc_bmap.allocated; |
| dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno; |
| |
| src->bc_bmap.allocated = 0; |
| } |
| |
| STATIC int |
| xfs_bmbt_alloc_block( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_ptr *start, |
| union xfs_btree_ptr *new, |
| int *stat) |
| { |
| struct xfs_alloc_arg args; |
| int error; |
| |
| memset(&args, 0, sizeof(args)); |
| args.tp = cur->bc_tp; |
| args.mp = cur->bc_mp; |
| xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino, |
| cur->bc_ino.whichfork); |
| args.minlen = args.maxlen = args.prod = 1; |
| args.wasdel = cur->bc_flags & XFS_BTREE_BMBT_WASDEL; |
| if (!args.wasdel && args.tp->t_blk_res == 0) |
| return -ENOSPC; |
| |
| /* |
| * If we are coming here from something like unwritten extent |
| * conversion, there has been no data extent allocation already done, so |
| * we have to ensure that we attempt to locate the entire set of bmbt |
| * allocations in the same AG, as xfs_bmapi_write() would have reserved. |
| */ |
| if (cur->bc_tp->t_highest_agno == NULLAGNUMBER) |
| args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip, |
| cur->bc_ino.whichfork); |
| |
| error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l)); |
| if (error) |
| return error; |
| |
| if (args.fsbno == NULLFSBLOCK && args.minleft) { |
| /* |
| * Could not find an AG with enough free space to satisfy |
| * a full btree split. Try again and if |
| * successful activate the lowspace algorithm. |
| */ |
| args.minleft = 0; |
| error = xfs_alloc_vextent_start_ag(&args, 0); |
| if (error) |
| return error; |
| cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE; |
| } |
| if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) { |
| *stat = 0; |
| return 0; |
| } |
| |
| ASSERT(args.len == 1); |
| cur->bc_bmap.allocated++; |
| cur->bc_ino.ip->i_nblocks++; |
| xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE); |
| xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip, |
| XFS_TRANS_DQ_BCOUNT, 1L); |
| |
| new->l = cpu_to_be64(args.fsbno); |
| |
| *stat = 1; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_bmbt_free_block( |
| struct xfs_btree_cur *cur, |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = cur->bc_mp; |
| struct xfs_inode *ip = cur->bc_ino.ip; |
| struct xfs_trans *tp = cur->bc_tp; |
| xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); |
| struct xfs_owner_info oinfo; |
| int error; |
| |
| xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork); |
| error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo, |
| XFS_AG_RESV_NONE, 0); |
| if (error) |
| return error; |
| |
| ip->i_nblocks--; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_bmbt_get_minrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| if (level == cur->bc_nlevels - 1) { |
| struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); |
| |
| return xfs_bmbt_maxrecs(cur->bc_mp, |
| ifp->if_broot_bytes, level == 0) / 2; |
| } |
| |
| return cur->bc_mp->m_bmap_dmnr[level != 0]; |
| } |
| |
| int |
| xfs_bmbt_get_maxrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| if (level == cur->bc_nlevels - 1) { |
| struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); |
| |
| return xfs_bmbt_maxrecs(cur->bc_mp, |
| ifp->if_broot_bytes, level == 0); |
| } |
| |
| return cur->bc_mp->m_bmap_dmxr[level != 0]; |
| |
| } |
| |
| /* |
| * Get the maximum records we could store in the on-disk format. |
| * |
| * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but |
| * for the root node this checks the available space in the dinode fork |
| * so that we can resize the in-memory buffer to match it. After a |
| * resize to the maximum size this function returns the same value |
| * as xfs_bmbt_get_maxrecs for the root node, too. |
| */ |
| STATIC int |
| xfs_bmbt_get_dmaxrecs( |
| struct xfs_btree_cur *cur, |
| int level) |
| { |
| if (level != cur->bc_nlevels - 1) |
| return cur->bc_mp->m_bmap_dmxr[level != 0]; |
| return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0); |
| } |
| |
| STATIC void |
| xfs_bmbt_init_key_from_rec( |
| union xfs_btree_key *key, |
| const union xfs_btree_rec *rec) |
| { |
| key->bmbt.br_startoff = |
| cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); |
| } |
| |
| STATIC void |
| xfs_bmbt_init_high_key_from_rec( |
| union xfs_btree_key *key, |
| const union xfs_btree_rec *rec) |
| { |
| key->bmbt.br_startoff = cpu_to_be64( |
| xfs_bmbt_disk_get_startoff(&rec->bmbt) + |
| xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1); |
| } |
| |
| STATIC void |
| xfs_bmbt_init_rec_from_cur( |
| struct xfs_btree_cur *cur, |
| union xfs_btree_rec *rec) |
| { |
| xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); |
| } |
| |
| STATIC int64_t |
| xfs_bmbt_key_diff( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *key) |
| { |
| return (int64_t)be64_to_cpu(key->bmbt.br_startoff) - |
| cur->bc_rec.b.br_startoff; |
| } |
| |
| STATIC int64_t |
| xfs_bmbt_diff_two_keys( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *k1, |
| const union xfs_btree_key *k2, |
| const union xfs_btree_key *mask) |
| { |
| uint64_t a = be64_to_cpu(k1->bmbt.br_startoff); |
| uint64_t b = be64_to_cpu(k2->bmbt.br_startoff); |
| |
| ASSERT(!mask || mask->bmbt.br_startoff); |
| |
| /* |
| * Note: This routine previously casted a and b to int64 and subtracted |
| * them to generate a result. This lead to problems if b was the |
| * "maximum" key value (all ones) being signed incorrectly, hence this |
| * somewhat less efficient version. |
| */ |
| if (a > b) |
| return 1; |
| if (b > a) |
| return -1; |
| return 0; |
| } |
| |
| static xfs_failaddr_t |
| xfs_bmbt_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); |
| xfs_failaddr_t fa; |
| unsigned int level; |
| |
| if (!xfs_verify_magic(bp, block->bb_magic)) |
| return __this_address; |
| |
| if (xfs_has_crc(mp)) { |
| /* |
| * XXX: need a better way of verifying the owner here. Right now |
| * just make sure there has been one set. |
| */ |
| fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); |
| if (fa) |
| return fa; |
| } |
| |
| /* |
| * numrecs and level verification. |
| * |
| * We don't know what fork we belong to, so just verify that the level |
| * is less than the maximum of the two. Later checks will be more |
| * precise. |
| */ |
| level = be16_to_cpu(block->bb_level); |
| if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) |
| return __this_address; |
| |
| return xfs_btree_fsblock_verify(bp, mp->m_bmap_dmxr[level != 0]); |
| } |
| |
| static void |
| xfs_bmbt_read_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| if (!xfs_btree_fsblock_verify_crc(bp)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_bmbt_verify(bp); |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| |
| if (bp->b_error) |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| } |
| |
| static void |
| xfs_bmbt_write_verify( |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| fa = xfs_bmbt_verify(bp); |
| if (fa) { |
| trace_xfs_btree_corrupt(bp, _RET_IP_); |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| xfs_btree_fsblock_calc_crc(bp); |
| } |
| |
| const struct xfs_buf_ops xfs_bmbt_buf_ops = { |
| .name = "xfs_bmbt", |
| .magic = { cpu_to_be32(XFS_BMAP_MAGIC), |
| cpu_to_be32(XFS_BMAP_CRC_MAGIC) }, |
| .verify_read = xfs_bmbt_read_verify, |
| .verify_write = xfs_bmbt_write_verify, |
| .verify_struct = xfs_bmbt_verify, |
| }; |
| |
| |
| STATIC int |
| xfs_bmbt_keys_inorder( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *k1, |
| const union xfs_btree_key *k2) |
| { |
| return be64_to_cpu(k1->bmbt.br_startoff) < |
| be64_to_cpu(k2->bmbt.br_startoff); |
| } |
| |
| STATIC int |
| xfs_bmbt_recs_inorder( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_rec *r1, |
| const union xfs_btree_rec *r2) |
| { |
| return xfs_bmbt_disk_get_startoff(&r1->bmbt) + |
| xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= |
| xfs_bmbt_disk_get_startoff(&r2->bmbt); |
| } |
| |
| STATIC enum xbtree_key_contig |
| xfs_bmbt_keys_contiguous( |
| struct xfs_btree_cur *cur, |
| const union xfs_btree_key *key1, |
| const union xfs_btree_key *key2, |
| const union xfs_btree_key *mask) |
| { |
| ASSERT(!mask || mask->bmbt.br_startoff); |
| |
| return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff), |
| be64_to_cpu(key2->bmbt.br_startoff)); |
| } |
| |
| const struct xfs_btree_ops xfs_bmbt_ops = { |
| .name = "bmap", |
| .type = XFS_BTREE_TYPE_INODE, |
| |
| .rec_len = sizeof(xfs_bmbt_rec_t), |
| .key_len = sizeof(xfs_bmbt_key_t), |
| .ptr_len = XFS_BTREE_LONG_PTR_LEN, |
| |
| .lru_refs = XFS_BMAP_BTREE_REF, |
| .statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2), |
| |
| .dup_cursor = xfs_bmbt_dup_cursor, |
| .update_cursor = xfs_bmbt_update_cursor, |
| .alloc_block = xfs_bmbt_alloc_block, |
| .free_block = xfs_bmbt_free_block, |
| .get_maxrecs = xfs_bmbt_get_maxrecs, |
| .get_minrecs = xfs_bmbt_get_minrecs, |
| .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, |
| .init_key_from_rec = xfs_bmbt_init_key_from_rec, |
| .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec, |
| .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, |
| .key_diff = xfs_bmbt_key_diff, |
| .diff_two_keys = xfs_bmbt_diff_two_keys, |
| .buf_ops = &xfs_bmbt_buf_ops, |
| .keys_inorder = xfs_bmbt_keys_inorder, |
| .recs_inorder = xfs_bmbt_recs_inorder, |
| .keys_contiguous = xfs_bmbt_keys_contiguous, |
| }; |
| |
| /* |
| * Create a new bmap btree cursor. |
| * |
| * For staging cursors -1 in passed in whichfork. |
| */ |
| struct xfs_btree_cur * |
| xfs_bmbt_init_cursor( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_inode *ip, |
| int whichfork) |
| { |
| struct xfs_btree_cur *cur; |
| unsigned int maxlevels; |
| |
| ASSERT(whichfork != XFS_COW_FORK); |
| |
| /* |
| * The Data fork always has larger maxlevel, so use that for staging |
| * cursors. |
| */ |
| switch (whichfork) { |
| case XFS_STAGING_FORK: |
| maxlevels = mp->m_bm_maxlevels[XFS_DATA_FORK]; |
| break; |
| default: |
| maxlevels = mp->m_bm_maxlevels[whichfork]; |
| break; |
| } |
| cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bmbt_ops, maxlevels, |
| xfs_bmbt_cur_cache); |
| cur->bc_ino.ip = ip; |
| cur->bc_ino.whichfork = whichfork; |
| cur->bc_bmap.allocated = 0; |
| if (whichfork != XFS_STAGING_FORK) { |
| struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); |
| |
| cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; |
| cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork); |
| } |
| return cur; |
| } |
| |
| /* Calculate number of records in a block mapping btree block. */ |
| static inline unsigned int |
| xfs_bmbt_block_maxrecs( |
| unsigned int blocklen, |
| bool leaf) |
| { |
| if (leaf) |
| return blocklen / sizeof(xfs_bmbt_rec_t); |
| return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); |
| } |
| |
| /* |
| * Swap in the new inode fork root. Once we pass this point the newly rebuilt |
| * mappings are in place and we have to kill off any old btree blocks. |
| */ |
| void |
| xfs_bmbt_commit_staged_btree( |
| struct xfs_btree_cur *cur, |
| struct xfs_trans *tp, |
| int whichfork) |
| { |
| struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake; |
| struct xfs_ifork *ifp; |
| static const short brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT}; |
| static const short extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT}; |
| int flags = XFS_ILOG_CORE; |
| |
| ASSERT(cur->bc_flags & XFS_BTREE_STAGING); |
| ASSERT(whichfork != XFS_COW_FORK); |
| |
| /* |
| * Free any resources hanging off the real fork, then shallow-copy the |
| * staging fork's contents into the real fork to transfer everything |
| * we just built. |
| */ |
| ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork); |
| xfs_idestroy_fork(ifp); |
| memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork)); |
| |
| switch (ifp->if_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| flags |= extflag[whichfork]; |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| flags |= brootflag[whichfork]; |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| xfs_trans_log_inode(tp, cur->bc_ino.ip, flags); |
| xfs_btree_commit_ifakeroot(cur, tp, whichfork); |
| } |
| |
| /* |
| * Calculate number of records in a bmap btree block. |
| */ |
| int |
| xfs_bmbt_maxrecs( |
| struct xfs_mount *mp, |
| int blocklen, |
| int leaf) |
| { |
| blocklen -= XFS_BMBT_BLOCK_LEN(mp); |
| return xfs_bmbt_block_maxrecs(blocklen, leaf); |
| } |
| |
| /* |
| * Calculate the maximum possible height of the btree that the on-disk format |
| * supports. This is used for sizing structures large enough to support every |
| * possible configuration of a filesystem that might get mounted. |
| */ |
| unsigned int |
| xfs_bmbt_maxlevels_ondisk(void) |
| { |
| unsigned int minrecs[2]; |
| unsigned int blocklen; |
| |
| blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, |
| XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); |
| |
| minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2; |
| minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2; |
| |
| /* One extra level for the inode root. */ |
| return xfs_btree_compute_maxlevels(minrecs, |
| XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1; |
| } |
| |
| /* |
| * Calculate number of records in a bmap btree inode root. |
| */ |
| int |
| xfs_bmdr_maxrecs( |
| int blocklen, |
| int leaf) |
| { |
| blocklen -= sizeof(xfs_bmdr_block_t); |
| |
| if (leaf) |
| return blocklen / sizeof(xfs_bmdr_rec_t); |
| return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); |
| } |
| |
| /* |
| * Change the owner of a btree format fork fo the inode passed in. Change it to |
| * the owner of that is passed in so that we can change owners before or after |
| * we switch forks between inodes. The operation that the caller is doing will |
| * determine whether is needs to change owner before or after the switch. |
| * |
| * For demand paged transactional modification, the fork switch should be done |
| * after reading in all the blocks, modifying them and pinning them in the |
| * transaction. For modification when the buffers are already pinned in memory, |
| * the fork switch can be done before changing the owner as we won't need to |
| * validate the owner until the btree buffers are unpinned and writes can occur |
| * again. |
| * |
| * For recovery based ownership change, there is no transactional context and |
| * so a buffer list must be supplied so that we can record the buffers that we |
| * modified for the caller to issue IO on. |
| */ |
| int |
| xfs_bmbt_change_owner( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip, |
| int whichfork, |
| xfs_ino_t new_owner, |
| struct list_head *buffer_list) |
| { |
| struct xfs_btree_cur *cur; |
| int error; |
| |
| ASSERT(tp || buffer_list); |
| ASSERT(!(tp && buffer_list)); |
| ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE); |
| |
| cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); |
| cur->bc_flags |= XFS_BTREE_BMBT_INVALID_OWNER; |
| |
| error = xfs_btree_change_owner(cur, new_owner, buffer_list); |
| xfs_btree_del_cursor(cur, error); |
| return error; |
| } |
| |
| /* Calculate the bmap btree size for some records. */ |
| unsigned long long |
| xfs_bmbt_calc_size( |
| struct xfs_mount *mp, |
| unsigned long long len) |
| { |
| return xfs_btree_calc_size(mp->m_bmap_dmnr, len); |
| } |
| |
| int __init |
| xfs_bmbt_init_cur_cache(void) |
| { |
| xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur", |
| xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()), |
| 0, 0, NULL); |
| |
| if (!xfs_bmbt_cur_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void |
| xfs_bmbt_destroy_cur_cache(void) |
| { |
| kmem_cache_destroy(xfs_bmbt_cur_cache); |
| xfs_bmbt_cur_cache = NULL; |
| } |