blob: aead358e5c2a57034e5a233e3779b869eb93be47 [file] [log] [blame]
/*
* NAND Flash Controller Device Driver
* Copyright (c) 2009, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include "flash.h"
#include "ffsdefs.h"
#include "lld.h"
#include "lld_nand.h"
#if CMD_DMA
#include "lld_cdma.h"
#endif
#define BLK_FROM_ADDR(addr) ((u32)(addr >> DeviceInfo.nBitsInBlockDataSize))
#define PAGE_FROM_ADDR(addr, Block) ((u16)((addr - (u64)Block * \
DeviceInfo.wBlockDataSize) >> DeviceInfo.nBitsInPageDataSize))
#define IS_SPARE_BLOCK(blk) (BAD_BLOCK != (pbt[blk] &\
BAD_BLOCK) && SPARE_BLOCK == (pbt[blk] & SPARE_BLOCK))
#define IS_DATA_BLOCK(blk) (0 == (pbt[blk] & BAD_BLOCK))
#define IS_DISCARDED_BLOCK(blk) (BAD_BLOCK != (pbt[blk] &\
BAD_BLOCK) && DISCARD_BLOCK == (pbt[blk] & DISCARD_BLOCK))
#define IS_BAD_BLOCK(blk) (BAD_BLOCK == (pbt[blk] & BAD_BLOCK))
#if DEBUG_BNDRY
void debug_boundary_lineno_error(int chnl, int limit, int no,
int lineno, char *filename)
{
if (chnl >= limit)
printk(KERN_ERR "Boundary Check Fail value %d >= limit %d, "
"at %s:%d. Other info:%d. Aborting...\n",
chnl, limit, filename, lineno, no);
}
/* static int globalmemsize; */
#endif
static u16 FTL_Cache_If_Hit(u64 dwPageAddr);
static int FTL_Cache_Read(u64 dwPageAddr);
static void FTL_Cache_Read_Page(u8 *pData, u64 dwPageAddr,
u16 cache_blk);
static void FTL_Cache_Write_Page(u8 *pData, u64 dwPageAddr,
u8 cache_blk, u16 flag);
static int FTL_Cache_Write(void);
static void FTL_Calculate_LRU(void);
static u32 FTL_Get_Block_Index(u32 wBlockNum);
static int FTL_Search_Block_Table_IN_Block(u32 BT_Block,
u8 BT_Tag, u16 *Page);
static int FTL_Read_Block_Table(void);
static int FTL_Write_Block_Table(int wForce);
static int FTL_Write_Block_Table_Data(void);
static int FTL_Check_Block_Table(int wOldTable);
static int FTL_Static_Wear_Leveling(void);
static u32 FTL_Replace_Block_Table(void);
static int FTL_Write_IN_Progress_Block_Table_Page(void);
static u32 FTL_Get_Page_Num(u64 length);
static u64 FTL_Get_Physical_Block_Addr(u64 blk_addr);
static u32 FTL_Replace_OneBlock(u32 wBlockNum,
u32 wReplaceNum);
static u32 FTL_Replace_LWBlock(u32 wBlockNum,
int *pGarbageCollect);
static u32 FTL_Replace_MWBlock(void);
static int FTL_Replace_Block(u64 blk_addr);
static int FTL_Adjust_Relative_Erase_Count(u32 Index_of_MAX);
struct device_info_tag DeviceInfo;
struct flash_cache_tag Cache;
static struct spectra_l2_cache_info cache_l2;
static u8 *cache_l2_page_buf;
static u8 *cache_l2_blk_buf;
u8 *g_pBlockTable;
u8 *g_pWearCounter;
u16 *g_pReadCounter;
u32 *g_pBTBlocks;
static u16 g_wBlockTableOffset;
static u32 g_wBlockTableIndex;
static u8 g_cBlockTableStatus;
static u8 *g_pTempBuf;
static u8 *flag_check_blk_table;
static u8 *tmp_buf_search_bt_in_block;
static u8 *spare_buf_search_bt_in_block;
static u8 *spare_buf_bt_search_bt_in_block;
static u8 *tmp_buf1_read_blk_table;
static u8 *tmp_buf2_read_blk_table;
static u8 *flags_static_wear_leveling;
static u8 *tmp_buf_write_blk_table_data;
static u8 *tmp_buf_read_disturbance;
u8 *buf_read_page_main_spare;
u8 *buf_write_page_main_spare;
u8 *buf_read_page_spare;
u8 *buf_get_bad_block;
#if (RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE && CMD_DMA)
struct flash_cache_delta_list_tag int_cache[MAX_CHANS + MAX_DESCS];
struct flash_cache_tag cache_start_copy;
#endif
int g_wNumFreeBlocks;
u8 g_SBDCmdIndex;
static u8 *g_pIPF;
static u8 bt_flag = FIRST_BT_ID;
static u8 bt_block_changed;
static u16 cache_block_to_write;
static u8 last_erased = FIRST_BT_ID;
static u8 GC_Called;
static u8 BT_GC_Called;
#if CMD_DMA
#define COPY_BACK_BUF_NUM 10
static u8 ftl_cmd_cnt; /* Init value is 0 */
u8 *g_pBTDelta;
u8 *g_pBTDelta_Free;
u8 *g_pBTStartingCopy;
u8 *g_pWearCounterCopy;
u16 *g_pReadCounterCopy;
u8 *g_pBlockTableCopies;
u8 *g_pNextBlockTable;
static u8 *cp_back_buf_copies[COPY_BACK_BUF_NUM];
static int cp_back_buf_idx;
static u8 *g_temp_buf;
#pragma pack(push, 1)
#pragma pack(1)
struct BTableChangesDelta {
u8 ftl_cmd_cnt;
u8 ValidFields;
u16 g_wBlockTableOffset;
u32 g_wBlockTableIndex;
u32 BT_Index;
u32 BT_Entry_Value;
u32 WC_Index;
u8 WC_Entry_Value;
u32 RC_Index;
u16 RC_Entry_Value;
};
#pragma pack(pop)
struct BTableChangesDelta *p_BTableChangesDelta;
#endif
#define MARK_BLOCK_AS_BAD(blocknode) (blocknode |= BAD_BLOCK)
#define MARK_BLK_AS_DISCARD(blk) (blk = (blk & ~SPARE_BLOCK) | DISCARD_BLOCK)
#define FTL_Get_LBAPBA_Table_Mem_Size_Bytes() (DeviceInfo.wDataBlockNum *\
sizeof(u32))
#define FTL_Get_WearCounter_Table_Mem_Size_Bytes() (DeviceInfo.wDataBlockNum *\
sizeof(u8))
#define FTL_Get_ReadCounter_Table_Mem_Size_Bytes() (DeviceInfo.wDataBlockNum *\
sizeof(u16))
#if SUPPORT_LARGE_BLOCKNUM
#define FTL_Get_LBAPBA_Table_Flash_Size_Bytes() (DeviceInfo.wDataBlockNum *\
sizeof(u8) * 3)
#else
#define FTL_Get_LBAPBA_Table_Flash_Size_Bytes() (DeviceInfo.wDataBlockNum *\
sizeof(u16))
#endif
#define FTL_Get_WearCounter_Table_Flash_Size_Bytes \
FTL_Get_WearCounter_Table_Mem_Size_Bytes
#define FTL_Get_ReadCounter_Table_Flash_Size_Bytes \
FTL_Get_ReadCounter_Table_Mem_Size_Bytes
static u32 FTL_Get_Block_Table_Flash_Size_Bytes(void)
{
u32 byte_num;
if (DeviceInfo.MLCDevice) {
byte_num = FTL_Get_LBAPBA_Table_Flash_Size_Bytes() +
DeviceInfo.wDataBlockNum * sizeof(u8) +
DeviceInfo.wDataBlockNum * sizeof(u16);
} else {
byte_num = FTL_Get_LBAPBA_Table_Flash_Size_Bytes() +
DeviceInfo.wDataBlockNum * sizeof(u8);
}
byte_num += 4 * sizeof(u8);
return byte_num;
}
static u16 FTL_Get_Block_Table_Flash_Size_Pages(void)
{
return (u16)FTL_Get_Page_Num(FTL_Get_Block_Table_Flash_Size_Bytes());
}
static int FTL_Copy_Block_Table_To_Flash(u8 *flashBuf, u32 sizeToTx,
u32 sizeTxed)
{
u32 wBytesCopied, blk_tbl_size, wBytes;
u32 *pbt = (u32 *)g_pBlockTable;
blk_tbl_size = FTL_Get_LBAPBA_Table_Flash_Size_Bytes();
for (wBytes = 0;
(wBytes < sizeToTx) && ((wBytes + sizeTxed) < blk_tbl_size);
wBytes++) {
#if SUPPORT_LARGE_BLOCKNUM
flashBuf[wBytes] = (u8)(pbt[(wBytes + sizeTxed) / 3]
>> (((wBytes + sizeTxed) % 3) ?
((((wBytes + sizeTxed) % 3) == 2) ? 0 : 8) : 16)) & 0xFF;
#else
flashBuf[wBytes] = (u8)(pbt[(wBytes + sizeTxed) / 2]
>> (((wBytes + sizeTxed) % 2) ? 0 : 8)) & 0xFF;
#endif
}
sizeTxed = (sizeTxed > blk_tbl_size) ? (sizeTxed - blk_tbl_size) : 0;
blk_tbl_size = FTL_Get_WearCounter_Table_Flash_Size_Bytes();
wBytesCopied = wBytes;
wBytes = ((blk_tbl_size - sizeTxed) > (sizeToTx - wBytesCopied)) ?
(sizeToTx - wBytesCopied) : (blk_tbl_size - sizeTxed);
memcpy(flashBuf + wBytesCopied, g_pWearCounter + sizeTxed, wBytes);
sizeTxed = (sizeTxed > blk_tbl_size) ? (sizeTxed - blk_tbl_size) : 0;
if (DeviceInfo.MLCDevice) {
blk_tbl_size = FTL_Get_ReadCounter_Table_Flash_Size_Bytes();
wBytesCopied += wBytes;
for (wBytes = 0; ((wBytes + wBytesCopied) < sizeToTx) &&
((wBytes + sizeTxed) < blk_tbl_size); wBytes++)
flashBuf[wBytes + wBytesCopied] =
(g_pReadCounter[(wBytes + sizeTxed) / 2] >>
(((wBytes + sizeTxed) % 2) ? 0 : 8)) & 0xFF;
}
return wBytesCopied + wBytes;
}
static int FTL_Copy_Block_Table_From_Flash(u8 *flashBuf,
u32 sizeToTx, u32 sizeTxed)
{
u32 wBytesCopied, blk_tbl_size, wBytes;
u32 *pbt = (u32 *)g_pBlockTable;
blk_tbl_size = FTL_Get_LBAPBA_Table_Flash_Size_Bytes();
for (wBytes = 0; (wBytes < sizeToTx) &&
((wBytes + sizeTxed) < blk_tbl_size); wBytes++) {
#if SUPPORT_LARGE_BLOCKNUM
if (!((wBytes + sizeTxed) % 3))
pbt[(wBytes + sizeTxed) / 3] = 0;
pbt[(wBytes + sizeTxed) / 3] |=
(flashBuf[wBytes] << (((wBytes + sizeTxed) % 3) ?
((((wBytes + sizeTxed) % 3) == 2) ? 0 : 8) : 16));
#else
if (!((wBytes + sizeTxed) % 2))
pbt[(wBytes + sizeTxed) / 2] = 0;
pbt[(wBytes + sizeTxed) / 2] |=
(flashBuf[wBytes] << (((wBytes + sizeTxed) % 2) ?
0 : 8));
#endif
}
sizeTxed = (sizeTxed > blk_tbl_size) ? (sizeTxed - blk_tbl_size) : 0;
blk_tbl_size = FTL_Get_WearCounter_Table_Flash_Size_Bytes();
wBytesCopied = wBytes;
wBytes = ((blk_tbl_size - sizeTxed) > (sizeToTx - wBytesCopied)) ?
(sizeToTx - wBytesCopied) : (blk_tbl_size - sizeTxed);
memcpy(g_pWearCounter + sizeTxed, flashBuf + wBytesCopied, wBytes);
sizeTxed = (sizeTxed > blk_tbl_size) ? (sizeTxed - blk_tbl_size) : 0;
if (DeviceInfo.MLCDevice) {
wBytesCopied += wBytes;
blk_tbl_size = FTL_Get_ReadCounter_Table_Flash_Size_Bytes();
for (wBytes = 0; ((wBytes + wBytesCopied) < sizeToTx) &&
((wBytes + sizeTxed) < blk_tbl_size); wBytes++) {
if (((wBytes + sizeTxed) % 2))
g_pReadCounter[(wBytes + sizeTxed) / 2] = 0;
g_pReadCounter[(wBytes + sizeTxed) / 2] |=
(flashBuf[wBytes] <<
(((wBytes + sizeTxed) % 2) ? 0 : 8));
}
}
return wBytesCopied+wBytes;
}
static int FTL_Insert_Block_Table_Signature(u8 *buf, u8 tag)
{
int i;
for (i = 0; i < BTSIG_BYTES; i++)
buf[BTSIG_OFFSET + i] =
((tag + (i * BTSIG_DELTA) - FIRST_BT_ID) %
(1 + LAST_BT_ID-FIRST_BT_ID)) + FIRST_BT_ID;
return PASS;
}
static int FTL_Extract_Block_Table_Tag(u8 *buf, u8 **tagarray)
{
static u8 tag[BTSIG_BYTES >> 1];
int i, j, k, tagi, tagtemp, status;
*tagarray = (u8 *)tag;
tagi = 0;
for (i = 0; i < (BTSIG_BYTES - 1); i++) {
for (j = i + 1; (j < BTSIG_BYTES) &&
(tagi < (BTSIG_BYTES >> 1)); j++) {
tagtemp = buf[BTSIG_OFFSET + j] -
buf[BTSIG_OFFSET + i];
if (tagtemp && !(tagtemp % BTSIG_DELTA)) {
tagtemp = (buf[BTSIG_OFFSET + i] +
(1 + LAST_BT_ID - FIRST_BT_ID) -
(i * BTSIG_DELTA)) %
(1 + LAST_BT_ID - FIRST_BT_ID);
status = FAIL;
for (k = 0; k < tagi; k++) {
if (tagtemp == tag[k])
status = PASS;
}
if (status == FAIL) {
tag[tagi++] = tagtemp;
i = (j == (i + 1)) ? i + 1 : i;
j = (j == (i + 1)) ? i + 1 : i;
}
}
}
}
return tagi;
}
static int FTL_Execute_SPL_Recovery(void)
{
u32 j, block, blks;
u32 *pbt = (u32 *)g_pBlockTable;
int ret;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
blks = DeviceInfo.wSpectraEndBlock - DeviceInfo.wSpectraStartBlock;
for (j = 0; j <= blks; j++) {
block = (pbt[j]);
if (((block & BAD_BLOCK) != BAD_BLOCK) &&
((block & SPARE_BLOCK) == SPARE_BLOCK)) {
ret = GLOB_LLD_Erase_Block(block & ~BAD_BLOCK);
if (FAIL == ret) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d "
"generated!\n",
__FILE__, __LINE__, __func__,
(int)(block & ~BAD_BLOCK));
MARK_BLOCK_AS_BAD(pbt[j]);
}
}
}
return PASS;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_IdentifyDevice
* Inputs: pointer to identify data structure
* Outputs: PASS / FAIL
* Description: the identify data structure is filled in with
* information for the block driver.
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_IdentifyDevice(struct spectra_indentfy_dev_tag *dev_data)
{
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
dev_data->NumBlocks = DeviceInfo.wTotalBlocks;
dev_data->PagesPerBlock = DeviceInfo.wPagesPerBlock;
dev_data->PageDataSize = DeviceInfo.wPageDataSize;
dev_data->wECCBytesPerSector = DeviceInfo.wECCBytesPerSector;
dev_data->wDataBlockNum = DeviceInfo.wDataBlockNum;
return PASS;
}
/* ..... */
static int allocate_memory(void)
{
u32 block_table_size, page_size, block_size, mem_size;
u32 total_bytes = 0;
int i;
#if CMD_DMA
int j;
#endif
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
page_size = DeviceInfo.wPageSize;
block_size = DeviceInfo.wPagesPerBlock * DeviceInfo.wPageDataSize;
block_table_size = DeviceInfo.wDataBlockNum *
(sizeof(u32) + sizeof(u8) + sizeof(u16));
block_table_size += (DeviceInfo.wPageDataSize -
(block_table_size % DeviceInfo.wPageDataSize)) %
DeviceInfo.wPageDataSize;
/* Malloc memory for block tables */
g_pBlockTable = kzalloc(block_table_size, GFP_ATOMIC);
if (!g_pBlockTable)
goto block_table_fail;
total_bytes += block_table_size;
g_pWearCounter = (u8 *)(g_pBlockTable +
DeviceInfo.wDataBlockNum * sizeof(u32));
if (DeviceInfo.MLCDevice)
g_pReadCounter = (u16 *)(g_pBlockTable +
DeviceInfo.wDataBlockNum *
(sizeof(u32) + sizeof(u8)));
/* Malloc memory and init for cache items */
for (i = 0; i < CACHE_ITEM_NUM; i++) {
Cache.array[i].address = NAND_CACHE_INIT_ADDR;
Cache.array[i].use_cnt = 0;
Cache.array[i].changed = CLEAR;
Cache.array[i].buf = kzalloc(Cache.cache_item_size,
GFP_ATOMIC);
if (!Cache.array[i].buf)
goto cache_item_fail;
total_bytes += Cache.cache_item_size;
}
/* Malloc memory for IPF */
g_pIPF = kzalloc(page_size, GFP_ATOMIC);
if (!g_pIPF)
goto ipf_fail;
total_bytes += page_size;
/* Malloc memory for data merging during Level2 Cache flush */
cache_l2_page_buf = kmalloc(page_size, GFP_ATOMIC);
if (!cache_l2_page_buf)
goto cache_l2_page_buf_fail;
memset(cache_l2_page_buf, 0xff, page_size);
total_bytes += page_size;
cache_l2_blk_buf = kmalloc(block_size, GFP_ATOMIC);
if (!cache_l2_blk_buf)
goto cache_l2_blk_buf_fail;
memset(cache_l2_blk_buf, 0xff, block_size);
total_bytes += block_size;
/* Malloc memory for temp buffer */
g_pTempBuf = kzalloc(Cache.cache_item_size, GFP_ATOMIC);
if (!g_pTempBuf)
goto Temp_buf_fail;
total_bytes += Cache.cache_item_size;
/* Malloc memory for block table blocks */
mem_size = (1 + LAST_BT_ID - FIRST_BT_ID) * sizeof(u32);
g_pBTBlocks = kmalloc(mem_size, GFP_ATOMIC);
if (!g_pBTBlocks)
goto bt_blocks_fail;
memset(g_pBTBlocks, 0xff, mem_size);
total_bytes += mem_size;
/* Malloc memory for function FTL_Check_Block_Table */
flag_check_blk_table = kmalloc(DeviceInfo.wDataBlockNum, GFP_ATOMIC);
if (!flag_check_blk_table)
goto flag_check_blk_table_fail;
total_bytes += DeviceInfo.wDataBlockNum;
/* Malloc memory for function FTL_Search_Block_Table_IN_Block */
tmp_buf_search_bt_in_block = kmalloc(page_size, GFP_ATOMIC);
if (!tmp_buf_search_bt_in_block)
goto tmp_buf_search_bt_in_block_fail;
memset(tmp_buf_search_bt_in_block, 0xff, page_size);
total_bytes += page_size;
mem_size = DeviceInfo.wPageSize - DeviceInfo.wPageDataSize;
spare_buf_search_bt_in_block = kmalloc(mem_size, GFP_ATOMIC);
if (!spare_buf_search_bt_in_block)
goto spare_buf_search_bt_in_block_fail;
memset(spare_buf_search_bt_in_block, 0xff, mem_size);
total_bytes += mem_size;
spare_buf_bt_search_bt_in_block = kmalloc(mem_size, GFP_ATOMIC);
if (!spare_buf_bt_search_bt_in_block)
goto spare_buf_bt_search_bt_in_block_fail;
memset(spare_buf_bt_search_bt_in_block, 0xff, mem_size);
total_bytes += mem_size;
/* Malloc memory for function FTL_Read_Block_Table */
tmp_buf1_read_blk_table = kmalloc(page_size, GFP_ATOMIC);
if (!tmp_buf1_read_blk_table)
goto tmp_buf1_read_blk_table_fail;
memset(tmp_buf1_read_blk_table, 0xff, page_size);
total_bytes += page_size;
tmp_buf2_read_blk_table = kmalloc(page_size, GFP_ATOMIC);
if (!tmp_buf2_read_blk_table)
goto tmp_buf2_read_blk_table_fail;
memset(tmp_buf2_read_blk_table, 0xff, page_size);
total_bytes += page_size;
/* Malloc memory for function FTL_Static_Wear_Leveling */
flags_static_wear_leveling = kmalloc(DeviceInfo.wDataBlockNum,
GFP_ATOMIC);
if (!flags_static_wear_leveling)
goto flags_static_wear_leveling_fail;
total_bytes += DeviceInfo.wDataBlockNum;
/* Malloc memory for function FTL_Write_Block_Table_Data */
if (FTL_Get_Block_Table_Flash_Size_Pages() > 3)
mem_size = FTL_Get_Block_Table_Flash_Size_Bytes() -
2 * DeviceInfo.wPageSize;
else
mem_size = DeviceInfo.wPageSize;
tmp_buf_write_blk_table_data = kmalloc(mem_size, GFP_ATOMIC);
if (!tmp_buf_write_blk_table_data)
goto tmp_buf_write_blk_table_data_fail;
memset(tmp_buf_write_blk_table_data, 0xff, mem_size);
total_bytes += mem_size;
/* Malloc memory for function FTL_Read_Disturbance */
tmp_buf_read_disturbance = kmalloc(block_size, GFP_ATOMIC);
if (!tmp_buf_read_disturbance)
goto tmp_buf_read_disturbance_fail;
memset(tmp_buf_read_disturbance, 0xff, block_size);
total_bytes += block_size;
/* Alloc mem for function NAND_Read_Page_Main_Spare of lld_nand.c */
buf_read_page_main_spare = kmalloc(DeviceInfo.wPageSize, GFP_ATOMIC);
if (!buf_read_page_main_spare)
goto buf_read_page_main_spare_fail;
total_bytes += DeviceInfo.wPageSize;
/* Alloc mem for function NAND_Write_Page_Main_Spare of lld_nand.c */
buf_write_page_main_spare = kmalloc(DeviceInfo.wPageSize, GFP_ATOMIC);
if (!buf_write_page_main_spare)
goto buf_write_page_main_spare_fail;
total_bytes += DeviceInfo.wPageSize;
/* Alloc mem for function NAND_Read_Page_Spare of lld_nand.c */
buf_read_page_spare = kmalloc(DeviceInfo.wPageSpareSize, GFP_ATOMIC);
if (!buf_read_page_spare)
goto buf_read_page_spare_fail;
memset(buf_read_page_spare, 0xff, DeviceInfo.wPageSpareSize);
total_bytes += DeviceInfo.wPageSpareSize;
/* Alloc mem for function NAND_Get_Bad_Block of lld_nand.c */
buf_get_bad_block = kmalloc(DeviceInfo.wPageSpareSize, GFP_ATOMIC);
if (!buf_get_bad_block)
goto buf_get_bad_block_fail;
memset(buf_get_bad_block, 0xff, DeviceInfo.wPageSpareSize);
total_bytes += DeviceInfo.wPageSpareSize;
#if CMD_DMA
g_temp_buf = kmalloc(block_size, GFP_ATOMIC);
if (!g_temp_buf)
goto temp_buf_fail;
memset(g_temp_buf, 0xff, block_size);
total_bytes += block_size;
/* Malloc memory for copy of block table used in CDMA mode */
g_pBTStartingCopy = kzalloc(block_table_size, GFP_ATOMIC);
if (!g_pBTStartingCopy)
goto bt_starting_copy;
total_bytes += block_table_size;
g_pWearCounterCopy = (u8 *)(g_pBTStartingCopy +
DeviceInfo.wDataBlockNum * sizeof(u32));
if (DeviceInfo.MLCDevice)
g_pReadCounterCopy = (u16 *)(g_pBTStartingCopy +
DeviceInfo.wDataBlockNum *
(sizeof(u32) + sizeof(u8)));
/* Malloc memory for block table copies */
mem_size = 5 * DeviceInfo.wDataBlockNum * sizeof(u32) +
5 * DeviceInfo.wDataBlockNum * sizeof(u8);
if (DeviceInfo.MLCDevice)
mem_size += 5 * DeviceInfo.wDataBlockNum * sizeof(u16);
g_pBlockTableCopies = kzalloc(mem_size, GFP_ATOMIC);
if (!g_pBlockTableCopies)
goto blk_table_copies_fail;
total_bytes += mem_size;
g_pNextBlockTable = g_pBlockTableCopies;
/* Malloc memory for Block Table Delta */
mem_size = MAX_DESCS * sizeof(struct BTableChangesDelta);
g_pBTDelta = kzalloc(mem_size, GFP_ATOMIC);
if (!g_pBTDelta)
goto bt_delta_fail;
total_bytes += mem_size;
g_pBTDelta_Free = g_pBTDelta;
/* Malloc memory for Copy Back Buffers */
for (j = 0; j < COPY_BACK_BUF_NUM; j++) {
cp_back_buf_copies[j] = kzalloc(block_size, GFP_ATOMIC);
if (!cp_back_buf_copies[j])
goto cp_back_buf_copies_fail;
total_bytes += block_size;
}
cp_back_buf_idx = 0;
/* Malloc memory for pending commands list */
mem_size = sizeof(struct pending_cmd) * MAX_DESCS;
info.pcmds = kzalloc(mem_size, GFP_KERNEL);
if (!info.pcmds)
goto pending_cmds_buf_fail;
total_bytes += mem_size;
/* Malloc memory for CDMA descripter table */
mem_size = sizeof(struct cdma_descriptor) * MAX_DESCS;
info.cdma_desc_buf = kzalloc(mem_size, GFP_KERNEL);
if (!info.cdma_desc_buf)
goto cdma_desc_buf_fail;
total_bytes += mem_size;
/* Malloc memory for Memcpy descripter table */
mem_size = sizeof(struct memcpy_descriptor) * MAX_DESCS;
info.memcp_desc_buf = kzalloc(mem_size, GFP_KERNEL);
if (!info.memcp_desc_buf)
goto memcp_desc_buf_fail;
total_bytes += mem_size;
#endif
nand_dbg_print(NAND_DBG_WARN,
"Total memory allocated in FTL layer: %d\n", total_bytes);
return PASS;
#if CMD_DMA
memcp_desc_buf_fail:
kfree(info.cdma_desc_buf);
cdma_desc_buf_fail:
kfree(info.pcmds);
pending_cmds_buf_fail:
cp_back_buf_copies_fail:
j--;
for (; j >= 0; j--)
kfree(cp_back_buf_copies[j]);
kfree(g_pBTDelta);
bt_delta_fail:
kfree(g_pBlockTableCopies);
blk_table_copies_fail:
kfree(g_pBTStartingCopy);
bt_starting_copy:
kfree(g_temp_buf);
temp_buf_fail:
kfree(buf_get_bad_block);
#endif
buf_get_bad_block_fail:
kfree(buf_read_page_spare);
buf_read_page_spare_fail:
kfree(buf_write_page_main_spare);
buf_write_page_main_spare_fail:
kfree(buf_read_page_main_spare);
buf_read_page_main_spare_fail:
kfree(tmp_buf_read_disturbance);
tmp_buf_read_disturbance_fail:
kfree(tmp_buf_write_blk_table_data);
tmp_buf_write_blk_table_data_fail:
kfree(flags_static_wear_leveling);
flags_static_wear_leveling_fail:
kfree(tmp_buf2_read_blk_table);
tmp_buf2_read_blk_table_fail:
kfree(tmp_buf1_read_blk_table);
tmp_buf1_read_blk_table_fail:
kfree(spare_buf_bt_search_bt_in_block);
spare_buf_bt_search_bt_in_block_fail:
kfree(spare_buf_search_bt_in_block);
spare_buf_search_bt_in_block_fail:
kfree(tmp_buf_search_bt_in_block);
tmp_buf_search_bt_in_block_fail:
kfree(flag_check_blk_table);
flag_check_blk_table_fail:
kfree(g_pBTBlocks);
bt_blocks_fail:
kfree(g_pTempBuf);
Temp_buf_fail:
kfree(cache_l2_blk_buf);
cache_l2_blk_buf_fail:
kfree(cache_l2_page_buf);
cache_l2_page_buf_fail:
kfree(g_pIPF);
ipf_fail:
cache_item_fail:
i--;
for (; i >= 0; i--)
kfree(Cache.array[i].buf);
kfree(g_pBlockTable);
block_table_fail:
printk(KERN_ERR "Failed to kmalloc memory in %s Line %d.\n",
__FILE__, __LINE__);
return -ENOMEM;
}
/* .... */
static int free_memory(void)
{
int i;
#if CMD_DMA
kfree(info.memcp_desc_buf);
kfree(info.cdma_desc_buf);
kfree(info.pcmds);
for (i = COPY_BACK_BUF_NUM - 1; i >= 0; i--)
kfree(cp_back_buf_copies[i]);
kfree(g_pBTDelta);
kfree(g_pBlockTableCopies);
kfree(g_pBTStartingCopy);
kfree(g_temp_buf);
kfree(buf_get_bad_block);
#endif
kfree(buf_read_page_spare);
kfree(buf_write_page_main_spare);
kfree(buf_read_page_main_spare);
kfree(tmp_buf_read_disturbance);
kfree(tmp_buf_write_blk_table_data);
kfree(flags_static_wear_leveling);
kfree(tmp_buf2_read_blk_table);
kfree(tmp_buf1_read_blk_table);
kfree(spare_buf_bt_search_bt_in_block);
kfree(spare_buf_search_bt_in_block);
kfree(tmp_buf_search_bt_in_block);
kfree(flag_check_blk_table);
kfree(g_pBTBlocks);
kfree(g_pTempBuf);
kfree(g_pIPF);
for (i = CACHE_ITEM_NUM - 1; i >= 0; i--)
kfree(Cache.array[i].buf);
kfree(g_pBlockTable);
return 0;
}
static void dump_cache_l2_table(void)
{
struct list_head *p;
struct spectra_l2_cache_list *pnd;
int n;
n = 0;
list_for_each(p, &cache_l2.table.list) {
pnd = list_entry(p, struct spectra_l2_cache_list, list);
nand_dbg_print(NAND_DBG_WARN, "dump_cache_l2_table node: %d, logical_blk_num: %d\n", n, pnd->logical_blk_num);
/*
for (i = 0; i < DeviceInfo.wPagesPerBlock; i++) {
if (pnd->pages_array[i] != MAX_U32_VALUE)
nand_dbg_print(NAND_DBG_WARN, " pages_array[%d]: 0x%x\n", i, pnd->pages_array[i]);
}
*/
n++;
}
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Init
* Inputs: none
* Outputs: PASS=0 / FAIL=1
* Description: allocates the memory for cache array,
* important data structures
* clears the cache array
* reads the block table from flash into array
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Init(void)
{
int i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
Cache.pages_per_item = 1;
Cache.cache_item_size = 1 * DeviceInfo.wPageDataSize;
if (allocate_memory() != PASS)
return FAIL;
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
memcpy((void *)&cache_start_copy, (void *)&Cache,
sizeof(struct flash_cache_tag));
memset((void *)&int_cache, -1,
sizeof(struct flash_cache_delta_list_tag) *
(MAX_CHANS + MAX_DESCS));
#endif
ftl_cmd_cnt = 0;
#endif
if (FTL_Read_Block_Table() != PASS)
return FAIL;
/* Init the Level2 Cache data structure */
for (i = 0; i < BLK_NUM_FOR_L2_CACHE; i++)
cache_l2.blk_array[i] = MAX_U32_VALUE;
cache_l2.cur_blk_idx = 0;
cache_l2.cur_page_num = 0;
INIT_LIST_HEAD(&cache_l2.table.list);
cache_l2.table.logical_blk_num = MAX_U32_VALUE;
dump_cache_l2_table();
return 0;
}
#if CMD_DMA
#if 0
static void save_blk_table_changes(u16 idx)
{
u8 ftl_cmd;
u32 *pbt = (u32 *)g_pBTStartingCopy;
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
u16 id;
u8 cache_blks;
id = idx - MAX_CHANS;
if (int_cache[id].item != -1) {
cache_blks = int_cache[id].item;
cache_start_copy.array[cache_blks].address =
int_cache[id].cache.address;
cache_start_copy.array[cache_blks].changed =
int_cache[id].cache.changed;
}
#endif
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
while (ftl_cmd <= PendingCMD[idx].Tag) {
if (p_BTableChangesDelta->ValidFields == 0x01) {
g_wBlockTableOffset =
p_BTableChangesDelta->g_wBlockTableOffset;
} else if (p_BTableChangesDelta->ValidFields == 0x0C) {
pbt[p_BTableChangesDelta->BT_Index] =
p_BTableChangesDelta->BT_Entry_Value;
debug_boundary_error(((
p_BTableChangesDelta->BT_Index)),
DeviceInfo.wDataBlockNum, 0);
} else if (p_BTableChangesDelta->ValidFields == 0x03) {
g_wBlockTableOffset =
p_BTableChangesDelta->g_wBlockTableOffset;
g_wBlockTableIndex =
p_BTableChangesDelta->g_wBlockTableIndex;
} else if (p_BTableChangesDelta->ValidFields == 0x30) {
g_pWearCounterCopy[p_BTableChangesDelta->WC_Index] =
p_BTableChangesDelta->WC_Entry_Value;
} else if ((DeviceInfo.MLCDevice) &&
(p_BTableChangesDelta->ValidFields == 0xC0)) {
g_pReadCounterCopy[p_BTableChangesDelta->RC_Index] =
p_BTableChangesDelta->RC_Entry_Value;
nand_dbg_print(NAND_DBG_DEBUG,
"In event status setting read counter "
"GLOB_ftl_cmd_cnt %u Count %u Index %u\n",
ftl_cmd,
p_BTableChangesDelta->RC_Entry_Value,
(unsigned int)p_BTableChangesDelta->RC_Index);
} else {
nand_dbg_print(NAND_DBG_DEBUG,
"This should never occur \n");
}
p_BTableChangesDelta += 1;
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
}
}
static void discard_cmds(u16 n)
{
u32 *pbt = (u32 *)g_pBTStartingCopy;
u8 ftl_cmd;
unsigned long k;
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
u8 cache_blks;
u16 id;
#endif
if ((PendingCMD[n].CMD == WRITE_MAIN_CMD) ||
(PendingCMD[n].CMD == WRITE_MAIN_SPARE_CMD)) {
for (k = 0; k < DeviceInfo.wDataBlockNum; k++) {
if (PendingCMD[n].Block == (pbt[k] & (~BAD_BLOCK)))
MARK_BLK_AS_DISCARD(pbt[k]);
}
}
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
while (ftl_cmd <= PendingCMD[n].Tag) {
p_BTableChangesDelta += 1;
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
}
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
id = n - MAX_CHANS;
if (int_cache[id].item != -1) {
cache_blks = int_cache[id].item;
if (PendingCMD[n].CMD == MEMCOPY_CMD) {
if ((cache_start_copy.array[cache_blks].buf <=
PendingCMD[n].DataDestAddr) &&
((cache_start_copy.array[cache_blks].buf +
Cache.cache_item_size) >
PendingCMD[n].DataDestAddr)) {
cache_start_copy.array[cache_blks].address =
NAND_CACHE_INIT_ADDR;
cache_start_copy.array[cache_blks].use_cnt =
0;
cache_start_copy.array[cache_blks].changed =
CLEAR;
}
} else {
cache_start_copy.array[cache_blks].address =
int_cache[id].cache.address;
cache_start_copy.array[cache_blks].changed =
int_cache[id].cache.changed;
}
}
#endif
}
static void process_cmd_pass(int *first_failed_cmd, u16 idx)
{
if (0 == *first_failed_cmd)
save_blk_table_changes(idx);
else
discard_cmds(idx);
}
static void process_cmd_fail_abort(int *first_failed_cmd,
u16 idx, int event)
{
u32 *pbt = (u32 *)g_pBTStartingCopy;
u8 ftl_cmd;
unsigned long i;
int erase_fail, program_fail;
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
u8 cache_blks;
u16 id;
#endif
if (0 == *first_failed_cmd)
*first_failed_cmd = PendingCMD[idx].SBDCmdIndex;
nand_dbg_print(NAND_DBG_DEBUG, "Uncorrectable error has occurred "
"while executing %u Command %u accesing Block %u\n",
(unsigned int)p_BTableChangesDelta->ftl_cmd_cnt,
PendingCMD[idx].CMD,
(unsigned int)PendingCMD[idx].Block);
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
while (ftl_cmd <= PendingCMD[idx].Tag) {
p_BTableChangesDelta += 1;
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
}
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
id = idx - MAX_CHANS;
if (int_cache[id].item != -1) {
cache_blks = int_cache[id].item;
if ((PendingCMD[idx].CMD == WRITE_MAIN_CMD)) {
cache_start_copy.array[cache_blks].address =
int_cache[id].cache.address;
cache_start_copy.array[cache_blks].changed = SET;
} else if ((PendingCMD[idx].CMD == READ_MAIN_CMD)) {
cache_start_copy.array[cache_blks].address =
NAND_CACHE_INIT_ADDR;
cache_start_copy.array[cache_blks].use_cnt = 0;
cache_start_copy.array[cache_blks].changed =
CLEAR;
} else if (PendingCMD[idx].CMD == ERASE_CMD) {
/* ? */
} else if (PendingCMD[idx].CMD == MEMCOPY_CMD) {
/* ? */
}
}
#endif
erase_fail = (event == EVENT_ERASE_FAILURE) &&
(PendingCMD[idx].CMD == ERASE_CMD);
program_fail = (event == EVENT_PROGRAM_FAILURE) &&
((PendingCMD[idx].CMD == WRITE_MAIN_CMD) ||
(PendingCMD[idx].CMD == WRITE_MAIN_SPARE_CMD));
if (erase_fail || program_fail) {
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (PendingCMD[idx].Block ==
(pbt[i] & (~BAD_BLOCK)))
MARK_BLOCK_AS_BAD(pbt[i]);
}
}
}
static void process_cmd(int *first_failed_cmd, u16 idx, int event)
{
u8 ftl_cmd;
int cmd_match = 0;
if (p_BTableChangesDelta->ftl_cmd_cnt == PendingCMD[idx].Tag)
cmd_match = 1;
if (PendingCMD[idx].Status == CMD_PASS) {
process_cmd_pass(first_failed_cmd, idx);
} else if ((PendingCMD[idx].Status == CMD_FAIL) ||
(PendingCMD[idx].Status == CMD_ABORT)) {
process_cmd_fail_abort(first_failed_cmd, idx, event);
} else if ((PendingCMD[idx].Status == CMD_NOT_DONE) &&
PendingCMD[idx].Tag) {
nand_dbg_print(NAND_DBG_DEBUG,
" Command no. %hu is not executed\n",
(unsigned int)PendingCMD[idx].Tag);
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
while (ftl_cmd <= PendingCMD[idx].Tag) {
p_BTableChangesDelta += 1;
ftl_cmd = p_BTableChangesDelta->ftl_cmd_cnt;
}
}
}
#endif
static void process_cmd(int *first_failed_cmd, u16 idx, int event)
{
printk(KERN_ERR "temporary workaround function. "
"Should not be called! \n");
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Event_Status
* Inputs: none
* Outputs: Event Code
* Description: It is called by SBD after hardware interrupt signalling
* completion of commands chain
* It does following things
* get event status from LLD
* analyze command chain status
* determine last command executed
* analyze results
* rebuild the block table in case of uncorrectable error
* return event code
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Event_Status(int *first_failed_cmd)
{
int event_code = PASS;
u16 i_P;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
*first_failed_cmd = 0;
event_code = GLOB_LLD_Event_Status();
switch (event_code) {
case EVENT_PASS:
nand_dbg_print(NAND_DBG_DEBUG, "Handling EVENT_PASS\n");
break;
case EVENT_UNCORRECTABLE_DATA_ERROR:
nand_dbg_print(NAND_DBG_DEBUG, "Handling Uncorrectable ECC!\n");
break;
case EVENT_PROGRAM_FAILURE:
case EVENT_ERASE_FAILURE:
nand_dbg_print(NAND_DBG_WARN, "Handling Ugly case. "
"Event code: 0x%x\n", event_code);
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta;
for (i_P = MAX_CHANS; i_P < (ftl_cmd_cnt + MAX_CHANS);
i_P++)
process_cmd(first_failed_cmd, i_P, event_code);
memcpy(g_pBlockTable, g_pBTStartingCopy,
DeviceInfo.wDataBlockNum * sizeof(u32));
memcpy(g_pWearCounter, g_pWearCounterCopy,
DeviceInfo.wDataBlockNum * sizeof(u8));
if (DeviceInfo.MLCDevice)
memcpy(g_pReadCounter, g_pReadCounterCopy,
DeviceInfo.wDataBlockNum * sizeof(u16));
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
memcpy((void *)&Cache, (void *)&cache_start_copy,
sizeof(struct flash_cache_tag));
memset((void *)&int_cache, -1,
sizeof(struct flash_cache_delta_list_tag) *
(MAX_DESCS + MAX_CHANS));
#endif
break;
default:
nand_dbg_print(NAND_DBG_WARN,
"Handling unexpected event code - 0x%x\n",
event_code);
event_code = ERR;
break;
}
memcpy(g_pBTStartingCopy, g_pBlockTable,
DeviceInfo.wDataBlockNum * sizeof(u32));
memcpy(g_pWearCounterCopy, g_pWearCounter,
DeviceInfo.wDataBlockNum * sizeof(u8));
if (DeviceInfo.MLCDevice)
memcpy(g_pReadCounterCopy, g_pReadCounter,
DeviceInfo.wDataBlockNum * sizeof(u16));
g_pBTDelta_Free = g_pBTDelta;
ftl_cmd_cnt = 0;
g_pNextBlockTable = g_pBlockTableCopies;
cp_back_buf_idx = 0;
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
memcpy((void *)&cache_start_copy, (void *)&Cache,
sizeof(struct flash_cache_tag));
memset((void *)&int_cache, -1,
sizeof(struct flash_cache_delta_list_tag) *
(MAX_DESCS + MAX_CHANS));
#endif
return event_code;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: glob_ftl_execute_cmds
* Inputs: none
* Outputs: none
* Description: pass thru to LLD
***************************************************************/
u16 glob_ftl_execute_cmds(void)
{
nand_dbg_print(NAND_DBG_TRACE,
"glob_ftl_execute_cmds: ftl_cmd_cnt %u\n",
(unsigned int)ftl_cmd_cnt);
g_SBDCmdIndex = 0;
return glob_lld_execute_cmds();
}
#endif
#if !CMD_DMA
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Read Immediate
* Inputs: pointer to data
* address of data
* Outputs: PASS / FAIL
* Description: Reads one page of data into RAM directly from flash without
* using or disturbing cache.It is assumed this function is called
* with CMD-DMA disabled.
*****************************************************************/
int GLOB_FTL_Read_Immediate(u8 *read_data, u64 addr)
{
int wResult = FAIL;
u32 Block;
u16 Page;
u32 phy_blk;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
Block = BLK_FROM_ADDR(addr);
Page = PAGE_FROM_ADDR(addr, Block);
if (!IS_SPARE_BLOCK(Block))
return FAIL;
phy_blk = pbt[Block];
wResult = GLOB_LLD_Read_Page_Main(read_data, phy_blk, Page, 1);
if (DeviceInfo.MLCDevice) {
g_pReadCounter[phy_blk - DeviceInfo.wSpectraStartBlock]++;
if (g_pReadCounter[phy_blk - DeviceInfo.wSpectraStartBlock]
>= MAX_READ_COUNTER)
FTL_Read_Disturbance(phy_blk);
if (g_cBlockTableStatus != IN_PROGRESS_BLOCK_TABLE) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
}
return wResult;
}
#endif
#ifdef SUPPORT_BIG_ENDIAN
/*********************************************************************
* Function: FTL_Invert_Block_Table
* Inputs: none
* Outputs: none
* Description: Re-format the block table in ram based on BIG_ENDIAN and
* LARGE_BLOCKNUM if necessary
**********************************************************************/
static void FTL_Invert_Block_Table(void)
{
u32 i;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
#ifdef SUPPORT_LARGE_BLOCKNUM
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
pbt[i] = INVERTUINT32(pbt[i]);
g_pWearCounter[i] = INVERTUINT32(g_pWearCounter[i]);
}
#else
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
pbt[i] = INVERTUINT16(pbt[i]);
g_pWearCounter[i] = INVERTUINT16(g_pWearCounter[i]);
}
#endif
}
#endif
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Flash_Init
* Inputs: none
* Outputs: PASS=0 / FAIL=0x01 (based on read ID)
* Description: The flash controller is initialized
* The flash device is reset
* Perform a flash READ ID command to confirm that a
* valid device is attached and active.
* The DeviceInfo structure gets filled in
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Flash_Init(void)
{
int status = FAIL;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
g_SBDCmdIndex = 0;
status = GLOB_LLD_Flash_Init();
return status;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Inputs: none
* Outputs: PASS=0 / FAIL=0x01 (based on read ID)
* Description: The flash controller is released
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Flash_Release(void)
{
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
return GLOB_LLD_Flash_Release();
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Cache_Release
* Inputs: none
* Outputs: none
* Description: release all allocated memory in GLOB_FTL_Init
* (allocated in GLOB_FTL_Init)
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
void GLOB_FTL_Cache_Release(void)
{
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
free_memory();
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_If_Hit
* Inputs: Page Address
* Outputs: Block number/UNHIT BLOCK
* Description: Determines if the addressed page is in cache
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u16 FTL_Cache_If_Hit(u64 page_addr)
{
u16 item;
u64 addr;
int i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
item = UNHIT_CACHE_ITEM;
for (i = 0; i < CACHE_ITEM_NUM; i++) {
addr = Cache.array[i].address;
if ((page_addr >= addr) &&
(page_addr < (addr + Cache.cache_item_size))) {
item = i;
break;
}
}
return item;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Calculate_LRU
* Inputs: None
* Outputs: None
* Description: Calculate the least recently block in a cache and record its
* index in LRU field.
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static void FTL_Calculate_LRU(void)
{
u16 i, bCurrentLRU, bTempCount;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
bCurrentLRU = 0;
bTempCount = MAX_WORD_VALUE;
for (i = 0; i < CACHE_ITEM_NUM; i++) {
if (Cache.array[i].use_cnt < bTempCount) {
bCurrentLRU = i;
bTempCount = Cache.array[i].use_cnt;
}
}
Cache.LRU = bCurrentLRU;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Read_Page
* Inputs: pointer to read buffer, logical address and cache item number
* Outputs: None
* Description: Read the page from the cached block addressed by blocknumber
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static void FTL_Cache_Read_Page(u8 *data_buf, u64 logic_addr, u16 cache_item)
{
u8 *start_addr;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
start_addr = Cache.array[cache_item].buf;
start_addr += (u32)(((logic_addr - Cache.array[cache_item].address) >>
DeviceInfo.nBitsInPageDataSize) * DeviceInfo.wPageDataSize);
#if CMD_DMA
GLOB_LLD_MemCopy_CMD(data_buf, start_addr,
DeviceInfo.wPageDataSize, 0);
ftl_cmd_cnt++;
#else
memcpy(data_buf, start_addr, DeviceInfo.wPageDataSize);
#endif
if (Cache.array[cache_item].use_cnt < MAX_WORD_VALUE)
Cache.array[cache_item].use_cnt++;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Read_All
* Inputs: pointer to read buffer,block address
* Outputs: PASS=0 / FAIL =1
* Description: It reads pages in cache
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Read_All(u8 *pData, u64 phy_addr)
{
int wResult = PASS;
u32 Block;
u32 lba;
u16 Page;
u16 PageCount;
u32 *pbt = (u32 *)g_pBlockTable;
u32 i;
Block = BLK_FROM_ADDR(phy_addr);
Page = PAGE_FROM_ADDR(phy_addr, Block);
PageCount = Cache.pages_per_item;
nand_dbg_print(NAND_DBG_DEBUG,
"%s, Line %d, Function: %s, Block: 0x%x\n",
__FILE__, __LINE__, __func__, Block);
lba = 0xffffffff;
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if ((pbt[i] & (~BAD_BLOCK)) == Block) {
lba = i;
if (IS_SPARE_BLOCK(i) || IS_BAD_BLOCK(i) ||
IS_DISCARDED_BLOCK(i)) {
/* Add by yunpeng -2008.12.3 */
#if CMD_DMA
GLOB_LLD_MemCopy_CMD(pData, g_temp_buf,
PageCount * DeviceInfo.wPageDataSize, 0);
ftl_cmd_cnt++;
#else
memset(pData, 0xFF,
PageCount * DeviceInfo.wPageDataSize);
#endif
return wResult;
} else {
continue; /* break ?? */
}
}
}
if (0xffffffff == lba)
printk(KERN_ERR "FTL_Cache_Read_All: Block is not found in BT\n");
#if CMD_DMA
wResult = GLOB_LLD_Read_Page_Main_cdma(pData, Block, Page,
PageCount, LLD_CMD_FLAG_MODE_CDMA);
if (DeviceInfo.MLCDevice) {
g_pReadCounter[Block - DeviceInfo.wSpectraStartBlock]++;
nand_dbg_print(NAND_DBG_DEBUG,
"Read Counter modified in ftl_cmd_cnt %u"
" Block %u Counter%u\n",
ftl_cmd_cnt, (unsigned int)Block,
g_pReadCounter[Block -
DeviceInfo.wSpectraStartBlock]);
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->RC_Index =
Block - DeviceInfo.wSpectraStartBlock;
p_BTableChangesDelta->RC_Entry_Value =
g_pReadCounter[Block - DeviceInfo.wSpectraStartBlock];
p_BTableChangesDelta->ValidFields = 0xC0;
ftl_cmd_cnt++;
if (g_pReadCounter[Block - DeviceInfo.wSpectraStartBlock] >=
MAX_READ_COUNTER)
FTL_Read_Disturbance(Block);
if (g_cBlockTableStatus != IN_PROGRESS_BLOCK_TABLE) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
} else {
ftl_cmd_cnt++;
}
#else
wResult = GLOB_LLD_Read_Page_Main(pData, Block, Page, PageCount);
if (wResult == FAIL)
return wResult;
if (DeviceInfo.MLCDevice) {
g_pReadCounter[Block - DeviceInfo.wSpectraStartBlock]++;
if (g_pReadCounter[Block - DeviceInfo.wSpectraStartBlock] >=
MAX_READ_COUNTER)
FTL_Read_Disturbance(Block);
if (g_cBlockTableStatus != IN_PROGRESS_BLOCK_TABLE) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
}
#endif
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Write_All
* Inputs: pointer to cache in sys memory
* address of free block in flash
* Outputs: PASS=0 / FAIL=1
* Description: writes all the pages of the block in cache to flash
*
* NOTE:need to make sure this works ok when cache is limited
* to a partial block. This is where copy-back would be
* activated. This would require knowing which pages in the
* cached block are clean/dirty.Right now we only know if
* the whole block is clean/dirty.
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Write_All(u8 *pData, u64 blk_addr)
{
u16 wResult = PASS;
u32 Block;
u16 Page;
u16 PageCount;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
nand_dbg_print(NAND_DBG_DEBUG, "This block %d going to be written "
"on %d\n", cache_block_to_write,
(u32)(blk_addr >> DeviceInfo.nBitsInBlockDataSize));
Block = BLK_FROM_ADDR(blk_addr);
Page = PAGE_FROM_ADDR(blk_addr, Block);
PageCount = Cache.pages_per_item;
#if CMD_DMA
if (FAIL == GLOB_LLD_Write_Page_Main_cdma(pData,
Block, Page, PageCount)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated! "
"Need Bad Block replacing.\n",
__FILE__, __LINE__, __func__, Block);
wResult = FAIL;
}
ftl_cmd_cnt++;
#else
if (FAIL == GLOB_LLD_Write_Page_Main(pData, Block, Page, PageCount)) {
nand_dbg_print(NAND_DBG_WARN, "NAND Program fail in %s,"
" Line %d, Function %s, new Bad Block %d generated!"
"Need Bad Block replacing.\n",
__FILE__, __LINE__, __func__, Block);
wResult = FAIL;
}
#endif
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Copy_Block
* Inputs: source block address
* Destination block address
* Outputs: PASS=0 / FAIL=1
* Description: used only for static wear leveling to move the block
* containing static data to new blocks(more worn)
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int FTL_Copy_Block(u64 old_blk_addr, u64 blk_addr)
{
int i, r1, r2, wResult = PASS;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < DeviceInfo.wPagesPerBlock; i += Cache.pages_per_item) {
r1 = FTL_Cache_Read_All(g_pTempBuf, old_blk_addr +
i * DeviceInfo.wPageDataSize);
r2 = FTL_Cache_Write_All(g_pTempBuf, blk_addr +
i * DeviceInfo.wPageDataSize);
if ((ERR == r1) || (FAIL == r2)) {
wResult = FAIL;
break;
}
}
return wResult;
}
/* Search the block table to find out the least wear block and then return it */
static u32 find_least_worn_blk_for_l2_cache(void)
{
int i;
u32 *pbt = (u32 *)g_pBlockTable;
u8 least_wear_cnt = MAX_BYTE_VALUE;
u32 least_wear_blk_idx = MAX_U32_VALUE;
u32 phy_idx;
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_SPARE_BLOCK(i)) {
phy_idx = (u32)((~BAD_BLOCK) & pbt[i]);
if (phy_idx > DeviceInfo.wSpectraEndBlock)
printk(KERN_ERR "find_least_worn_blk_for_l2_cache: "
"Too big phy block num (%d)\n", phy_idx);
if (g_pWearCounter[phy_idx -DeviceInfo.wSpectraStartBlock] < least_wear_cnt) {
least_wear_cnt = g_pWearCounter[phy_idx - DeviceInfo.wSpectraStartBlock];
least_wear_blk_idx = i;
}
}
}
nand_dbg_print(NAND_DBG_WARN,
"find_least_worn_blk_for_l2_cache: "
"find block %d with least worn counter (%d)\n",
least_wear_blk_idx, least_wear_cnt);
return least_wear_blk_idx;
}
/* Get blocks for Level2 Cache */
static int get_l2_cache_blks(void)
{
int n;
u32 blk;
u32 *pbt = (u32 *)g_pBlockTable;
for (n = 0; n < BLK_NUM_FOR_L2_CACHE; n++) {
blk = find_least_worn_blk_for_l2_cache();
if (blk >= DeviceInfo.wDataBlockNum) {
nand_dbg_print(NAND_DBG_WARN,
"find_least_worn_blk_for_l2_cache: "
"No enough free NAND blocks (n: %d) for L2 Cache!\n", n);
return FAIL;
}
/* Tag the free block as discard in block table */
pbt[blk] = (pbt[blk] & (~BAD_BLOCK)) | DISCARD_BLOCK;
/* Add the free block to the L2 Cache block array */
cache_l2.blk_array[n] = pbt[blk] & (~BAD_BLOCK);
}
return PASS;
}
static int erase_l2_cache_blocks(void)
{
int i, ret = PASS;
u32 pblk, lblk = BAD_BLOCK;
u64 addr;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < BLK_NUM_FOR_L2_CACHE; i++) {
pblk = cache_l2.blk_array[i];
/* If the L2 cache block is invalid, then just skip it */
if (MAX_U32_VALUE == pblk)
continue;
BUG_ON(pblk > DeviceInfo.wSpectraEndBlock);
addr = (u64)pblk << DeviceInfo.nBitsInBlockDataSize;
if (PASS == GLOB_FTL_Block_Erase(addr)) {
/* Get logical block number of the erased block */
lblk = FTL_Get_Block_Index(pblk);
BUG_ON(BAD_BLOCK == lblk);
/* Tag it as free in the block table */
pbt[lblk] &= (u32)(~DISCARD_BLOCK);
pbt[lblk] |= (u32)(SPARE_BLOCK);
} else {
MARK_BLOCK_AS_BAD(pbt[lblk]);
ret = ERR;
}
}
return ret;
}
/*
* Merge the valid data page in the L2 cache blocks into NAND.
*/
static int flush_l2_cache(void)
{
struct list_head *p;
struct spectra_l2_cache_list *pnd, *tmp_pnd;
u32 *pbt = (u32 *)g_pBlockTable;
u32 phy_blk, l2_blk;
u64 addr;
u16 l2_page;
int i, ret = PASS;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (list_empty(&cache_l2.table.list)) /* No data to flush */
return ret;
//dump_cache_l2_table();
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
list_for_each(p, &cache_l2.table.list) {
pnd = list_entry(p, struct spectra_l2_cache_list, list);
if (IS_SPARE_BLOCK(pnd->logical_blk_num) ||
IS_BAD_BLOCK(pnd->logical_blk_num) ||
IS_DISCARDED_BLOCK(pnd->logical_blk_num)) {
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d\n", __FILE__, __LINE__);
memset(cache_l2_blk_buf, 0xff, DeviceInfo.wPagesPerBlock * DeviceInfo.wPageDataSize);
} else {
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d\n", __FILE__, __LINE__);
phy_blk = pbt[pnd->logical_blk_num] & (~BAD_BLOCK);
ret = GLOB_LLD_Read_Page_Main(cache_l2_blk_buf,
phy_blk, 0, DeviceInfo.wPagesPerBlock);
if (ret == FAIL) {
printk(KERN_ERR "Read NAND page fail in %s, Line %d\n", __FILE__, __LINE__);
}
}
for (i = 0; i < DeviceInfo.wPagesPerBlock; i++) {
if (pnd->pages_array[i] != MAX_U32_VALUE) {
l2_blk = cache_l2.blk_array[(pnd->pages_array[i] >> 16) & 0xffff];
l2_page = pnd->pages_array[i] & 0xffff;
ret = GLOB_LLD_Read_Page_Main(cache_l2_page_buf, l2_blk, l2_page, 1);
if (ret == FAIL) {
printk(KERN_ERR "Read NAND page fail in %s, Line %d\n", __FILE__, __LINE__);
}
memcpy(cache_l2_blk_buf + i * DeviceInfo.wPageDataSize, cache_l2_page_buf, DeviceInfo.wPageDataSize);
}
}
/* Find a free block and tag the original block as discarded */
addr = (u64)pnd->logical_blk_num << DeviceInfo.nBitsInBlockDataSize;
ret = FTL_Replace_Block(addr);
if (ret == FAIL) {
printk(KERN_ERR "FTL_Replace_Block fail in %s, Line %d\n", __FILE__, __LINE__);
}
/* Write back the updated data into NAND */
phy_blk = pbt[pnd->logical_blk_num] & (~BAD_BLOCK);
if (FAIL == GLOB_LLD_Write_Page_Main(cache_l2_blk_buf, phy_blk, 0, DeviceInfo.wPagesPerBlock)) {
nand_dbg_print(NAND_DBG_WARN,
"Program NAND block %d fail in %s, Line %d\n",
phy_blk, __FILE__, __LINE__);
/* This may not be really a bad block. So just tag it as discarded. */
/* Then it has a chance to be erased when garbage collection. */
/* If it is really bad, then the erase will fail and it will be marked */
/* as bad then. Otherwise it will be marked as free and can be used again */
MARK_BLK_AS_DISCARD(pbt[pnd->logical_blk_num]);
/* Find another free block and write it again */
FTL_Replace_Block(addr);
phy_blk = pbt[pnd->logical_blk_num] & (~BAD_BLOCK);
if (FAIL == GLOB_LLD_Write_Page_Main(cache_l2_blk_buf, phy_blk, 0, DeviceInfo.wPagesPerBlock)) {
printk(KERN_ERR "Failed to write back block %d when flush L2 cache."
"Some data will be lost!\n", phy_blk);
MARK_BLOCK_AS_BAD(pbt[pnd->logical_blk_num]);
}
} else {
/* tag the new free block as used block */
pbt[pnd->logical_blk_num] &= (~SPARE_BLOCK);
}
}
/* Destroy the L2 Cache table and free the memory of all nodes */
list_for_each_entry_safe(pnd, tmp_pnd, &cache_l2.table.list, list) {
list_del(&pnd->list);
kfree(pnd);
}
/* Erase discard L2 cache blocks */
if (erase_l2_cache_blocks() != PASS)
nand_dbg_print(NAND_DBG_WARN,
" Erase L2 cache blocks error in %s, Line %d\n",
__FILE__, __LINE__);
/* Init the Level2 Cache data structure */
for (i = 0; i < BLK_NUM_FOR_L2_CACHE; i++)
cache_l2.blk_array[i] = MAX_U32_VALUE;
cache_l2.cur_blk_idx = 0;
cache_l2.cur_page_num = 0;
INIT_LIST_HEAD(&cache_l2.table.list);
cache_l2.table.logical_blk_num = MAX_U32_VALUE;
return ret;
}
/*
* Write back a changed victim cache item to the Level2 Cache
* and update the L2 Cache table to map the change.
* If the L2 Cache is full, then start to do the L2 Cache flush.
*/
static int write_back_to_l2_cache(u8 *buf, u64 logical_addr)
{
u32 logical_blk_num;
u16 logical_page_num;
struct list_head *p;
struct spectra_l2_cache_list *pnd, *pnd_new;
u32 node_size;
int i, found;
nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
/*
* If Level2 Cache table is empty, then it means either:
* 1. This is the first time that the function called after FTL_init
* or
* 2. The Level2 Cache has just been flushed
*
* So, 'steal' some free blocks from NAND for L2 Cache using
* by just mask them as discard in the block table
*/
if (list_empty(&cache_l2.table.list)) {
BUG_ON(cache_l2.cur_blk_idx != 0);
BUG_ON(cache_l2.cur_page_num!= 0);
BUG_ON(cache_l2.table.logical_blk_num != MAX_U32_VALUE);
if (FAIL == get_l2_cache_blks()) {
GLOB_FTL_Garbage_Collection();
if (FAIL == get_l2_cache_blks()) {
printk(KERN_ALERT "Fail to get L2 cache blks!\n");
return FAIL;
}
}
}
logical_blk_num = BLK_FROM_ADDR(logical_addr);
logical_page_num = PAGE_FROM_ADDR(logical_addr, logical_blk_num);
BUG_ON(logical_blk_num == MAX_U32_VALUE);
/* Write the cache item data into the current position of L2 Cache */
#if CMD_DMA
/*
* TODO
*/
#else
if (FAIL == GLOB_LLD_Write_Page_Main(buf,
cache_l2.blk_array[cache_l2.cur_blk_idx],
cache_l2.cur_page_num, 1)) {
nand_dbg_print(NAND_DBG_WARN, "NAND Program fail in "
"%s, Line %d, new Bad Block %d generated!\n",
__FILE__, __LINE__,
cache_l2.blk_array[cache_l2.cur_blk_idx]);
/* TODO: tag the current block as bad and try again */
return FAIL;
}
#endif
/*
* Update the L2 Cache table.
*
* First seaching in the table to see whether the logical block
* has been mapped. If not, then kmalloc a new node for the
* logical block, fill data, and then insert it to the list.
* Otherwise, just update the mapped node directly.
*/
found = 0;
list_for_each(p, &cache_l2.table.list) {
pnd = list_entry(p, struct spectra_l2_cache_list, list);
if (pnd->logical_blk_num == logical_blk_num) {
pnd->pages_array[logical_page_num] =
(cache_l2.cur_blk_idx << 16) |
cache_l2.cur_page_num;
found = 1;
break;
}
}
if (!found) { /* Create new node for the logical block here */
/* The logical pages to physical pages map array is
* located at the end of struct spectra_l2_cache_list.
*/
node_size = sizeof(struct spectra_l2_cache_list) +
sizeof(u32) * DeviceInfo.wPagesPerBlock;
pnd_new = kmalloc(node_size, GFP_ATOMIC);
if (!pnd_new) {
printk(KERN_ERR "Failed to kmalloc in %s Line %d\n",
__FILE__, __LINE__);
/*
* TODO: Need to flush all the L2 cache into NAND ASAP
* since no memory available here
*/
}
pnd_new->logical_blk_num = logical_blk_num;
for (i = 0; i < DeviceInfo.wPagesPerBlock; i++)
pnd_new->pages_array[i] = MAX_U32_VALUE;
pnd_new->pages_array[logical_page_num] =
(cache_l2.cur_blk_idx << 16) | cache_l2.cur_page_num;
list_add(&pnd_new->list, &cache_l2.table.list);
}
/* Increasing the current position pointer of the L2 Cache */
cache_l2.cur_page_num++;
if (cache_l2.cur_page_num >= DeviceInfo.wPagesPerBlock) {
cache_l2.cur_blk_idx++;
if (cache_l2.cur_blk_idx >= BLK_NUM_FOR_L2_CACHE) {
/* The L2 Cache is full. Need to flush it now */
nand_dbg_print(NAND_DBG_WARN,
"L2 Cache is full, will start to flush it\n");
flush_l2_cache();
} else {
cache_l2.cur_page_num = 0;
}
}
return PASS;
}
/*
* Search in the Level2 Cache table to find the cache item.
* If find, read the data from the NAND page of L2 Cache,
* Otherwise, return FAIL.
*/
static int search_l2_cache(u8 *buf, u64 logical_addr)
{
u32 logical_blk_num;
u16 logical_page_num;
struct list_head *p;
struct spectra_l2_cache_list *pnd;
u32 tmp = MAX_U32_VALUE;
u32 phy_blk;
u16 phy_page;
int ret = FAIL;
logical_blk_num = BLK_FROM_ADDR(logical_addr);
logical_page_num = PAGE_FROM_ADDR(logical_addr, logical_blk_num);
list_for_each(p, &cache_l2.table.list) {
pnd = list_entry(p, struct spectra_l2_cache_list, list);
if (pnd->logical_blk_num == logical_blk_num) {
tmp = pnd->pages_array[logical_page_num];
break;
}
}
if (tmp != MAX_U32_VALUE) { /* Found valid map */
phy_blk = cache_l2.blk_array[(tmp >> 16) & 0xFFFF];
phy_page = tmp & 0xFFFF;
#if CMD_DMA
/* TODO */
#else
ret = GLOB_LLD_Read_Page_Main(buf, phy_blk, phy_page, 1);
#endif
}
return ret;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Write_Page
* Inputs: Pointer to buffer, page address, cache block number
* Outputs: PASS=0 / FAIL=1
* Description: It writes the data in Cache Block
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static void FTL_Cache_Write_Page(u8 *pData, u64 page_addr,
u8 cache_blk, u16 flag)
{
u8 *pDest;
u64 addr;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
addr = Cache.array[cache_blk].address;
pDest = Cache.array[cache_blk].buf;
pDest += (unsigned long)(page_addr - addr);
Cache.array[cache_blk].changed = SET;
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
int_cache[ftl_cmd_cnt].item = cache_blk;
int_cache[ftl_cmd_cnt].cache.address =
Cache.array[cache_blk].address;
int_cache[ftl_cmd_cnt].cache.changed =
Cache.array[cache_blk].changed;
#endif
GLOB_LLD_MemCopy_CMD(pDest, pData, DeviceInfo.wPageDataSize, flag);
ftl_cmd_cnt++;
#else
memcpy(pDest, pData, DeviceInfo.wPageDataSize);
#endif
if (Cache.array[cache_blk].use_cnt < MAX_WORD_VALUE)
Cache.array[cache_blk].use_cnt++;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Write
* Inputs: none
* Outputs: PASS=0 / FAIL=1
* Description: It writes least frequently used Cache block to flash if it
* has been changed
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Write(void)
{
int i, bResult = PASS;
u16 bNO, least_count = 0xFFFF;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
FTL_Calculate_LRU();
bNO = Cache.LRU;
nand_dbg_print(NAND_DBG_DEBUG, "FTL_Cache_Write: "
"Least used cache block is %d\n", bNO);
if (Cache.array[bNO].changed != SET)
return bResult;
nand_dbg_print(NAND_DBG_DEBUG, "FTL_Cache_Write: Cache"
" Block %d containing logical block %d is dirty\n",
bNO,
(u32)(Cache.array[bNO].address >>
DeviceInfo.nBitsInBlockDataSize));
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
int_cache[ftl_cmd_cnt].item = bNO;
int_cache[ftl_cmd_cnt].cache.address =
Cache.array[bNO].address;
int_cache[ftl_cmd_cnt].cache.changed = CLEAR;
#endif
#endif
bResult = write_back_to_l2_cache(Cache.array[bNO].buf,
Cache.array[bNO].address);
if (bResult != ERR)
Cache.array[bNO].changed = CLEAR;
least_count = Cache.array[bNO].use_cnt;
for (i = 0; i < CACHE_ITEM_NUM; i++) {
if (i == bNO)
continue;
if (Cache.array[i].use_cnt > 0)
Cache.array[i].use_cnt -= least_count;
}
return bResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Read
* Inputs: Page address
* Outputs: PASS=0 / FAIL=1
* Description: It reads the block from device in Cache Block
* Set the LRU count to 1
* Mark the Cache Block as clean
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Read(u64 logical_addr)
{
u64 item_addr, phy_addr;
u16 num;
int ret;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
num = Cache.LRU; /* The LRU cache item will be overwritten */
item_addr = (u64)GLOB_u64_Div(logical_addr, Cache.cache_item_size) *
Cache.cache_item_size;
Cache.array[num].address = item_addr;
Cache.array[num].use_cnt = 1;
Cache.array[num].changed = CLEAR;
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
int_cache[ftl_cmd_cnt].item = num;
int_cache[ftl_cmd_cnt].cache.address =
Cache.array[num].address;
int_cache[ftl_cmd_cnt].cache.changed =
Cache.array[num].changed;
#endif
#endif
/*
* Search in L2 Cache. If hit, fill data into L1 Cache item buffer,
* Otherwise, read it from NAND
*/
ret = search_l2_cache(Cache.array[num].buf, logical_addr);
if (PASS == ret) /* Hit in L2 Cache */
return ret;
/* Compute the physical start address of NAND device according to */
/* the logical start address of the cache item (LRU cache item) */
phy_addr = FTL_Get_Physical_Block_Addr(item_addr) +
GLOB_u64_Remainder(item_addr, 2);
return FTL_Cache_Read_All(Cache.array[num].buf, phy_addr);
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Check_Block_Table
* Inputs: ?
* Outputs: PASS=0 / FAIL=1
* Description: It checks the correctness of each block table entry
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Check_Block_Table(int wOldTable)
{
u32 i;
int wResult = PASS;
u32 blk_idx;
u32 *pbt = (u32 *)g_pBlockTable;
u8 *pFlag = flag_check_blk_table;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (NULL != pFlag) {
memset(pFlag, FAIL, DeviceInfo.wDataBlockNum);
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
blk_idx = (u32)(pbt[i] & (~BAD_BLOCK));
/*
* 20081006/KBV - Changed to pFlag[i] reference
* to avoid buffer overflow
*/
/*
* 2008-10-20 Yunpeng Note: This change avoid
* buffer overflow, but changed function of
* the code, so it should be re-write later
*/
if ((blk_idx > DeviceInfo.wSpectraEndBlock) ||
PASS == pFlag[i]) {
wResult = FAIL;
break;
} else {
pFlag[i] = PASS;
}
}
}
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Write_Block_Table
* Inputs: flasg
* Outputs: 0=Block Table was updated. No write done. 1=Block write needs to
* happen. -1 Error
* Description: It writes the block table
* Block table always mapped to LBA 0 which inturn mapped
* to any physical block
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Write_Block_Table(int wForce)
{
u32 *pbt = (u32 *)g_pBlockTable;
int wSuccess = PASS;
u32 wTempBlockTableIndex;
u16 bt_pages, new_bt_offset;
u8 blockchangeoccured = 0;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
bt_pages = FTL_Get_Block_Table_Flash_Size_Pages();
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus)
return 0;
if (PASS == wForce) {
g_wBlockTableOffset =
(u16)(DeviceInfo.wPagesPerBlock - bt_pages);
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->g_wBlockTableOffset =
g_wBlockTableOffset;
p_BTableChangesDelta->ValidFields = 0x01;
#endif
}
nand_dbg_print(NAND_DBG_DEBUG,
"Inside FTL_Write_Block_Table: block %d Page:%d\n",
g_wBlockTableIndex, g_wBlockTableOffset);
do {
new_bt_offset = g_wBlockTableOffset + bt_pages + 1;
if ((0 == (new_bt_offset % DeviceInfo.wPagesPerBlock)) ||
(new_bt_offset > DeviceInfo.wPagesPerBlock) ||
(FAIL == wSuccess)) {
wTempBlockTableIndex = FTL_Replace_Block_Table();
if (BAD_BLOCK == wTempBlockTableIndex)
return ERR;
if (!blockchangeoccured) {
bt_block_changed = 1;
blockchangeoccured = 1;
}
g_wBlockTableIndex = wTempBlockTableIndex;
g_wBlockTableOffset = 0;
pbt[BLOCK_TABLE_INDEX] = g_wBlockTableIndex;
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->g_wBlockTableOffset =
g_wBlockTableOffset;
p_BTableChangesDelta->g_wBlockTableIndex =
g_wBlockTableIndex;
p_BTableChangesDelta->ValidFields = 0x03;
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index =
BLOCK_TABLE_INDEX;
p_BTableChangesDelta->BT_Entry_Value =
pbt[BLOCK_TABLE_INDEX];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
}
wSuccess = FTL_Write_Block_Table_Data();
if (FAIL == wSuccess)
MARK_BLOCK_AS_BAD(pbt[BLOCK_TABLE_INDEX]);
} while (FAIL == wSuccess);
g_cBlockTableStatus = CURRENT_BLOCK_TABLE;
return 1;
}
static int force_format_nand(void)
{
u32 i;
/* Force erase the whole unprotected physical partiton of NAND */
printk(KERN_ALERT "Start to force erase whole NAND device ...\n");
printk(KERN_ALERT "From phyical block %d to %d\n",
DeviceInfo.wSpectraStartBlock, DeviceInfo.wSpectraEndBlock);
for (i = DeviceInfo.wSpectraStartBlock; i <= DeviceInfo.wSpectraEndBlock; i++) {
if (GLOB_LLD_Erase_Block(i))
printk(KERN_ERR "Failed to force erase NAND block %d\n", i);
}
printk(KERN_ALERT "Force Erase ends. Please reboot the system ...\n");
while(1);
return PASS;
}
int GLOB_FTL_Flash_Format(void)
{
//return FTL_Format_Flash(1);
return force_format_nand();
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Search_Block_Table_IN_Block
* Inputs: Block Number
* Pointer to page
* Outputs: PASS / FAIL
* Page contatining the block table
* Description: It searches the block table in the block
* passed as an argument.
*
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Search_Block_Table_IN_Block(u32 BT_Block,
u8 BT_Tag, u16 *Page)
{
u16 i, j, k;
u16 Result = PASS;
u16 Last_IPF = 0;
u8 BT_Found = 0;
u8 *tagarray;
u8 *tempbuf = tmp_buf_search_bt_in_block;
u8 *pSpareBuf = spare_buf_search_bt_in_block;
u8 *pSpareBufBTLastPage = spare_buf_bt_search_bt_in_block;
u8 bt_flag_last_page = 0xFF;
u8 search_in_previous_pages = 0;
u16 bt_pages;
nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
nand_dbg_print(NAND_DBG_DEBUG,
"Searching block table in %u block\n",
(unsigned int)BT_Block);
bt_pages = FTL_Get_Block_Table_Flash_Size_Pages();
for (i = bt_pages; i < DeviceInfo.wPagesPerBlock;
i += (bt_pages + 1)) {
nand_dbg_print(NAND_DBG_DEBUG,
"Searching last IPF: %d\n", i);
Result = GLOB_LLD_Read_Page_Main_Polling(tempbuf,
BT_Block, i, 1);
if (0 == memcmp(tempbuf, g_pIPF, DeviceInfo.wPageDataSize)) {
if ((i + bt_pages + 1) < DeviceInfo.wPagesPerBlock) {
continue;
} else {
search_in_previous_pages = 1;
Last_IPF = i;
}
}
if (!search_in_previous_pages) {
if (i != bt_pages) {
i -= (bt_pages + 1);
Last_IPF = i;
}
}
if (0 == Last_IPF)
break;
if (!search_in_previous_pages) {
i = i + 1;
nand_dbg_print(NAND_DBG_DEBUG,
"Reading the spare area of Block %u Page %u",
(unsigned int)BT_Block, i);
Result = GLOB_LLD_Read_Page_Spare(pSpareBuf,
BT_Block, i, 1);
nand_dbg_print(NAND_DBG_DEBUG,
"Reading the spare area of Block %u Page %u",
(unsigned int)BT_Block, i + bt_pages - 1);
Result = GLOB_LLD_Read_Page_Spare(pSpareBufBTLastPage,
BT_Block, i + bt_pages - 1, 1);
k = 0;
j = FTL_Extract_Block_Table_Tag(pSpareBuf, &tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j)
bt_flag = tagarray[k];
else
Result = FAIL;
if (Result == PASS) {
k = 0;
j = FTL_Extract_Block_Table_Tag(
pSpareBufBTLastPage, &tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j)
bt_flag_last_page = tagarray[k];
else
Result = FAIL;
if (Result == PASS) {
if (bt_flag == bt_flag_last_page) {
nand_dbg_print(NAND_DBG_DEBUG,
"Block table is found"
" in page after IPF "
"at block %d "
"page %d\n",
(int)BT_Block, i);
BT_Found = 1;
*Page = i;
g_cBlockTableStatus =
CURRENT_BLOCK_TABLE;
break;
} else {
Result = FAIL;
}
}
}
}
if (search_in_previous_pages)
i = i - bt_pages;
else
i = i - (bt_pages + 1);
Result = PASS;
nand_dbg_print(NAND_DBG_DEBUG,
"Reading the spare area of Block %d Page %d",
(int)BT_Block, i);
Result = GLOB_LLD_Read_Page_Spare(pSpareBuf, BT_Block, i, 1);
nand_dbg_print(NAND_DBG_DEBUG,
"Reading the spare area of Block %u Page %u",
(unsigned int)BT_Block, i + bt_pages - 1);
Result = GLOB_LLD_Read_Page_Spare(pSpareBufBTLastPage,
BT_Block, i + bt_pages - 1, 1);
k = 0;
j = FTL_Extract_Block_Table_Tag(pSpareBuf, &tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j)
bt_flag = tagarray[k];
else
Result = FAIL;
if (Result == PASS) {
k = 0;
j = FTL_Extract_Block_Table_Tag(pSpareBufBTLastPage,
&tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j) {
bt_flag_last_page = tagarray[k];
} else {
Result = FAIL;
break;
}
if (Result == PASS) {
if (bt_flag == bt_flag_last_page) {
nand_dbg_print(NAND_DBG_DEBUG,
"Block table is found "
"in page prior to IPF "
"at block %u page %d\n",
(unsigned int)BT_Block, i);
BT_Found = 1;
*Page = i;
g_cBlockTableStatus =
IN_PROGRESS_BLOCK_TABLE;
break;
} else {
Result = FAIL;
break;
}
}
}
}
if (Result == FAIL) {
if ((Last_IPF > bt_pages) && (i < Last_IPF) && (!BT_Found)) {
BT_Found = 1;
*Page = i - (bt_pages + 1);
}
if ((Last_IPF == bt_pages) && (i < Last_IPF) && (!BT_Found))
goto func_return;
}
if (Last_IPF == 0) {
i = 0;
Result = PASS;
nand_dbg_print(NAND_DBG_DEBUG, "Reading the spare area of "
"Block %u Page %u", (unsigned int)BT_Block, i);
Result = GLOB_LLD_Read_Page_Spare(pSpareBuf, BT_Block, i, 1);
nand_dbg_print(NAND_DBG_DEBUG,
"Reading the spare area of Block %u Page %u",
(unsigned int)BT_Block, i + bt_pages - 1);
Result = GLOB_LLD_Read_Page_Spare(pSpareBufBTLastPage,
BT_Block, i + bt_pages - 1, 1);
k = 0;
j = FTL_Extract_Block_Table_Tag(pSpareBuf, &tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j)
bt_flag = tagarray[k];
else
Result = FAIL;
if (Result == PASS) {
k = 0;
j = FTL_Extract_Block_Table_Tag(pSpareBufBTLastPage,
&tagarray);
if (j) {
for (; k < j; k++) {
if (tagarray[k] == BT_Tag)
break;
}
}
if (k < j)
bt_flag_last_page = tagarray[k];
else
Result = FAIL;
if (Result == PASS) {
if (bt_flag == bt_flag_last_page) {
nand_dbg_print(NAND_DBG_DEBUG,
"Block table is found "
"in page after IPF at "
"block %u page %u\n",
(unsigned int)BT_Block,
(unsigned int)i);
BT_Found = 1;
*Page = i;
g_cBlockTableStatus =
CURRENT_BLOCK_TABLE;
goto func_return;
} else {
Result = FAIL;
}
}
}
if (Result == FAIL)
goto func_return;
}
func_return:
return Result;
}
u8 *get_blk_table_start_addr(void)
{
return g_pBlockTable;
}
unsigned long get_blk_table_len(void)
{
return DeviceInfo.wDataBlockNum * sizeof(u32);
}
u8 *get_wear_leveling_table_start_addr(void)
{
return g_pWearCounter;
}
unsigned long get_wear_leveling_table_len(void)
{
return DeviceInfo.wDataBlockNum * sizeof(u8);
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Read_Block_Table
* Inputs: none
* Outputs: PASS / FAIL
* Description: read the flash spare area and find a block containing the
* most recent block table(having largest block_table_counter).
* Find the last written Block table in this block.
* Check the correctness of Block Table
* If CDMA is enabled, this function is called in
* polling mode.
* We don't need to store changes in Block table in this
* function as it is called only at initialization
*
* Note: Currently this function is called at initialization
* before any read/erase/write command issued to flash so,
* there is no need to wait for CDMA list to complete as of now
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Read_Block_Table(void)
{
u16 i = 0;
int k, j;
u8 *tempBuf, *tagarray;
int wResult = FAIL;
int status = FAIL;
u8 block_table_found = 0;
int search_result;
u32 Block;
u16 Page = 0;
u16 PageCount;
u16 bt_pages;
int wBytesCopied = 0, tempvar;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
tempBuf = tmp_buf1_read_blk_table;
bt_pages = FTL_Get_Block_Table_Flash_Size_Pages();
for (j = DeviceInfo.wSpectraStartBlock;
j <= (int)DeviceInfo.wSpectraEndBlock;
j++) {
status = GLOB_LLD_Read_Page_Spare(tempBuf, j, 0, 1);
k = 0;
i = FTL_Extract_Block_Table_Tag(tempBuf, &tagarray);
if (i) {
status = GLOB_LLD_Read_Page_Main_Polling(tempBuf,
j, 0, 1);
for (; k < i; k++) {
if (tagarray[k] == tempBuf[3])
break;
}
}
if (k < i)
k = tagarray[k];
else
continue;
nand_dbg_print(NAND_DBG_DEBUG,
"Block table is contained in Block %d %d\n",
(unsigned int)j, (unsigned int)k);
if (g_pBTBlocks[k-FIRST_BT_ID] == BTBLOCK_INVAL) {
g_pBTBlocks[k-FIRST_BT_ID] = j;
block_table_found = 1;
} else {
printk(KERN_ERR "FTL_Read_Block_Table -"
"This should never happens. "
"Two block table have same counter %u!\n", k);
}
}
if (block_table_found) {
if (g_pBTBlocks[FIRST_BT_ID - FIRST_BT_ID] != BTBLOCK_INVAL &&
g_pBTBlocks[LAST_BT_ID - FIRST_BT_ID] != BTBLOCK_INVAL) {
j = LAST_BT_ID;
while ((j > FIRST_BT_ID) &&
(g_pBTBlocks[j - FIRST_BT_ID] != BTBLOCK_INVAL))
j--;
if (j == FIRST_BT_ID) {
j = LAST_BT_ID;
last_erased = LAST_BT_ID;
} else {
last_erased = (u8)j + 1;
while ((j > FIRST_BT_ID) && (BTBLOCK_INVAL ==
g_pBTBlocks[j - FIRST_BT_ID]))
j--;
}
} else {
j = FIRST_BT_ID;
while (g_pBTBlocks[j - FIRST_BT_ID] == BTBLOCK_INVAL)
j++;
last_erased = (u8)j;
while ((j < LAST_BT_ID) && (BTBLOCK_INVAL !=
g_pBTBlocks[j - FIRST_BT_ID]))
j++;
if (g_pBTBlocks[j-FIRST_BT_ID] == BTBLOCK_INVAL)
j--;
}
if (last_erased > j)
j += (1 + LAST_BT_ID - FIRST_BT_ID);
for (; (j >= last_erased) && (FAIL == wResult); j--) {
i = (j - FIRST_BT_ID) %
(1 + LAST_BT_ID - FIRST_BT_ID);
search_result =
FTL_Search_Block_Table_IN_Block(g_pBTBlocks[i],
i + FIRST_BT_ID, &Page);
if (g_cBlockTableStatus == IN_PROGRESS_BLOCK_TABLE)
block_table_found = 0;
while ((search_result == PASS) && (FAIL == wResult)) {
nand_dbg_print(NAND_DBG_DEBUG,
"FTL_Read_Block_Table:"
"Block: %u Page: %u "
"contains block table\n",
(unsigned int)g_pBTBlocks[i],
(unsigned int)Page);
tempBuf = tmp_buf2_read_blk_table;
for (k = 0; k < bt_pages; k++) {
Block = g_pBTBlocks[i];
PageCount = 1;
status =
GLOB_LLD_Read_Page_Main_Polling(
tempBuf, Block, Page, PageCount);
tempvar = k ? 0 : 4;
wBytesCopied +=
FTL_Copy_Block_Table_From_Flash(
tempBuf + tempvar,
DeviceInfo.wPageDataSize - tempvar,
wBytesCopied);
Page++;
}
wResult = FTL_Check_Block_Table(FAIL);
if (FAIL == wResult) {
block_table_found = 0;
if (Page > bt_pages)
Page -= ((bt_pages<<1) + 1);
else
search_result = FAIL;
}
}
}
}
if (PASS == wResult) {
if (!block_table_found)
FTL_Execute_SPL_Recovery();
if (g_cBlockTableStatus == IN_PROGRESS_BLOCK_TABLE)
g_wBlockTableOffset = (u16)Page + 1;
else
g_wBlockTableOffset = (u16)Page - bt_pages;
g_wBlockTableIndex = (u32)g_pBTBlocks[i];
#if CMD_DMA
if (DeviceInfo.MLCDevice)
memcpy(g_pBTStartingCopy, g_pBlockTable,
DeviceInfo.wDataBlockNum * sizeof(u32)
+ DeviceInfo.wDataBlockNum * sizeof(u8)
+ DeviceInfo.wDataBlockNum * sizeof(u16));
else
memcpy(g_pBTStartingCopy, g_pBlockTable,
DeviceInfo.wDataBlockNum * sizeof(u32)
+ DeviceInfo.wDataBlockNum * sizeof(u8));
#endif
}
if (FAIL == wResult)
printk(KERN_ERR "Yunpeng - "
"Can not find valid spectra block table!\n");
#if AUTO_FORMAT_FLASH
if (FAIL == wResult) {
nand_dbg_print(NAND_DBG_DEBUG, "doing auto-format\n");
wResult = FTL_Format_Flash(0);
}
#endif
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Get_Page_Num
* Inputs: Size in bytes
* Outputs: Size in pages
* Description: It calculates the pages required for the length passed
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Get_Page_Num(u64 length)
{
return (u32)((length >> DeviceInfo.nBitsInPageDataSize) +
(GLOB_u64_Remainder(length , 1) > 0 ? 1 : 0));
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Get_Physical_Block_Addr
* Inputs: Block Address (byte format)
* Outputs: Physical address of the block.
* Description: It translates LBA to PBA by returning address stored
* at the LBA location in the block table
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u64 FTL_Get_Physical_Block_Addr(u64 logical_addr)
{
u32 *pbt;
u64 physical_addr;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
pbt = (u32 *)g_pBlockTable;
physical_addr = (u64) DeviceInfo.wBlockDataSize *
(pbt[BLK_FROM_ADDR(logical_addr)] & (~BAD_BLOCK));
return physical_addr;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Get_Block_Index
* Inputs: Physical Block no.
* Outputs: Logical block no. /BAD_BLOCK
* Description: It returns the logical block no. for the PBA passed
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Get_Block_Index(u32 wBlockNum)
{
u32 *pbt = (u32 *)g_pBlockTable;
u32 i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < DeviceInfo.wDataBlockNum; i++)
if (wBlockNum == (pbt[i] & (~BAD_BLOCK)))
return i;
return BAD_BLOCK;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Wear_Leveling
* Inputs: none
* Outputs: PASS=0
* Description: This is static wear leveling (done by explicit call)
* do complete static wear leveling
* do complete garbage collection
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Wear_Leveling(void)
{
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
FTL_Static_Wear_Leveling();
GLOB_FTL_Garbage_Collection();
return PASS;
}
static void find_least_most_worn(u8 *chg,
u32 *least_idx, u8 *least_cnt,
u32 *most_idx, u8 *most_cnt)
{
u32 *pbt = (u32 *)g_pBlockTable;
u32 idx;
u8 cnt;
int i;
for (i = BLOCK_TABLE_INDEX + 1; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_BAD_BLOCK(i) || PASS == chg[i])
continue;
idx = (u32) ((~BAD_BLOCK) & pbt[i]);
cnt = g_pWearCounter[idx - DeviceInfo.wSpectraStartBlock];
if (IS_SPARE_BLOCK(i)) {
if (cnt > *most_cnt) {
*most_cnt = cnt;
*most_idx = idx;
}
}
if (IS_DATA_BLOCK(i)) {
if (cnt < *least_cnt) {
*least_cnt = cnt;
*least_idx = idx;
}
}
if (PASS == chg[*most_idx] || PASS == chg[*least_idx]) {
debug_boundary_error(*most_idx,
DeviceInfo.wDataBlockNum, 0);
debug_boundary_error(*least_idx,
DeviceInfo.wDataBlockNum, 0);
continue;
}
}
}
static int move_blks_for_wear_leveling(u8 *chg,
u32 *least_idx, u32 *rep_blk_num, int *result)
{
u32 *pbt = (u32 *)g_pBlockTable;
u32 rep_blk;
int j, ret_cp_blk, ret_erase;
int ret = PASS;
chg[*least_idx] = PASS;
debug_boundary_error(*least_idx, DeviceInfo.wDataBlockNum, 0);
rep_blk = FTL_Replace_MWBlock();
if (rep_blk != BAD_BLOCK) {
nand_dbg_print(NAND_DBG_DEBUG,
"More than two spare blocks exist so do it\n");
nand_dbg_print(NAND_DBG_DEBUG, "Block Replaced is %d\n",
rep_blk);
chg[rep_blk] = PASS;
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
for (j = 0; j < RETRY_TIMES; j++) {
ret_cp_blk = FTL_Copy_Block((u64)(*least_idx) *
DeviceInfo.wBlockDataSize,
(u64)rep_blk * DeviceInfo.wBlockDataSize);
if (FAIL == ret_cp_blk) {
ret_erase = GLOB_FTL_Block_Erase((u64)rep_blk
* DeviceInfo.wBlockDataSize);
if (FAIL == ret_erase)
MARK_BLOCK_AS_BAD(pbt[rep_blk]);
} else {
nand_dbg_print(NAND_DBG_DEBUG,
"FTL_Copy_Block == OK\n");
break;
}
}
if (j < RETRY_TIMES) {
u32 tmp;
u32 old_idx = FTL_Get_Block_Index(*least_idx);
u32 rep_idx = FTL_Get_Block_Index(rep_blk);
tmp = (u32)(DISCARD_BLOCK | pbt[old_idx]);
pbt[old_idx] = (u32)((~SPARE_BLOCK) &
pbt[rep_idx]);
pbt[rep_idx] = tmp;
#if CMD_DMA
p_BTableChangesDelta = (struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = old_idx;
p_BTableChangesDelta->BT_Entry_Value = pbt[old_idx];
p_BTableChangesDelta->ValidFields = 0x0C;
p_BTableChangesDelta = (struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = rep_idx;
p_BTableChangesDelta->BT_Entry_Value = pbt[rep_idx];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
} else {
pbt[FTL_Get_Block_Index(rep_blk)] |= BAD_BLOCK;
#if CMD_DMA
p_BTableChangesDelta = (struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index =
FTL_Get_Block_Index(rep_blk);
p_BTableChangesDelta->BT_Entry_Value =
pbt[FTL_Get_Block_Index(rep_blk)];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
*result = FAIL;
ret = FAIL;
}
if (((*rep_blk_num)++) > WEAR_LEVELING_BLOCK_NUM)
ret = FAIL;
} else {
printk(KERN_ERR "Less than 3 spare blocks exist so quit\n");
ret = FAIL;
}
return ret;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Static_Wear_Leveling
* Inputs: none
* Outputs: PASS=0 / FAIL=1
* Description: This is static wear leveling (done by explicit call)
* search for most&least used
* if difference < GATE:
* update the block table with exhange
* mark block table in flash as IN_PROGRESS
* copy flash block
* the caller should handle GC clean up after calling this function
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int FTL_Static_Wear_Leveling(void)
{
u8 most_worn_cnt;
u8 least_worn_cnt;
u32 most_worn_idx;
u32 least_worn_idx;
int result = PASS;
int go_on = PASS;
u32 replaced_blks = 0;
u8 *chang_flag = flags_static_wear_leveling;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (!chang_flag)
return FAIL;
memset(chang_flag, FAIL, DeviceInfo.wDataBlockNum);
while (go_on == PASS) {
nand_dbg_print(NAND_DBG_DEBUG,
"starting static wear leveling\n");
most_worn_cnt = 0;
least_worn_cnt = 0xFF;
least_worn_idx = BLOCK_TABLE_INDEX;
most_worn_idx = BLOCK_TABLE_INDEX;
find_least_most_worn(chang_flag, &least_worn_idx,
&least_worn_cnt, &most_worn_idx, &most_worn_cnt);
nand_dbg_print(NAND_DBG_DEBUG,
"Used and least worn is block %u, whos count is %u\n",
(unsigned int)least_worn_idx,
(unsigned int)least_worn_cnt);
nand_dbg_print(NAND_DBG_DEBUG,
"Free and most worn is block %u, whos count is %u\n",
(unsigned int)most_worn_idx,
(unsigned int)most_worn_cnt);
if ((most_worn_cnt > least_worn_cnt) &&
(most_worn_cnt - least_worn_cnt > WEAR_LEVELING_GATE))
go_on = move_blks_for_wear_leveling(chang_flag,
&least_worn_idx, &replaced_blks, &result);
else
go_on = FAIL;
}
return result;
}
#if CMD_DMA
static int do_garbage_collection(u32 discard_cnt)
{
u32 *pbt = (u32 *)g_pBlockTable;
u32 pba;
u8 bt_block_erased = 0;
int i, cnt, ret = FAIL;
u64 addr;
i = 0;
while ((i < DeviceInfo.wDataBlockNum) && (discard_cnt > 0) &&
((ftl_cmd_cnt + 28) < 256)) {
if (((pbt[i] & BAD_BLOCK) != BAD_BLOCK) &&
(pbt[i] & DISCARD_BLOCK)) {
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
addr = FTL_Get_Physical_Block_Addr((u64)i *
DeviceInfo.wBlockDataSize);
pba = BLK_FROM_ADDR(addr);
for (cnt = FIRST_BT_ID; cnt <= LAST_BT_ID; cnt++) {
if (pba == g_pBTBlocks[cnt - FIRST_BT_ID]) {
nand_dbg_print(NAND_DBG_DEBUG,
"GC will erase BT block %u\n",
(unsigned int)pba);
discard_cnt--;
i++;
bt_block_erased = 1;
break;
}
}
if (bt_block_erased) {
bt_block_erased = 0;
continue;
}
addr = FTL_Get_Physical_Block_Addr((u64)i *
DeviceInfo.wBlockDataSize);
if (PASS == GLOB_FTL_Block_Erase(addr)) {
pbt[i] &= (u32)(~DISCARD_BLOCK);
pbt[i] |= (u32)(SPARE_BLOCK);
p_BTableChangesDelta =
(struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt - 1;
p_BTableChangesDelta->BT_Index = i;
p_BTableChangesDelta->BT_Entry_Value = pbt[i];
p_BTableChangesDelta->ValidFields = 0x0C;
discard_cnt--;
ret = PASS;
} else {
MARK_BLOCK_AS_BAD(pbt[i]);
}
}
i++;
}
return ret;
}
#else
static int do_garbage_collection(u32 discard_cnt)
{
u32 *pbt = (u32 *)g_pBlockTable;
u32 pba;
u8 bt_block_erased = 0;
int i, cnt, ret = FAIL;
u64 addr;
i = 0;
while ((i < DeviceInfo.wDataBlockNum) && (discard_cnt > 0)) {
if (((pbt[i] & BAD_BLOCK) != BAD_BLOCK) &&
(pbt[i] & DISCARD_BLOCK)) {
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
addr = FTL_Get_Physical_Block_Addr((u64)i *
DeviceInfo.wBlockDataSize);
pba = BLK_FROM_ADDR(addr);
for (cnt = FIRST_BT_ID; cnt <= LAST_BT_ID; cnt++) {
if (pba == g_pBTBlocks[cnt - FIRST_BT_ID]) {
nand_dbg_print(NAND_DBG_DEBUG,
"GC will erase BT block %d\n",
pba);
discard_cnt--;
i++;
bt_block_erased = 1;
break;
}
}
if (bt_block_erased) {
bt_block_erased = 0;
continue;
}
/* If the discard block is L2 cache block, then just skip it */
for (cnt = 0; cnt < BLK_NUM_FOR_L2_CACHE; cnt++) {
if (cache_l2.blk_array[cnt] == pba) {
nand_dbg_print(NAND_DBG_DEBUG,
"GC will erase L2 cache blk %d\n",
pba);
break;
}
}
if (cnt < BLK_NUM_FOR_L2_CACHE) { /* Skip it */
discard_cnt--;
i++;
continue;
}
addr = FTL_Get_Physical_Block_Addr((u64)i *
DeviceInfo.wBlockDataSize);
if (PASS == GLOB_FTL_Block_Erase(addr)) {
pbt[i] &= (u32)(~DISCARD_BLOCK);
pbt[i] |= (u32)(SPARE_BLOCK);
discard_cnt--;
ret = PASS;
} else {
MARK_BLOCK_AS_BAD(pbt[i]);
}
}
i++;
}
return ret;
}
#endif
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Garbage_Collection
* Inputs: none
* Outputs: PASS / FAIL (returns the number of un-erased blocks
* Description: search the block table for all discarded blocks to erase
* for each discarded block:
* set the flash block to IN_PROGRESS
* erase the block
* update the block table
* write the block table to flash
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Garbage_Collection(void)
{
u32 i;
u32 wDiscard = 0;
int wResult = FAIL;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (GC_Called) {
printk(KERN_ALERT "GLOB_FTL_Garbage_Collection() "
"has been re-entered! Exit.\n");
return PASS;
}
GC_Called = 1;
GLOB_FTL_BT_Garbage_Collection();
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_DISCARDED_BLOCK(i))
wDiscard++;
}
if (wDiscard <= 0) {
GC_Called = 0;
return wResult;
}
nand_dbg_print(NAND_DBG_DEBUG,
"Found %d discarded blocks\n", wDiscard);
FTL_Write_Block_Table(FAIL);
wResult = do_garbage_collection(wDiscard);
FTL_Write_Block_Table(FAIL);
GC_Called = 0;
return wResult;
}
#if CMD_DMA
static int do_bt_garbage_collection(void)
{
u32 pba, lba;
u32 *pbt = (u32 *)g_pBlockTable;
u32 *pBTBlocksNode = (u32 *)g_pBTBlocks;
u64 addr;
int i, ret = FAIL;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (BT_GC_Called)
return PASS;
BT_GC_Called = 1;
for (i = last_erased; (i <= LAST_BT_ID) &&
(g_pBTBlocks[((i + 2) % (1 + LAST_BT_ID - FIRST_BT_ID)) +
FIRST_BT_ID - FIRST_BT_ID] != BTBLOCK_INVAL) &&
((ftl_cmd_cnt + 28)) < 256; i++) {
pba = pBTBlocksNode[i - FIRST_BT_ID];
lba = FTL_Get_Block_Index(pba);
nand_dbg_print(NAND_DBG_DEBUG,
"do_bt_garbage_collection: pba %d, lba %d\n",
pba, lba);
nand_dbg_print(NAND_DBG_DEBUG,
"Block Table Entry: %d", pbt[lba]);
if (((pbt[lba] & BAD_BLOCK) != BAD_BLOCK) &&
(pbt[lba] & DISCARD_BLOCK)) {
nand_dbg_print(NAND_DBG_DEBUG,
"do_bt_garbage_collection_cdma: "
"Erasing Block tables present in block %d\n",
pba);
addr = FTL_Get_Physical_Block_Addr((u64)lba *
DeviceInfo.wBlockDataSize);
if (PASS == GLOB_FTL_Block_Erase(addr)) {
pbt[lba] &= (u32)(~DISCARD_BLOCK);
pbt[lba] |= (u32)(SPARE_BLOCK);
p_BTableChangesDelta =
(struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt - 1;
p_BTableChangesDelta->BT_Index = lba;
p_BTableChangesDelta->BT_Entry_Value =
pbt[lba];
p_BTableChangesDelta->ValidFields = 0x0C;
ret = PASS;
pBTBlocksNode[last_erased - FIRST_BT_ID] =
BTBLOCK_INVAL;
nand_dbg_print(NAND_DBG_DEBUG,
"resetting bt entry at index %d "
"value %d\n", i,
pBTBlocksNode[i - FIRST_BT_ID]);
if (last_erased == LAST_BT_ID)
last_erased = FIRST_BT_ID;
else
last_erased++;
} else {
MARK_BLOCK_AS_BAD(pbt[lba]);
}
}
}
BT_GC_Called = 0;
return ret;
}
#else
static int do_bt_garbage_collection(void)
{
u32 pba, lba;
u32 *pbt = (u32 *)g_pBlockTable;
u32 *pBTBlocksNode = (u32 *)g_pBTBlocks;
u64 addr;
int i, ret = FAIL;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (BT_GC_Called)
return PASS;
BT_GC_Called = 1;
for (i = last_erased; (i <= LAST_BT_ID) &&
(g_pBTBlocks[((i + 2) % (1 + LAST_BT_ID - FIRST_BT_ID)) +
FIRST_BT_ID - FIRST_BT_ID] != BTBLOCK_INVAL); i++) {
pba = pBTBlocksNode[i - FIRST_BT_ID];
lba = FTL_Get_Block_Index(pba);
nand_dbg_print(NAND_DBG_DEBUG,
"do_bt_garbage_collection_cdma: pba %d, lba %d\n",
pba, lba);
nand_dbg_print(NAND_DBG_DEBUG,
"Block Table Entry: %d", pbt[lba]);
if (((pbt[lba] & BAD_BLOCK) != BAD_BLOCK) &&
(pbt[lba] & DISCARD_BLOCK)) {
nand_dbg_print(NAND_DBG_DEBUG,
"do_bt_garbage_collection: "
"Erasing Block tables present in block %d\n",
pba);
addr = FTL_Get_Physical_Block_Addr((u64)lba *
DeviceInfo.wBlockDataSize);
if (PASS == GLOB_FTL_Block_Erase(addr)) {
pbt[lba] &= (u32)(~DISCARD_BLOCK);
pbt[lba] |= (u32)(SPARE_BLOCK);
ret = PASS;
pBTBlocksNode[last_erased - FIRST_BT_ID] =
BTBLOCK_INVAL;
nand_dbg_print(NAND_DBG_DEBUG,
"resetting bt entry at index %d "
"value %d\n", i,
pBTBlocksNode[i - FIRST_BT_ID]);
if (last_erased == LAST_BT_ID)
last_erased = FIRST_BT_ID;
else
last_erased++;
} else {
MARK_BLOCK_AS_BAD(pbt[lba]);
}
}
}
BT_GC_Called = 0;
return ret;
}
#endif
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_BT_Garbage_Collection
* Inputs: none
* Outputs: PASS / FAIL (returns the number of un-erased blocks
* Description: Erases discarded blocks containing Block table
*
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_BT_Garbage_Collection(void)
{
return do_bt_garbage_collection();
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Replace_OneBlock
* Inputs: Block number 1
* Block number 2
* Outputs: Replaced Block Number
* Description: Interchange block table entries at wBlockNum and wReplaceNum
*
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Replace_OneBlock(u32 blk, u32 rep_blk)
{
u32 tmp_blk;
u32 replace_node = BAD_BLOCK;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (rep_blk != BAD_BLOCK) {
if (IS_BAD_BLOCK(blk))
tmp_blk = pbt[blk];
else
tmp_blk = DISCARD_BLOCK | (~SPARE_BLOCK & pbt[blk]);
replace_node = (u32) ((~SPARE_BLOCK) & pbt[rep_blk]);
pbt[blk] = replace_node;
pbt[rep_blk] = tmp_blk;
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = blk;
p_BTableChangesDelta->BT_Entry_Value = pbt[blk];
p_BTableChangesDelta->ValidFields = 0x0C;
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = rep_blk;
p_BTableChangesDelta->BT_Entry_Value = pbt[rep_blk];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
}
return replace_node;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Write_Block_Table_Data
* Inputs: Block table size in pages
* Outputs: PASS=0 / FAIL=1
* Description: Write block table data in flash
* If first page and last page
* Write data+BT flag
* else
* Write data
* BT flag is a counter. Its value is incremented for block table
* write in a new Block
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Write_Block_Table_Data(void)
{
u64 dwBlockTableAddr, pTempAddr;
u32 Block;
u16 Page, PageCount;
u8 *tempBuf = tmp_buf_write_blk_table_data;
int wBytesCopied;
u16 bt_pages;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
dwBlockTableAddr =
(u64)((u64)g_wBlockTableIndex * DeviceInfo.wBlockDataSize +
(u64)g_wBlockTableOffset * DeviceInfo.wPageDataSize);
pTempAddr = dwBlockTableAddr;
bt_pages = FTL_Get_Block_Table_Flash_Size_Pages();
nand_dbg_print(NAND_DBG_DEBUG, "FTL_Write_Block_Table_Data: "
"page= %d BlockTableIndex= %d "
"BlockTableOffset=%d\n", bt_pages,
g_wBlockTableIndex, g_wBlockTableOffset);
Block = BLK_FROM_ADDR(pTempAddr);
Page = PAGE_FROM_ADDR(pTempAddr, Block);
PageCount = 1;
if (bt_block_changed) {
if (bt_flag == LAST_BT_ID) {
bt_flag = FIRST_BT_ID;
g_pBTBlocks[bt_flag - FIRST_BT_ID] = Block;
} else if (bt_flag < LAST_BT_ID) {
bt_flag++;
g_pBTBlocks[bt_flag - FIRST_BT_ID] = Block;
}
if ((bt_flag > (LAST_BT_ID-4)) &&
g_pBTBlocks[FIRST_BT_ID - FIRST_BT_ID] !=
BTBLOCK_INVAL) {
bt_block_changed = 0;
GLOB_FTL_BT_Garbage_Collection();
}
bt_block_changed = 0;
nand_dbg_print(NAND_DBG_DEBUG,
"Block Table Counter is %u Block %u\n",
bt_flag, (unsigned int)Block);
}
memset(tempBuf, 0, 3);
tempBuf[3] = bt_flag;
wBytesCopied = FTL_Copy_Block_Table_To_Flash(tempBuf + 4,
DeviceInfo.wPageDataSize - 4, 0);
memset(&tempBuf[wBytesCopied + 4], 0xff,
DeviceInfo.wPageSize - (wBytesCopied + 4));
FTL_Insert_Block_Table_Signature(&tempBuf[DeviceInfo.wPageDataSize],
bt_flag);
#if CMD_DMA
memcpy(g_pNextBlockTable, tempBuf,
DeviceInfo.wPageSize * sizeof(u8));
nand_dbg_print(NAND_DBG_DEBUG, "Writing First Page of Block Table "
"Block %u Page %u\n", (unsigned int)Block, Page);
if (FAIL == GLOB_LLD_Write_Page_Main_Spare_cdma(g_pNextBlockTable,
Block, Page, 1,
LLD_CMD_FLAG_MODE_CDMA | LLD_CMD_FLAG_ORDER_BEFORE_REST)) {
nand_dbg_print(NAND_DBG_WARN, "NAND Program fail in "
"%s, Line %d, Function: %s, "
"new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, Block);
goto func_return;
}
ftl_cmd_cnt++;
g_pNextBlockTable += ((DeviceInfo.wPageSize * sizeof(u8)));
#else
if (FAIL == GLOB_LLD_Write_Page_Main_Spare(tempBuf, Block, Page, 1)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, Function: %s, "
"new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, Block);
goto func_return;
}
#endif
if (bt_pages > 1) {
PageCount = bt_pages - 1;
if (PageCount > 1) {
wBytesCopied += FTL_Copy_Block_Table_To_Flash(tempBuf,
DeviceInfo.wPageDataSize * (PageCount - 1),
wBytesCopied);
#if CMD_DMA
memcpy(g_pNextBlockTable, tempBuf,
(PageCount - 1) * DeviceInfo.wPageDataSize);
if (FAIL == GLOB_LLD_Write_Page_Main_cdma(
g_pNextBlockTable, Block, Page + 1,
PageCount - 1)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, "
"new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__,
(int)Block);
goto func_return;
}
ftl_cmd_cnt++;
g_pNextBlockTable += (PageCount - 1) *
DeviceInfo.wPageDataSize * sizeof(u8);
#else
if (FAIL == GLOB_LLD_Write_Page_Main(tempBuf,
Block, Page + 1, PageCount - 1)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, "
"new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__,
(int)Block);
goto func_return;
}
#endif
}
wBytesCopied = FTL_Copy_Block_Table_To_Flash(tempBuf,
DeviceInfo.wPageDataSize, wBytesCopied);
memset(&tempBuf[wBytesCopied], 0xff,
DeviceInfo.wPageSize-wBytesCopied);
FTL_Insert_Block_Table_Signature(
&tempBuf[DeviceInfo.wPageDataSize], bt_flag);
#if CMD_DMA
memcpy(g_pNextBlockTable, tempBuf,
DeviceInfo.wPageSize * sizeof(u8));
nand_dbg_print(NAND_DBG_DEBUG,
"Writing the last Page of Block Table "
"Block %u Page %u\n",
(unsigned int)Block, Page + bt_pages - 1);
if (FAIL == GLOB_LLD_Write_Page_Main_Spare_cdma(
g_pNextBlockTable, Block, Page + bt_pages - 1, 1,
LLD_CMD_FLAG_MODE_CDMA |
LLD_CMD_FLAG_ORDER_BEFORE_REST)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, Block);
goto func_return;
}
ftl_cmd_cnt++;
#else
if (FAIL == GLOB_LLD_Write_Page_Main_Spare(tempBuf,
Block, Page+bt_pages - 1, 1)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, "
"new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, Block);
goto func_return;
}
#endif
}
nand_dbg_print(NAND_DBG_DEBUG, "FTL_Write_Block_Table_Data: done\n");
func_return:
return PASS;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Replace_Block_Table
* Inputs: None
* Outputs: PASS=0 / FAIL=1
* Description: Get a new block to write block table
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Replace_Block_Table(void)
{
u32 blk;
int gc;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
blk = FTL_Replace_LWBlock(BLOCK_TABLE_INDEX, &gc);
if ((BAD_BLOCK == blk) && (PASS == gc)) {
GLOB_FTL_Garbage_Collection();
blk = FTL_Replace_LWBlock(BLOCK_TABLE_INDEX, &gc);
}
if (BAD_BLOCK == blk)
printk(KERN_ERR "%s, %s: There is no spare block. "
"It should never happen\n",
__FILE__, __func__);
nand_dbg_print(NAND_DBG_DEBUG, "New Block table Block is %d\n", blk);
return blk;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Replace_LWBlock
* Inputs: Block number
* Pointer to Garbage Collect flag
* Outputs:
* Description: Determine the least weared block by traversing
* block table
* Set Garbage collection to be called if number of spare
* block is less than Free Block Gate count
* Change Block table entry to map least worn block for current
* operation
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Replace_LWBlock(u32 wBlockNum, int *pGarbageCollect)
{
u32 i;
u32 *pbt = (u32 *)g_pBlockTable;
u8 wLeastWornCounter = 0xFF;
u32 wLeastWornIndex = BAD_BLOCK;
u32 wSpareBlockNum = 0;
u32 wDiscardBlockNum = 0;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (IS_SPARE_BLOCK(wBlockNum)) {
*pGarbageCollect = FAIL;
pbt[wBlockNum] = (u32)(pbt[wBlockNum] & (~SPARE_BLOCK));
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = (u32)(wBlockNum);
p_BTableChangesDelta->BT_Entry_Value = pbt[wBlockNum];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
return pbt[wBlockNum];
}
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_DISCARDED_BLOCK(i))
wDiscardBlockNum++;
if (IS_SPARE_BLOCK(i)) {
u32 wPhysicalIndex = (u32)((~BAD_BLOCK) & pbt[i]);
if (wPhysicalIndex > DeviceInfo.wSpectraEndBlock)
printk(KERN_ERR "FTL_Replace_LWBlock: "
"This should never occur!\n");
if (g_pWearCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock] <
wLeastWornCounter) {
wLeastWornCounter =
g_pWearCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock];
wLeastWornIndex = i;
}
wSpareBlockNum++;
}
}
nand_dbg_print(NAND_DBG_WARN,
"FTL_Replace_LWBlock: Least Worn Counter %d\n",
(int)wLeastWornCounter);
if ((wDiscardBlockNum >= NUM_FREE_BLOCKS_GATE) ||
(wSpareBlockNum <= NUM_FREE_BLOCKS_GATE))
*pGarbageCollect = PASS;
else
*pGarbageCollect = FAIL;
nand_dbg_print(NAND_DBG_DEBUG,
"FTL_Replace_LWBlock: Discarded Blocks %u Spare"
" Blocks %u\n",
(unsigned int)wDiscardBlockNum,
(unsigned int)wSpareBlockNum);
return FTL_Replace_OneBlock(wBlockNum, wLeastWornIndex);
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Replace_MWBlock
* Inputs: None
* Outputs: most worn spare block no./BAD_BLOCK
* Description: It finds most worn spare block.
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static u32 FTL_Replace_MWBlock(void)
{
u32 i;
u32 *pbt = (u32 *)g_pBlockTable;
u8 wMostWornCounter = 0;
u32 wMostWornIndex = BAD_BLOCK;
u32 wSpareBlockNum = 0;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_SPARE_BLOCK(i)) {
u32 wPhysicalIndex = (u32)((~SPARE_BLOCK) & pbt[i]);
if (g_pWearCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock] >
wMostWornCounter) {
wMostWornCounter =
g_pWearCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock];
wMostWornIndex = wPhysicalIndex;
}
wSpareBlockNum++;
}
}
if (wSpareBlockNum <= 2)
return BAD_BLOCK;
return wMostWornIndex;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Replace_Block
* Inputs: Block Address
* Outputs: PASS=0 / FAIL=1
* Description: If block specified by blk_addr parameter is not free,
* replace it with the least worn block.
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Replace_Block(u64 blk_addr)
{
u32 current_blk = BLK_FROM_ADDR(blk_addr);
u32 *pbt = (u32 *)g_pBlockTable;
int wResult = PASS;
int GarbageCollect = FAIL;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (IS_SPARE_BLOCK(current_blk)) {
pbt[current_blk] = (~SPARE_BLOCK) & pbt[current_blk];
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = current_blk;
p_BTableChangesDelta->BT_Entry_Value = pbt[current_blk];
p_BTableChangesDelta->ValidFields = 0x0C ;
#endif
return wResult;
}
FTL_Replace_LWBlock(current_blk, &GarbageCollect);
if (PASS == GarbageCollect)
wResult = GLOB_FTL_Garbage_Collection();
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Is_BadBlock
* Inputs: block number to test
* Outputs: PASS (block is BAD) / FAIL (block is not bad)
* Description: test if this block number is flagged as bad
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Is_BadBlock(u32 wBlockNum)
{
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (wBlockNum >= DeviceInfo.wSpectraStartBlock
&& BAD_BLOCK == (pbt[wBlockNum] & BAD_BLOCK))
return PASS;
else
return FAIL;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Flush_Cache
* Inputs: none
* Outputs: PASS=0 / FAIL=1
* Description: flush all the cache blocks to flash
* if a cache block is not dirty, don't do anything with it
* else, write the block and update the block table
* Note: This function should be called at shutdown/power down.
* to write important data into device
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Flush_Cache(void)
{
int i, ret;
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < CACHE_ITEM_NUM; i++) {
if (SET == Cache.array[i].changed) {
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
int_cache[ftl_cmd_cnt].item = i;
int_cache[ftl_cmd_cnt].cache.address =
Cache.array[i].address;
int_cache[ftl_cmd_cnt].cache.changed = CLEAR;
#endif
#endif
ret = write_back_to_l2_cache(Cache.array[i].buf, Cache.array[i].address);
if (PASS == ret) {
Cache.array[i].changed = CLEAR;
} else {
printk(KERN_ALERT "Failed when write back to L2 cache!\n");
/* TODO - How to handle this? */
}
}
}
flush_l2_cache();
return FTL_Write_Block_Table(FAIL);
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Page_Read
* Inputs: pointer to data
* logical address of data (u64 is LBA * Bytes/Page)
* Outputs: PASS=0 / FAIL=1
* Description: reads a page of data into RAM from the cache
* if the data is not already in cache, read from flash to cache
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Page_Read(u8 *data, u64 logical_addr)
{
u16 cache_item;
int res = PASS;
nand_dbg_print(NAND_DBG_DEBUG, "GLOB_FTL_Page_Read - "
"page_addr: %llu\n", logical_addr);
cache_item = FTL_Cache_If_Hit(logical_addr);
if (UNHIT_CACHE_ITEM == cache_item) {
nand_dbg_print(NAND_DBG_DEBUG,
"GLOB_FTL_Page_Read: Cache not hit\n");
res = FTL_Cache_Write();
if (ERR == FTL_Cache_Read(logical_addr))
res = ERR;
cache_item = Cache.LRU;
}
FTL_Cache_Read_Page(data, logical_addr, cache_item);
return res;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Page_Write
* Inputs: pointer to data
* address of data (ADDRESSTYPE is LBA * Bytes/Page)
* Outputs: PASS=0 / FAIL=1
* Description: writes a page of data from RAM to the cache
* if the data is not already in cache, write back the
* least recently used block and read the addressed block
* from flash to cache
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Page_Write(u8 *pData, u64 dwPageAddr)
{
u16 cache_blk;
u32 *pbt = (u32 *)g_pBlockTable;
int wResult = PASS;
nand_dbg_print(NAND_DBG_TRACE, "GLOB_FTL_Page_Write - "
"dwPageAddr: %llu\n", dwPageAddr);
cache_blk = FTL_Cache_If_Hit(dwPageAddr);
if (UNHIT_CACHE_ITEM == cache_blk) {
wResult = FTL_Cache_Write();
if (IS_BAD_BLOCK(BLK_FROM_ADDR(dwPageAddr))) {
wResult = FTL_Replace_Block(dwPageAddr);
pbt[BLK_FROM_ADDR(dwPageAddr)] |= SPARE_BLOCK;
if (wResult == FAIL)
return FAIL;
}
if (ERR == FTL_Cache_Read(dwPageAddr))
wResult = ERR;
cache_blk = Cache.LRU;
FTL_Cache_Write_Page(pData, dwPageAddr, cache_blk, 0);
} else {
#if CMD_DMA
FTL_Cache_Write_Page(pData, dwPageAddr, cache_blk,
LLD_CMD_FLAG_ORDER_BEFORE_REST);
#else
FTL_Cache_Write_Page(pData, dwPageAddr, cache_blk, 0);
#endif
}
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: GLOB_FTL_Block_Erase
* Inputs: address of block to erase (now in byte format, should change to
* block format)
* Outputs: PASS=0 / FAIL=1
* Description: erases the specified block
* increments the erase count
* If erase count reaches its upper limit,call function to
* do the adjustment as per the relative erase count values
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_FTL_Block_Erase(u64 blk_addr)
{
int status;
u32 BlkIdx;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
BlkIdx = (u32)(blk_addr >> DeviceInfo.nBitsInBlockDataSize);
if (BlkIdx < DeviceInfo.wSpectraStartBlock) {
printk(KERN_ERR "GLOB_FTL_Block_Erase: "
"This should never occur\n");
return FAIL;
}
#if CMD_DMA
status = GLOB_LLD_Erase_Block_cdma(BlkIdx, LLD_CMD_FLAG_MODE_CDMA);
if (status == FAIL)
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, BlkIdx);
#else
status = GLOB_LLD_Erase_Block(BlkIdx);
if (status == FAIL) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, BlkIdx);
return status;
}
#endif
if (DeviceInfo.MLCDevice) {
g_pReadCounter[BlkIdx - DeviceInfo.wSpectraStartBlock] = 0;
if (g_cBlockTableStatus != IN_PROGRESS_BLOCK_TABLE) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
}
g_pWearCounter[BlkIdx - DeviceInfo.wSpectraStartBlock]++;
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->WC_Index =
BlkIdx - DeviceInfo.wSpectraStartBlock;
p_BTableChangesDelta->WC_Entry_Value =
g_pWearCounter[BlkIdx - DeviceInfo.wSpectraStartBlock];
p_BTableChangesDelta->ValidFields = 0x30;
if (DeviceInfo.MLCDevice) {
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->RC_Index =
BlkIdx - DeviceInfo.wSpectraStartBlock;
p_BTableChangesDelta->RC_Entry_Value =
g_pReadCounter[BlkIdx -
DeviceInfo.wSpectraStartBlock];
p_BTableChangesDelta->ValidFields = 0xC0;
}
ftl_cmd_cnt++;
#endif
if (g_pWearCounter[BlkIdx - DeviceInfo.wSpectraStartBlock] == 0xFE)
FTL_Adjust_Relative_Erase_Count(BlkIdx);
return status;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Adjust_Relative_Erase_Count
* Inputs: index to block that was just incremented and is at the max
* Outputs: PASS=0 / FAIL=1
* Description: If any erase counts at MAX, adjusts erase count of every
* block by subtracting least worn
* counter from counter value of every entry in wear table
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Adjust_Relative_Erase_Count(u32 Index_of_MAX)
{
u8 wLeastWornCounter = MAX_BYTE_VALUE;
u8 wWearCounter;
u32 i, wWearIndex;
u32 *pbt = (u32 *)g_pBlockTable;
int wResult = PASS;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_BAD_BLOCK(i))
continue;
wWearIndex = (u32)(pbt[i] & (~BAD_BLOCK));
if ((wWearIndex - DeviceInfo.wSpectraStartBlock) < 0)
printk(KERN_ERR "FTL_Adjust_Relative_Erase_Count:"
"This should never occur\n");
wWearCounter = g_pWearCounter[wWearIndex -
DeviceInfo.wSpectraStartBlock];
if (wWearCounter < wLeastWornCounter)
wLeastWornCounter = wWearCounter;
}
if (wLeastWornCounter == 0) {
nand_dbg_print(NAND_DBG_WARN,
"Adjusting Wear Levelling Counters: Special Case\n");
g_pWearCounter[Index_of_MAX -
DeviceInfo.wSpectraStartBlock]--;
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->WC_Index =
Index_of_MAX - DeviceInfo.wSpectraStartBlock;
p_BTableChangesDelta->WC_Entry_Value =
g_pWearCounter[Index_of_MAX -
DeviceInfo.wSpectraStartBlock];
p_BTableChangesDelta->ValidFields = 0x30;
#endif
FTL_Static_Wear_Leveling();
} else {
for (i = 0; i < DeviceInfo.wDataBlockNum; i++)
if (!IS_BAD_BLOCK(i)) {
wWearIndex = (u32)(pbt[i] & (~BAD_BLOCK));
g_pWearCounter[wWearIndex -
DeviceInfo.wSpectraStartBlock] =
(u8)(g_pWearCounter
[wWearIndex -
DeviceInfo.wSpectraStartBlock] -
wLeastWornCounter);
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->WC_Index = wWearIndex -
DeviceInfo.wSpectraStartBlock;
p_BTableChangesDelta->WC_Entry_Value =
g_pWearCounter[wWearIndex -
DeviceInfo.wSpectraStartBlock];
p_BTableChangesDelta->ValidFields = 0x30;
#endif
}
}
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Write_IN_Progress_Block_Table_Page
* Inputs: None
* Outputs: None
* Description: It writes in-progress flag page to the page next to
* block table
***********************************************************************/
static int FTL_Write_IN_Progress_Block_Table_Page(void)
{
int wResult = PASS;
u16 bt_pages;
u16 dwIPFPageAddr;
#if CMD_DMA
#else
u32 *pbt = (u32 *)g_pBlockTable;
u32 wTempBlockTableIndex;
#endif
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
bt_pages = FTL_Get_Block_Table_Flash_Size_Pages();
dwIPFPageAddr = g_wBlockTableOffset + bt_pages;
nand_dbg_print(NAND_DBG_DEBUG, "Writing IPF at "
"Block %d Page %d\n",
g_wBlockTableIndex, dwIPFPageAddr);
#if CMD_DMA
wResult = GLOB_LLD_Write_Page_Main_Spare_cdma(g_pIPF,
g_wBlockTableIndex, dwIPFPageAddr, 1,
LLD_CMD_FLAG_MODE_CDMA | LLD_CMD_FLAG_ORDER_BEFORE_REST);
if (wResult == FAIL) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__,
g_wBlockTableIndex);
}
g_wBlockTableOffset = dwIPFPageAddr + 1;
p_BTableChangesDelta = (struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->g_wBlockTableOffset = g_wBlockTableOffset;
p_BTableChangesDelta->ValidFields = 0x01;
ftl_cmd_cnt++;
#else
wResult = GLOB_LLD_Write_Page_Main_Spare(g_pIPF,
g_wBlockTableIndex, dwIPFPageAddr, 1);
if (wResult == FAIL) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__,
(int)g_wBlockTableIndex);
MARK_BLOCK_AS_BAD(pbt[BLOCK_TABLE_INDEX]);
wTempBlockTableIndex = FTL_Replace_Block_Table();
bt_block_changed = 1;
if (BAD_BLOCK == wTempBlockTableIndex)
return ERR;
g_wBlockTableIndex = wTempBlockTableIndex;
g_wBlockTableOffset = 0;
/* Block table tag is '00'. Means it's used one */
pbt[BLOCK_TABLE_INDEX] = g_wBlockTableIndex;
return FAIL;
}
g_wBlockTableOffset = dwIPFPageAddr + 1;
#endif
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Read_Disturbance
* Inputs: block address
* Outputs: PASS=0 / FAIL=1
* Description: used to handle read disturbance. Data in block that
* reaches its read limit is moved to new block
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int FTL_Read_Disturbance(u32 blk_addr)
{
int wResult = FAIL;
u32 *pbt = (u32 *) g_pBlockTable;
u32 dwOldBlockAddr = blk_addr;
u32 wBlockNum;
u32 i;
u32 wLeastReadCounter = 0xFFFF;
u32 wLeastReadIndex = BAD_BLOCK;
u32 wSpareBlockNum = 0;
u32 wTempNode;
u32 wReplacedNode;
u8 *g_pTempBuf;
nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
#if CMD_DMA
g_pTempBuf = cp_back_buf_copies[cp_back_buf_idx];
cp_back_buf_idx++;
if (cp_back_buf_idx > COPY_BACK_BUF_NUM) {
printk(KERN_ERR "cp_back_buf_copies overflow! Exit."
"Maybe too many pending commands in your CDMA chain.\n");
return FAIL;
}
#else
g_pTempBuf = tmp_buf_read_disturbance;
#endif
wBlockNum = FTL_Get_Block_Index(blk_addr);
do {
/* This is a bug.Here 'i' should be logical block number
* and start from 1 (0 is reserved for block table).
* Have fixed it. - Yunpeng 2008. 12. 19
*/
for (i = 1; i < DeviceInfo.wDataBlockNum; i++) {
if (IS_SPARE_BLOCK(i)) {
u32 wPhysicalIndex =
(u32)((~SPARE_BLOCK) & pbt[i]);
if (g_pReadCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock] <
wLeastReadCounter) {
wLeastReadCounter =
g_pReadCounter[wPhysicalIndex -
DeviceInfo.wSpectraStartBlock];
wLeastReadIndex = i;
}
wSpareBlockNum++;
}
}
if (wSpareBlockNum <= NUM_FREE_BLOCKS_GATE) {
wResult = GLOB_FTL_Garbage_Collection();
if (PASS == wResult)
continue;
else
break;
} else {
wTempNode = (u32)(DISCARD_BLOCK | pbt[wBlockNum]);
wReplacedNode = (u32)((~SPARE_BLOCK) &
pbt[wLeastReadIndex]);
#if CMD_DMA
pbt[wBlockNum] = wReplacedNode;
pbt[wLeastReadIndex] = wTempNode;
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = wBlockNum;
p_BTableChangesDelta->BT_Entry_Value = pbt[wBlockNum];
p_BTableChangesDelta->ValidFields = 0x0C;
p_BTableChangesDelta =
(struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = wLeastReadIndex;
p_BTableChangesDelta->BT_Entry_Value =
pbt[wLeastReadIndex];
p_BTableChangesDelta->ValidFields = 0x0C;
wResult = GLOB_LLD_Read_Page_Main_cdma(g_pTempBuf,
dwOldBlockAddr, 0, DeviceInfo.wPagesPerBlock,
LLD_CMD_FLAG_MODE_CDMA);
if (wResult == FAIL)
return wResult;
ftl_cmd_cnt++;
if (wResult != FAIL) {
if (FAIL == GLOB_LLD_Write_Page_Main_cdma(
g_pTempBuf, pbt[wBlockNum], 0,
DeviceInfo.wPagesPerBlock)) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in "
"%s, Line %d, Function: %s, "
"new Bad Block %d "
"generated!\n",
__FILE__, __LINE__, __func__,
(int)pbt[wBlockNum]);
wResult = FAIL;
MARK_BLOCK_AS_BAD(pbt[wBlockNum]);
}
ftl_cmd_cnt++;
}
#else
wResult = GLOB_LLD_Read_Page_Main(g_pTempBuf,
dwOldBlockAddr, 0, DeviceInfo.wPagesPerBlock);
if (wResult == FAIL)
return wResult;
if (wResult != FAIL) {
/* This is a bug. At this time, pbt[wBlockNum]
is still the physical address of
discard block, and should not be write.
Have fixed it as below.
-- Yunpeng 2008.12.19
*/
wResult = GLOB_LLD_Write_Page_Main(g_pTempBuf,
wReplacedNode, 0,
DeviceInfo.wPagesPerBlock);
if (wResult == FAIL) {
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in "
"%s, Line %d, Function: %s, "
"new Bad Block %d "
"generated!\n",
__FILE__, __LINE__, __func__,
(int)wReplacedNode);
MARK_BLOCK_AS_BAD(wReplacedNode);
} else {
pbt[wBlockNum] = wReplacedNode;
pbt[wLeastReadIndex] = wTempNode;
}
}
if ((wResult == PASS) && (g_cBlockTableStatus !=
IN_PROGRESS_BLOCK_TABLE)) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
#endif
}
} while (wResult != PASS)
;
#if CMD_DMA
/* ... */
#endif
return wResult;
}