| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2018 Intel Corporation |
| */ |
| |
| #include <linux/mutex.h> |
| |
| #include "i915_drv.h" |
| #include "i915_globals.h" |
| #include "i915_request.h" |
| #include "i915_scheduler.h" |
| |
| static struct i915_global_scheduler { |
| struct i915_global base; |
| struct kmem_cache *slab_dependencies; |
| struct kmem_cache *slab_priorities; |
| } global; |
| |
| static DEFINE_SPINLOCK(schedule_lock); |
| |
| static const struct i915_request * |
| node_to_request(const struct i915_sched_node *node) |
| { |
| return container_of(node, const struct i915_request, sched); |
| } |
| |
| static inline bool node_started(const struct i915_sched_node *node) |
| { |
| return i915_request_started(node_to_request(node)); |
| } |
| |
| static inline bool node_signaled(const struct i915_sched_node *node) |
| { |
| return i915_request_completed(node_to_request(node)); |
| } |
| |
| static inline struct i915_priolist *to_priolist(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct i915_priolist, node); |
| } |
| |
| static void assert_priolists(struct i915_sched_engine * const sched_engine) |
| { |
| struct rb_node *rb; |
| long last_prio; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return; |
| |
| GEM_BUG_ON(rb_first_cached(&sched_engine->queue) != |
| rb_first(&sched_engine->queue.rb_root)); |
| |
| last_prio = INT_MAX; |
| for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { |
| const struct i915_priolist *p = to_priolist(rb); |
| |
| GEM_BUG_ON(p->priority > last_prio); |
| last_prio = p->priority; |
| } |
| } |
| |
| struct list_head * |
| i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) |
| { |
| struct i915_sched_engine * const sched_engine = engine->sched_engine; |
| struct i915_priolist *p; |
| struct rb_node **parent, *rb; |
| bool first = true; |
| |
| lockdep_assert_held(&engine->active.lock); |
| assert_priolists(sched_engine); |
| |
| if (unlikely(sched_engine->no_priolist)) |
| prio = I915_PRIORITY_NORMAL; |
| |
| find_priolist: |
| /* most positive priority is scheduled first, equal priorities fifo */ |
| rb = NULL; |
| parent = &sched_engine->queue.rb_root.rb_node; |
| while (*parent) { |
| rb = *parent; |
| p = to_priolist(rb); |
| if (prio > p->priority) { |
| parent = &rb->rb_left; |
| } else if (prio < p->priority) { |
| parent = &rb->rb_right; |
| first = false; |
| } else { |
| return &p->requests; |
| } |
| } |
| |
| if (prio == I915_PRIORITY_NORMAL) { |
| p = &sched_engine->default_priolist; |
| } else { |
| p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); |
| /* Convert an allocation failure to a priority bump */ |
| if (unlikely(!p)) { |
| prio = I915_PRIORITY_NORMAL; /* recurses just once */ |
| |
| /* To maintain ordering with all rendering, after an |
| * allocation failure we have to disable all scheduling. |
| * Requests will then be executed in fifo, and schedule |
| * will ensure that dependencies are emitted in fifo. |
| * There will be still some reordering with existing |
| * requests, so if userspace lied about their |
| * dependencies that reordering may be visible. |
| */ |
| sched_engine->no_priolist = true; |
| goto find_priolist; |
| } |
| } |
| |
| p->priority = prio; |
| INIT_LIST_HEAD(&p->requests); |
| |
| rb_link_node(&p->node, rb, parent); |
| rb_insert_color_cached(&p->node, &sched_engine->queue, first); |
| |
| return &p->requests; |
| } |
| |
| void __i915_priolist_free(struct i915_priolist *p) |
| { |
| kmem_cache_free(global.slab_priorities, p); |
| } |
| |
| struct sched_cache { |
| struct list_head *priolist; |
| }; |
| |
| static struct intel_engine_cs * |
| sched_lock_engine(const struct i915_sched_node *node, |
| struct intel_engine_cs *locked, |
| struct sched_cache *cache) |
| { |
| const struct i915_request *rq = node_to_request(node); |
| struct intel_engine_cs *engine; |
| |
| GEM_BUG_ON(!locked); |
| |
| /* |
| * Virtual engines complicate acquiring the engine timeline lock, |
| * as their rq->engine pointer is not stable until under that |
| * engine lock. The simple ploy we use is to take the lock then |
| * check that the rq still belongs to the newly locked engine. |
| */ |
| while (locked != (engine = READ_ONCE(rq->engine))) { |
| spin_unlock(&locked->active.lock); |
| memset(cache, 0, sizeof(*cache)); |
| spin_lock(&engine->active.lock); |
| locked = engine; |
| } |
| |
| GEM_BUG_ON(locked != engine); |
| return locked; |
| } |
| |
| static inline int rq_prio(const struct i915_request *rq) |
| { |
| return rq->sched.attr.priority; |
| } |
| |
| static inline bool need_preempt(int prio, int active) |
| { |
| /* |
| * Allow preemption of low -> normal -> high, but we do |
| * not allow low priority tasks to preempt other low priority |
| * tasks under the impression that latency for low priority |
| * tasks does not matter (as much as background throughput), |
| * so kiss. |
| */ |
| return prio >= max(I915_PRIORITY_NORMAL, active); |
| } |
| |
| static void kick_submission(struct intel_engine_cs *engine, |
| const struct i915_request *rq, |
| int prio) |
| { |
| const struct i915_request *inflight; |
| |
| /* |
| * We only need to kick the tasklet once for the high priority |
| * new context we add into the queue. |
| */ |
| if (prio <= engine->sched_engine->queue_priority_hint) |
| return; |
| |
| rcu_read_lock(); |
| |
| /* Nothing currently active? We're overdue for a submission! */ |
| inflight = execlists_active(&engine->execlists); |
| if (!inflight) |
| goto unlock; |
| |
| /* |
| * If we are already the currently executing context, don't |
| * bother evaluating if we should preempt ourselves. |
| */ |
| if (inflight->context == rq->context) |
| goto unlock; |
| |
| ENGINE_TRACE(engine, |
| "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", |
| prio, |
| rq->fence.context, rq->fence.seqno, |
| inflight->fence.context, inflight->fence.seqno, |
| inflight->sched.attr.priority); |
| |
| engine->sched_engine->queue_priority_hint = prio; |
| if (need_preempt(prio, rq_prio(inflight))) |
| tasklet_hi_schedule(&engine->execlists.tasklet); |
| |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static void __i915_schedule(struct i915_sched_node *node, |
| const struct i915_sched_attr *attr) |
| { |
| const int prio = max(attr->priority, node->attr.priority); |
| struct intel_engine_cs *engine; |
| struct i915_dependency *dep, *p; |
| struct i915_dependency stack; |
| struct sched_cache cache; |
| LIST_HEAD(dfs); |
| |
| /* Needed in order to use the temporary link inside i915_dependency */ |
| lockdep_assert_held(&schedule_lock); |
| GEM_BUG_ON(prio == I915_PRIORITY_INVALID); |
| |
| if (node_signaled(node)) |
| return; |
| |
| stack.signaler = node; |
| list_add(&stack.dfs_link, &dfs); |
| |
| /* |
| * Recursively bump all dependent priorities to match the new request. |
| * |
| * A naive approach would be to use recursion: |
| * static void update_priorities(struct i915_sched_node *node, prio) { |
| * list_for_each_entry(dep, &node->signalers_list, signal_link) |
| * update_priorities(dep->signal, prio) |
| * queue_request(node); |
| * } |
| * but that may have unlimited recursion depth and so runs a very |
| * real risk of overunning the kernel stack. Instead, we build |
| * a flat list of all dependencies starting with the current request. |
| * As we walk the list of dependencies, we add all of its dependencies |
| * to the end of the list (this may include an already visited |
| * request) and continue to walk onwards onto the new dependencies. The |
| * end result is a topological list of requests in reverse order, the |
| * last element in the list is the request we must execute first. |
| */ |
| list_for_each_entry(dep, &dfs, dfs_link) { |
| struct i915_sched_node *node = dep->signaler; |
| |
| /* If we are already flying, we know we have no signalers */ |
| if (node_started(node)) |
| continue; |
| |
| /* |
| * Within an engine, there can be no cycle, but we may |
| * refer to the same dependency chain multiple times |
| * (redundant dependencies are not eliminated) and across |
| * engines. |
| */ |
| list_for_each_entry(p, &node->signalers_list, signal_link) { |
| GEM_BUG_ON(p == dep); /* no cycles! */ |
| |
| if (node_signaled(p->signaler)) |
| continue; |
| |
| if (prio > READ_ONCE(p->signaler->attr.priority)) |
| list_move_tail(&p->dfs_link, &dfs); |
| } |
| } |
| |
| /* |
| * If we didn't need to bump any existing priorities, and we haven't |
| * yet submitted this request (i.e. there is no potential race with |
| * execlists_submit_request()), we can set our own priority and skip |
| * acquiring the engine locks. |
| */ |
| if (node->attr.priority == I915_PRIORITY_INVALID) { |
| GEM_BUG_ON(!list_empty(&node->link)); |
| node->attr = *attr; |
| |
| if (stack.dfs_link.next == stack.dfs_link.prev) |
| return; |
| |
| __list_del_entry(&stack.dfs_link); |
| } |
| |
| memset(&cache, 0, sizeof(cache)); |
| engine = node_to_request(node)->engine; |
| spin_lock(&engine->active.lock); |
| |
| /* Fifo and depth-first replacement ensure our deps execute before us */ |
| engine = sched_lock_engine(node, engine, &cache); |
| list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { |
| INIT_LIST_HEAD(&dep->dfs_link); |
| |
| node = dep->signaler; |
| engine = sched_lock_engine(node, engine, &cache); |
| lockdep_assert_held(&engine->active.lock); |
| |
| /* Recheck after acquiring the engine->timeline.lock */ |
| if (prio <= node->attr.priority || node_signaled(node)) |
| continue; |
| |
| GEM_BUG_ON(node_to_request(node)->engine != engine); |
| |
| WRITE_ONCE(node->attr.priority, prio); |
| |
| /* |
| * Once the request is ready, it will be placed into the |
| * priority lists and then onto the HW runlist. Before the |
| * request is ready, it does not contribute to our preemption |
| * decisions and we can safely ignore it, as it will, and |
| * any preemption required, be dealt with upon submission. |
| * See engine->submit_request() |
| */ |
| if (list_empty(&node->link)) |
| continue; |
| |
| if (i915_request_in_priority_queue(node_to_request(node))) { |
| if (!cache.priolist) |
| cache.priolist = |
| i915_sched_lookup_priolist(engine, |
| prio); |
| list_move_tail(&node->link, cache.priolist); |
| } |
| |
| /* Defer (tasklet) submission until after all of our updates. */ |
| kick_submission(engine, node_to_request(node), prio); |
| } |
| |
| spin_unlock(&engine->active.lock); |
| } |
| |
| void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) |
| { |
| spin_lock_irq(&schedule_lock); |
| __i915_schedule(&rq->sched, attr); |
| spin_unlock_irq(&schedule_lock); |
| } |
| |
| void i915_sched_node_init(struct i915_sched_node *node) |
| { |
| INIT_LIST_HEAD(&node->signalers_list); |
| INIT_LIST_HEAD(&node->waiters_list); |
| INIT_LIST_HEAD(&node->link); |
| |
| i915_sched_node_reinit(node); |
| } |
| |
| void i915_sched_node_reinit(struct i915_sched_node *node) |
| { |
| node->attr.priority = I915_PRIORITY_INVALID; |
| node->semaphores = 0; |
| node->flags = 0; |
| |
| GEM_BUG_ON(!list_empty(&node->signalers_list)); |
| GEM_BUG_ON(!list_empty(&node->waiters_list)); |
| GEM_BUG_ON(!list_empty(&node->link)); |
| } |
| |
| static struct i915_dependency * |
| i915_dependency_alloc(void) |
| { |
| return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); |
| } |
| |
| static void |
| i915_dependency_free(struct i915_dependency *dep) |
| { |
| kmem_cache_free(global.slab_dependencies, dep); |
| } |
| |
| bool __i915_sched_node_add_dependency(struct i915_sched_node *node, |
| struct i915_sched_node *signal, |
| struct i915_dependency *dep, |
| unsigned long flags) |
| { |
| bool ret = false; |
| |
| spin_lock_irq(&schedule_lock); |
| |
| if (!node_signaled(signal)) { |
| INIT_LIST_HEAD(&dep->dfs_link); |
| dep->signaler = signal; |
| dep->waiter = node; |
| dep->flags = flags; |
| |
| /* All set, now publish. Beware the lockless walkers. */ |
| list_add_rcu(&dep->signal_link, &node->signalers_list); |
| list_add_rcu(&dep->wait_link, &signal->waiters_list); |
| |
| /* Propagate the chains */ |
| node->flags |= signal->flags; |
| ret = true; |
| } |
| |
| spin_unlock_irq(&schedule_lock); |
| |
| return ret; |
| } |
| |
| int i915_sched_node_add_dependency(struct i915_sched_node *node, |
| struct i915_sched_node *signal, |
| unsigned long flags) |
| { |
| struct i915_dependency *dep; |
| |
| dep = i915_dependency_alloc(); |
| if (!dep) |
| return -ENOMEM; |
| |
| if (!__i915_sched_node_add_dependency(node, signal, dep, |
| flags | I915_DEPENDENCY_ALLOC)) |
| i915_dependency_free(dep); |
| |
| return 0; |
| } |
| |
| void i915_sched_node_fini(struct i915_sched_node *node) |
| { |
| struct i915_dependency *dep, *tmp; |
| |
| spin_lock_irq(&schedule_lock); |
| |
| /* |
| * Everyone we depended upon (the fences we wait to be signaled) |
| * should retire before us and remove themselves from our list. |
| * However, retirement is run independently on each timeline and |
| * so we may be called out-of-order. |
| */ |
| list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del_rcu(&dep->wait_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(dep); |
| } |
| INIT_LIST_HEAD(&node->signalers_list); |
| |
| /* Remove ourselves from everyone who depends upon us */ |
| list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { |
| GEM_BUG_ON(dep->signaler != node); |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del_rcu(&dep->signal_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(dep); |
| } |
| INIT_LIST_HEAD(&node->waiters_list); |
| |
| spin_unlock_irq(&schedule_lock); |
| } |
| |
| void i915_request_show_with_schedule(struct drm_printer *m, |
| const struct i915_request *rq, |
| const char *prefix, |
| int indent) |
| { |
| struct i915_dependency *dep; |
| |
| i915_request_show(m, rq, prefix, indent); |
| if (i915_request_completed(rq)) |
| return; |
| |
| rcu_read_lock(); |
| for_each_signaler(dep, rq) { |
| const struct i915_request *signaler = |
| node_to_request(dep->signaler); |
| |
| /* Dependencies along the same timeline are expected. */ |
| if (signaler->timeline == rq->timeline) |
| continue; |
| |
| if (__i915_request_is_complete(signaler)) |
| continue; |
| |
| i915_request_show(m, signaler, prefix, indent + 2); |
| } |
| rcu_read_unlock(); |
| } |
| |
| void i915_sched_engine_free(struct kref *kref) |
| { |
| struct i915_sched_engine *sched_engine = |
| container_of(kref, typeof(*sched_engine), ref); |
| |
| kfree(sched_engine); |
| } |
| |
| struct i915_sched_engine * |
| i915_sched_engine_create(unsigned int subclass) |
| { |
| struct i915_sched_engine *sched_engine; |
| |
| sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL); |
| if (!sched_engine) |
| return NULL; |
| |
| kref_init(&sched_engine->ref); |
| |
| sched_engine->queue = RB_ROOT_CACHED; |
| sched_engine->queue_priority_hint = INT_MIN; |
| |
| /* subclass is used in a follow up patch */ |
| |
| return sched_engine; |
| } |
| |
| static void i915_global_scheduler_shrink(void) |
| { |
| kmem_cache_shrink(global.slab_dependencies); |
| kmem_cache_shrink(global.slab_priorities); |
| } |
| |
| static void i915_global_scheduler_exit(void) |
| { |
| kmem_cache_destroy(global.slab_dependencies); |
| kmem_cache_destroy(global.slab_priorities); |
| } |
| |
| static struct i915_global_scheduler global = { { |
| .shrink = i915_global_scheduler_shrink, |
| .exit = i915_global_scheduler_exit, |
| } }; |
| |
| int __init i915_global_scheduler_init(void) |
| { |
| global.slab_dependencies = KMEM_CACHE(i915_dependency, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_TYPESAFE_BY_RCU); |
| if (!global.slab_dependencies) |
| return -ENOMEM; |
| |
| global.slab_priorities = KMEM_CACHE(i915_priolist, 0); |
| if (!global.slab_priorities) |
| goto err_priorities; |
| |
| i915_global_register(&global.base); |
| return 0; |
| |
| err_priorities: |
| kmem_cache_destroy(global.slab_priorities); |
| return -ENOMEM; |
| } |