| /* QLogic qede NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/bpf_trace.h> |
| #include <net/udp_tunnel.h> |
| #include <linux/ip.h> |
| #include <net/ipv6.h> |
| #include <net/tcp.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <net/ip6_checksum.h> |
| #include "qede_ptp.h" |
| |
| #include <linux/qed/qed_if.h> |
| #include "qede.h" |
| /********************************* |
| * Content also used by slowpath * |
| *********************************/ |
| |
| int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy) |
| { |
| struct sw_rx_data *sw_rx_data; |
| struct eth_rx_bd *rx_bd; |
| dma_addr_t mapping; |
| struct page *data; |
| |
| /* In case lazy-allocation is allowed, postpone allocation until the |
| * end of the NAPI run. We'd still need to make sure the Rx ring has |
| * sufficient buffers to guarantee an additional Rx interrupt. |
| */ |
| if (allow_lazy && likely(rxq->filled_buffers > 12)) { |
| rxq->filled_buffers--; |
| return 0; |
| } |
| |
| data = alloc_pages(GFP_ATOMIC, 0); |
| if (unlikely(!data)) |
| return -ENOMEM; |
| |
| /* Map the entire page as it would be used |
| * for multiple RX buffer segment size mapping. |
| */ |
| mapping = dma_map_page(rxq->dev, data, 0, |
| PAGE_SIZE, rxq->data_direction); |
| if (unlikely(dma_mapping_error(rxq->dev, mapping))) { |
| __free_page(data); |
| return -ENOMEM; |
| } |
| |
| sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| sw_rx_data->page_offset = 0; |
| sw_rx_data->data = data; |
| sw_rx_data->mapping = mapping; |
| |
| /* Advance PROD and get BD pointer */ |
| rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); |
| WARN_ON(!rx_bd); |
| rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); |
| rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) + |
| rxq->rx_headroom); |
| |
| rxq->sw_rx_prod++; |
| rxq->filled_buffers++; |
| |
| return 0; |
| } |
| |
| /* Unmap the data and free skb */ |
| int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) |
| { |
| u16 idx = txq->sw_tx_cons; |
| struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; |
| struct eth_tx_1st_bd *first_bd; |
| struct eth_tx_bd *tx_data_bd; |
| int bds_consumed = 0; |
| int nbds; |
| bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; |
| int i, split_bd_len = 0; |
| |
| if (unlikely(!skb)) { |
| DP_ERR(edev, |
| "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", |
| idx, txq->sw_tx_cons, txq->sw_tx_prod); |
| return -1; |
| } |
| |
| *len = skb->len; |
| |
| first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); |
| |
| bds_consumed++; |
| |
| nbds = first_bd->data.nbds; |
| |
| if (data_split) { |
| struct eth_tx_bd *split = (struct eth_tx_bd *) |
| qed_chain_consume(&txq->tx_pbl); |
| split_bd_len = BD_UNMAP_LEN(split); |
| bds_consumed++; |
| } |
| dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), |
| BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| |
| /* Unmap the data of the skb frags */ |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_consume(&txq->tx_pbl); |
| dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), |
| BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| } |
| |
| while (bds_consumed++ < nbds) |
| qed_chain_consume(&txq->tx_pbl); |
| |
| /* Free skb */ |
| dev_kfree_skb_any(skb); |
| txq->sw_tx_ring.skbs[idx].skb = NULL; |
| txq->sw_tx_ring.skbs[idx].flags = 0; |
| |
| return 0; |
| } |
| |
| /* Unmap the data and free skb when mapping failed during start_xmit */ |
| static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, |
| struct eth_tx_1st_bd *first_bd, |
| int nbd, bool data_split) |
| { |
| u16 idx = txq->sw_tx_prod; |
| struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; |
| struct eth_tx_bd *tx_data_bd; |
| int i, split_bd_len = 0; |
| |
| /* Return prod to its position before this skb was handled */ |
| qed_chain_set_prod(&txq->tx_pbl, |
| le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); |
| |
| first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); |
| |
| if (data_split) { |
| struct eth_tx_bd *split = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| split_bd_len = BD_UNMAP_LEN(split); |
| nbd--; |
| } |
| |
| dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), |
| BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| |
| /* Unmap the data of the skb frags */ |
| for (i = 0; i < nbd; i++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| if (tx_data_bd->nbytes) |
| dma_unmap_page(txq->dev, |
| BD_UNMAP_ADDR(tx_data_bd), |
| BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| } |
| |
| /* Return again prod to its position before this skb was handled */ |
| qed_chain_set_prod(&txq->tx_pbl, |
| le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); |
| |
| /* Free skb */ |
| dev_kfree_skb_any(skb); |
| txq->sw_tx_ring.skbs[idx].skb = NULL; |
| txq->sw_tx_ring.skbs[idx].flags = 0; |
| } |
| |
| static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) |
| { |
| u32 rc = XMIT_L4_CSUM; |
| __be16 l3_proto; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return XMIT_PLAIN; |
| |
| l3_proto = vlan_get_protocol(skb); |
| if (l3_proto == htons(ETH_P_IPV6) && |
| (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) |
| *ipv6_ext = 1; |
| |
| if (skb->encapsulation) { |
| rc |= XMIT_ENC; |
| if (skb_is_gso(skb)) { |
| unsigned short gso_type = skb_shinfo(skb)->gso_type; |
| |
| if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || |
| (gso_type & SKB_GSO_GRE_CSUM)) |
| rc |= XMIT_ENC_GSO_L4_CSUM; |
| |
| rc |= XMIT_LSO; |
| return rc; |
| } |
| } |
| |
| if (skb_is_gso(skb)) |
| rc |= XMIT_LSO; |
| |
| return rc; |
| } |
| |
| static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, |
| struct eth_tx_2nd_bd *second_bd, |
| struct eth_tx_3rd_bd *third_bd) |
| { |
| u8 l4_proto; |
| u16 bd2_bits1 = 0, bd2_bits2 = 0; |
| |
| bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); |
| |
| bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & |
| ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) |
| << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; |
| |
| bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << |
| ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); |
| |
| if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) |
| l4_proto = ipv6_hdr(skb)->nexthdr; |
| else |
| l4_proto = ip_hdr(skb)->protocol; |
| |
| if (l4_proto == IPPROTO_UDP) |
| bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; |
| |
| if (third_bd) |
| third_bd->data.bitfields |= |
| cpu_to_le16(((tcp_hdrlen(skb) / 4) & |
| ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << |
| ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); |
| |
| second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); |
| second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); |
| } |
| |
| static int map_frag_to_bd(struct qede_tx_queue *txq, |
| skb_frag_t *frag, struct eth_tx_bd *bd) |
| { |
| dma_addr_t mapping; |
| |
| /* Map skb non-linear frag data for DMA */ |
| mapping = skb_frag_dma_map(txq->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(txq->dev, mapping))) |
| return -ENOMEM; |
| |
| /* Setup the data pointer of the frag data */ |
| BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); |
| |
| return 0; |
| } |
| |
| static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) |
| { |
| if (is_encap_pkt) |
| return (skb_inner_transport_header(skb) + |
| inner_tcp_hdrlen(skb) - skb->data); |
| else |
| return (skb_transport_header(skb) + |
| tcp_hdrlen(skb) - skb->data); |
| } |
| |
| /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) |
| static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) |
| { |
| int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; |
| |
| if (xmit_type & XMIT_LSO) { |
| int hlen; |
| |
| hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); |
| |
| /* linear payload would require its own BD */ |
| if (skb_headlen(skb) > hlen) |
| allowed_frags--; |
| } |
| |
| return (skb_shinfo(skb)->nr_frags > allowed_frags); |
| } |
| #endif |
| |
| static inline void qede_update_tx_producer(struct qede_tx_queue *txq) |
| { |
| /* wmb makes sure that the BDs data is updated before updating the |
| * producer, otherwise FW may read old data from the BDs. |
| */ |
| wmb(); |
| barrier(); |
| writel(txq->tx_db.raw, txq->doorbell_addr); |
| |
| /* mmiowb is needed to synchronize doorbell writes from more than one |
| * processor. It guarantees that the write arrives to the device before |
| * the queue lock is released and another start_xmit is called (possibly |
| * on another CPU). Without this barrier, the next doorbell can bypass |
| * this doorbell. This is applicable to IA64/Altix systems. |
| */ |
| mmiowb(); |
| } |
| |
| static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp, |
| struct sw_rx_data *metadata, u16 padding, u16 length) |
| { |
| struct qede_tx_queue *txq = fp->xdp_tx; |
| struct eth_tx_1st_bd *first_bd; |
| u16 idx = txq->sw_tx_prod; |
| u16 val; |
| |
| if (!qed_chain_get_elem_left(&txq->tx_pbl)) { |
| txq->stopped_cnt++; |
| return -ENOMEM; |
| } |
| |
| first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); |
| |
| memset(first_bd, 0, sizeof(*first_bd)); |
| first_bd->data.bd_flags.bitfields = |
| BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); |
| |
| val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << |
| ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; |
| |
| first_bd->data.bitfields |= cpu_to_le16(val); |
| first_bd->data.nbds = 1; |
| |
| /* We can safely ignore the offset, as it's 0 for XDP */ |
| BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length); |
| |
| /* Synchronize the buffer back to device, as program [probably] |
| * has changed it. |
| */ |
| dma_sync_single_for_device(&edev->pdev->dev, |
| metadata->mapping + padding, |
| length, PCI_DMA_TODEVICE); |
| |
| txq->sw_tx_ring.xdp[idx].page = metadata->data; |
| txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping; |
| txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; |
| |
| /* Mark the fastpath for future XDP doorbell */ |
| fp->xdp_xmit = 1; |
| |
| return 0; |
| } |
| |
| int qede_txq_has_work(struct qede_tx_queue *txq) |
| { |
| u16 hw_bd_cons; |
| |
| /* Tell compiler that consumer and producer can change */ |
| barrier(); |
| hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) |
| return 0; |
| |
| return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); |
| } |
| |
| static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) |
| { |
| u16 hw_bd_cons, idx; |
| |
| hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| barrier(); |
| |
| while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { |
| qed_chain_consume(&txq->tx_pbl); |
| idx = txq->sw_tx_cons; |
| |
| dma_unmap_page(&edev->pdev->dev, |
| txq->sw_tx_ring.xdp[idx].mapping, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| __free_page(txq->sw_tx_ring.xdp[idx].page); |
| |
| txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; |
| txq->xmit_pkts++; |
| } |
| } |
| |
| static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) |
| { |
| struct netdev_queue *netdev_txq; |
| u16 hw_bd_cons; |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| int rc; |
| |
| netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); |
| |
| hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| barrier(); |
| |
| while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { |
| int len = 0; |
| |
| rc = qede_free_tx_pkt(edev, txq, &len); |
| if (rc) { |
| DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", |
| hw_bd_cons, |
| qed_chain_get_cons_idx(&txq->tx_pbl)); |
| break; |
| } |
| |
| bytes_compl += len; |
| pkts_compl++; |
| txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; |
| txq->xmit_pkts++; |
| } |
| |
| netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); |
| |
| /* Need to make the tx_bd_cons update visible to start_xmit() |
| * before checking for netif_tx_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that |
| * start_xmit() will miss it and cause the queue to be stopped |
| * forever. |
| * On the other hand we need an rmb() here to ensure the proper |
| * ordering of bit testing in the following |
| * netif_tx_queue_stopped(txq) call. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(netdev_txq))) { |
| /* Taking tx_lock is needed to prevent reenabling the queue |
| * while it's empty. This could have happen if rx_action() gets |
| * suspended in qede_tx_int() after the condition before |
| * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): |
| * |
| * stops the queue->sees fresh tx_bd_cons->releases the queue-> |
| * sends some packets consuming the whole queue again-> |
| * stops the queue |
| */ |
| |
| __netif_tx_lock(netdev_txq, smp_processor_id()); |
| |
| if ((netif_tx_queue_stopped(netdev_txq)) && |
| (edev->state == QEDE_STATE_OPEN) && |
| (qed_chain_get_elem_left(&txq->tx_pbl) |
| >= (MAX_SKB_FRAGS + 1))) { |
| netif_tx_wake_queue(netdev_txq); |
| DP_VERBOSE(edev, NETIF_MSG_TX_DONE, |
| "Wake queue was called\n"); |
| } |
| |
| __netif_tx_unlock(netdev_txq); |
| } |
| |
| return 0; |
| } |
| |
| bool qede_has_rx_work(struct qede_rx_queue *rxq) |
| { |
| u16 hw_comp_cons, sw_comp_cons; |
| |
| /* Tell compiler that status block fields can change */ |
| barrier(); |
| |
| hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| |
| return hw_comp_cons != sw_comp_cons; |
| } |
| |
| static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) |
| { |
| qed_chain_consume(&rxq->rx_bd_ring); |
| rxq->sw_rx_cons++; |
| } |
| |
| /* This function reuses the buffer(from an offset) from |
| * consumer index to producer index in the bd ring |
| */ |
| static inline void qede_reuse_page(struct qede_rx_queue *rxq, |
| struct sw_rx_data *curr_cons) |
| { |
| struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); |
| struct sw_rx_data *curr_prod; |
| dma_addr_t new_mapping; |
| |
| curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| *curr_prod = *curr_cons; |
| |
| new_mapping = curr_prod->mapping + curr_prod->page_offset; |
| |
| rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); |
| rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) + |
| rxq->rx_headroom); |
| |
| rxq->sw_rx_prod++; |
| curr_cons->data = NULL; |
| } |
| |
| /* In case of allocation failures reuse buffers |
| * from consumer index to produce buffers for firmware |
| */ |
| void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) |
| { |
| struct sw_rx_data *curr_cons; |
| |
| for (; count > 0; count--) { |
| curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; |
| qede_reuse_page(rxq, curr_cons); |
| qede_rx_bd_ring_consume(rxq); |
| } |
| } |
| |
| static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, |
| struct sw_rx_data *curr_cons) |
| { |
| /* Move to the next segment in the page */ |
| curr_cons->page_offset += rxq->rx_buf_seg_size; |
| |
| if (curr_cons->page_offset == PAGE_SIZE) { |
| if (unlikely(qede_alloc_rx_buffer(rxq, true))) { |
| /* Since we failed to allocate new buffer |
| * current buffer can be used again. |
| */ |
| curr_cons->page_offset -= rxq->rx_buf_seg_size; |
| |
| return -ENOMEM; |
| } |
| |
| dma_unmap_page(rxq->dev, curr_cons->mapping, |
| PAGE_SIZE, rxq->data_direction); |
| } else { |
| /* Increment refcount of the page as we don't want |
| * network stack to take the ownership of the page |
| * which can be recycled multiple times by the driver. |
| */ |
| page_ref_inc(curr_cons->data); |
| qede_reuse_page(rxq, curr_cons); |
| } |
| |
| return 0; |
| } |
| |
| void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) |
| { |
| u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); |
| u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); |
| struct eth_rx_prod_data rx_prods = {0}; |
| |
| /* Update producers */ |
| rx_prods.bd_prod = cpu_to_le16(bd_prod); |
| rx_prods.cqe_prod = cpu_to_le16(cqe_prod); |
| |
| /* Make sure that the BD and SGE data is updated before updating the |
| * producers since FW might read the BD/SGE right after the producer |
| * is updated. |
| */ |
| wmb(); |
| |
| internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), |
| (u32 *)&rx_prods); |
| |
| /* mmiowb is needed to synchronize doorbell writes from more than one |
| * processor. It guarantees that the write arrives to the device before |
| * the napi lock is released and another qede_poll is called (possibly |
| * on another CPU). Without this barrier, the next doorbell can bypass |
| * this doorbell. This is applicable to IA64/Altix systems. |
| */ |
| mmiowb(); |
| } |
| |
| static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) |
| { |
| enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; |
| enum rss_hash_type htype; |
| u32 hash = 0; |
| |
| htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); |
| if (htype) { |
| hash_type = ((htype == RSS_HASH_TYPE_IPV4) || |
| (htype == RSS_HASH_TYPE_IPV6)) ? |
| PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; |
| hash = le32_to_cpu(rss_hash); |
| } |
| skb_set_hash(skb, hash, hash_type); |
| } |
| |
| static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) |
| { |
| skb_checksum_none_assert(skb); |
| |
| if (csum_flag & QEDE_CSUM_UNNECESSARY) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) { |
| skb->csum_level = 1; |
| skb->encapsulation = 1; |
| } |
| } |
| |
| static inline void qede_skb_receive(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct qede_rx_queue *rxq, |
| struct sk_buff *skb, u16 vlan_tag) |
| { |
| if (vlan_tag) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| |
| napi_gro_receive(&fp->napi, skb); |
| } |
| |
| static void qede_set_gro_params(struct qede_dev *edev, |
| struct sk_buff *skb, |
| struct eth_fast_path_rx_tpa_start_cqe *cqe) |
| { |
| u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); |
| |
| if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & |
| PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; |
| else |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; |
| |
| skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - |
| cqe->header_len; |
| } |
| |
| static int qede_fill_frag_skb(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| u8 tpa_agg_index, u16 len_on_bd) |
| { |
| struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & |
| NUM_RX_BDS_MAX]; |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; |
| struct sk_buff *skb = tpa_info->skb; |
| |
| if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) |
| goto out; |
| |
| /* Add one frag and update the appropriate fields in the skb */ |
| skb_fill_page_desc(skb, tpa_info->frag_id++, |
| current_bd->data, current_bd->page_offset, |
| len_on_bd); |
| |
| if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { |
| /* Incr page ref count to reuse on allocation failure |
| * so that it doesn't get freed while freeing SKB. |
| */ |
| page_ref_inc(current_bd->data); |
| goto out; |
| } |
| |
| qed_chain_consume(&rxq->rx_bd_ring); |
| rxq->sw_rx_cons++; |
| |
| skb->data_len += len_on_bd; |
| skb->truesize += rxq->rx_buf_seg_size; |
| skb->len += len_on_bd; |
| |
| return 0; |
| |
| out: |
| tpa_info->state = QEDE_AGG_STATE_ERROR; |
| qede_recycle_rx_bd_ring(rxq, 1); |
| |
| return -ENOMEM; |
| } |
| |
| static bool qede_tunn_exist(u16 flag) |
| { |
| return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); |
| } |
| |
| static u8 qede_check_tunn_csum(u16 flag) |
| { |
| u16 csum_flag = 0; |
| u8 tcsum = 0; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) |
| csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { |
| csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; |
| tcsum = QEDE_TUNN_CSUM_UNNECESSARY; |
| } |
| |
| csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; |
| |
| if (csum_flag & flag) |
| return QEDE_CSUM_ERROR; |
| |
| return QEDE_CSUM_UNNECESSARY | tcsum; |
| } |
| |
| static void qede_tpa_start(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct eth_fast_path_rx_tpa_start_cqe *cqe) |
| { |
| struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; |
| struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); |
| struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); |
| struct sw_rx_data *replace_buf = &tpa_info->buffer; |
| dma_addr_t mapping = tpa_info->buffer_mapping; |
| struct sw_rx_data *sw_rx_data_cons; |
| struct sw_rx_data *sw_rx_data_prod; |
| |
| sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; |
| sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| |
| /* Use pre-allocated replacement buffer - we can't release the agg. |
| * start until its over and we don't want to risk allocation failing |
| * here, so re-allocate when aggregation will be over. |
| */ |
| sw_rx_data_prod->mapping = replace_buf->mapping; |
| |
| sw_rx_data_prod->data = replace_buf->data; |
| rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); |
| rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); |
| sw_rx_data_prod->page_offset = replace_buf->page_offset; |
| |
| rxq->sw_rx_prod++; |
| |
| /* move partial skb from cons to pool (don't unmap yet) |
| * save mapping, incase we drop the packet later on. |
| */ |
| tpa_info->buffer = *sw_rx_data_cons; |
| mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), |
| le32_to_cpu(rx_bd_cons->addr.lo)); |
| |
| tpa_info->buffer_mapping = mapping; |
| rxq->sw_rx_cons++; |
| |
| /* set tpa state to start only if we are able to allocate skb |
| * for this aggregation, otherwise mark as error and aggregation will |
| * be dropped |
| */ |
| tpa_info->skb = netdev_alloc_skb(edev->ndev, |
| le16_to_cpu(cqe->len_on_first_bd)); |
| if (unlikely(!tpa_info->skb)) { |
| DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); |
| tpa_info->state = QEDE_AGG_STATE_ERROR; |
| goto cons_buf; |
| } |
| |
| /* Start filling in the aggregation info */ |
| skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); |
| tpa_info->frag_id = 0; |
| tpa_info->state = QEDE_AGG_STATE_START; |
| |
| /* Store some information from first CQE */ |
| tpa_info->start_cqe_placement_offset = cqe->placement_offset; |
| tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd); |
| if ((le16_to_cpu(cqe->pars_flags.flags) >> |
| PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & |
| PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) |
| tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); |
| else |
| tpa_info->vlan_tag = 0; |
| |
| qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); |
| |
| /* This is needed in order to enable forwarding support */ |
| qede_set_gro_params(edev, tpa_info->skb, cqe); |
| |
| cons_buf: /* We still need to handle bd_len_list to consume buffers */ |
| if (likely(cqe->ext_bd_len_list[0])) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->ext_bd_len_list[0])); |
| |
| if (unlikely(cqe->ext_bd_len_list[1])) { |
| DP_ERR(edev, |
| "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); |
| tpa_info->state = QEDE_AGG_STATE_ERROR; |
| } |
| } |
| |
| #ifdef CONFIG_INET |
| static void qede_gro_ip_csum(struct sk_buff *skb) |
| { |
| const struct iphdr *iph = ip_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct iphdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), |
| iph->saddr, iph->daddr, 0); |
| |
| tcp_gro_complete(skb); |
| } |
| |
| static void qede_gro_ipv6_csum(struct sk_buff *skb) |
| { |
| struct ipv6hdr *iph = ipv6_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct ipv6hdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), |
| &iph->saddr, &iph->daddr, 0); |
| tcp_gro_complete(skb); |
| } |
| #endif |
| |
| static void qede_gro_receive(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct sk_buff *skb, |
| u16 vlan_tag) |
| { |
| /* FW can send a single MTU sized packet from gro flow |
| * due to aggregation timeout/last segment etc. which |
| * is not expected to be a gro packet. If a skb has zero |
| * frags then simply push it in the stack as non gso skb. |
| */ |
| if (unlikely(!skb->data_len)) { |
| skb_shinfo(skb)->gso_type = 0; |
| skb_shinfo(skb)->gso_size = 0; |
| goto send_skb; |
| } |
| |
| #ifdef CONFIG_INET |
| if (skb_shinfo(skb)->gso_size) { |
| skb_reset_network_header(skb); |
| |
| switch (skb->protocol) { |
| case htons(ETH_P_IP): |
| qede_gro_ip_csum(skb); |
| break; |
| case htons(ETH_P_IPV6): |
| qede_gro_ipv6_csum(skb); |
| break; |
| default: |
| DP_ERR(edev, |
| "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", |
| ntohs(skb->protocol)); |
| } |
| } |
| #endif |
| |
| send_skb: |
| skb_record_rx_queue(skb, fp->rxq->rxq_id); |
| qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); |
| } |
| |
| static inline void qede_tpa_cont(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct eth_fast_path_rx_tpa_cont_cqe *cqe) |
| { |
| int i; |
| |
| for (i = 0; cqe->len_list[i]; i++) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->len_list[i])); |
| |
| if (unlikely(i > 1)) |
| DP_ERR(edev, |
| "Strange - TPA cont with more than a single len_list entry\n"); |
| } |
| |
| static int qede_tpa_end(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct eth_fast_path_rx_tpa_end_cqe *cqe) |
| { |
| struct qede_rx_queue *rxq = fp->rxq; |
| struct qede_agg_info *tpa_info; |
| struct sk_buff *skb; |
| int i; |
| |
| tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; |
| skb = tpa_info->skb; |
| |
| for (i = 0; cqe->len_list[i]; i++) |
| qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, |
| le16_to_cpu(cqe->len_list[i])); |
| if (unlikely(i > 1)) |
| DP_ERR(edev, |
| "Strange - TPA emd with more than a single len_list entry\n"); |
| |
| if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) |
| goto err; |
| |
| /* Sanity */ |
| if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) |
| DP_ERR(edev, |
| "Strange - TPA had %02x BDs, but SKB has only %d frags\n", |
| cqe->num_of_bds, tpa_info->frag_id); |
| if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) |
| DP_ERR(edev, |
| "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", |
| le16_to_cpu(cqe->total_packet_len), skb->len); |
| |
| memcpy(skb->data, |
| page_address(tpa_info->buffer.data) + |
| tpa_info->start_cqe_placement_offset + |
| tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len); |
| |
| /* Finalize the SKB */ |
| skb->protocol = eth_type_trans(skb, edev->ndev); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count |
| * to skb_shinfo(skb)->gso_segs |
| */ |
| NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); |
| |
| qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); |
| |
| tpa_info->state = QEDE_AGG_STATE_NONE; |
| |
| return 1; |
| err: |
| tpa_info->state = QEDE_AGG_STATE_NONE; |
| dev_kfree_skb_any(tpa_info->skb); |
| tpa_info->skb = NULL; |
| return 0; |
| } |
| |
| static u8 qede_check_notunn_csum(u16 flag) |
| { |
| u16 csum_flag = 0; |
| u8 csum = 0; |
| |
| if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { |
| csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << |
| PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; |
| csum = QEDE_CSUM_UNNECESSARY; |
| } |
| |
| csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << |
| PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; |
| |
| if (csum_flag & flag) |
| return QEDE_CSUM_ERROR; |
| |
| return csum; |
| } |
| |
| static u8 qede_check_csum(u16 flag) |
| { |
| if (!qede_tunn_exist(flag)) |
| return qede_check_notunn_csum(flag); |
| else |
| return qede_check_tunn_csum(flag); |
| } |
| |
| static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, |
| u16 flag) |
| { |
| u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; |
| |
| if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << |
| ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || |
| (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << |
| PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return true iff packet is to be passed to stack */ |
| static bool qede_rx_xdp(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct qede_rx_queue *rxq, |
| struct bpf_prog *prog, |
| struct sw_rx_data *bd, |
| struct eth_fast_path_rx_reg_cqe *cqe, |
| u16 *data_offset, u16 *len) |
| { |
| struct xdp_buff xdp; |
| enum xdp_action act; |
| |
| xdp.data_hard_start = page_address(bd->data); |
| xdp.data = xdp.data_hard_start + *data_offset; |
| xdp_set_data_meta_invalid(&xdp); |
| xdp.data_end = xdp.data + *len; |
| xdp.rxq = &rxq->xdp_rxq; |
| |
| /* Queues always have a full reset currently, so for the time |
| * being until there's atomic program replace just mark read |
| * side for map helpers. |
| */ |
| rcu_read_lock(); |
| act = bpf_prog_run_xdp(prog, &xdp); |
| rcu_read_unlock(); |
| |
| /* Recalculate, as XDP might have changed the headers */ |
| *data_offset = xdp.data - xdp.data_hard_start; |
| *len = xdp.data_end - xdp.data; |
| |
| if (act == XDP_PASS) |
| return true; |
| |
| /* Count number of packets not to be passed to stack */ |
| rxq->xdp_no_pass++; |
| |
| switch (act) { |
| case XDP_TX: |
| /* We need the replacement buffer before transmit. */ |
| if (qede_alloc_rx_buffer(rxq, true)) { |
| qede_recycle_rx_bd_ring(rxq, 1); |
| trace_xdp_exception(edev->ndev, prog, act); |
| return false; |
| } |
| |
| /* Now if there's a transmission problem, we'd still have to |
| * throw current buffer, as replacement was already allocated. |
| */ |
| if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) { |
| dma_unmap_page(rxq->dev, bd->mapping, |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| __free_page(bd->data); |
| trace_xdp_exception(edev->ndev, prog, act); |
| } |
| |
| /* Regardless, we've consumed an Rx BD */ |
| qede_rx_bd_ring_consume(rxq); |
| return false; |
| |
| default: |
| bpf_warn_invalid_xdp_action(act); |
| case XDP_ABORTED: |
| trace_xdp_exception(edev->ndev, prog, act); |
| case XDP_DROP: |
| qede_recycle_rx_bd_ring(rxq, cqe->bd_num); |
| } |
| |
| return false; |
| } |
| |
| static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct sw_rx_data *bd, u16 len, |
| u16 pad) |
| { |
| unsigned int offset = bd->page_offset + pad; |
| struct skb_frag_struct *frag; |
| struct page *page = bd->data; |
| unsigned int pull_len; |
| struct sk_buff *skb; |
| unsigned char *va; |
| |
| /* Allocate a new SKB with a sufficient large header len */ |
| skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| /* Copy data into SKB - if it's small, we can simply copy it and |
| * re-use the already allcoated & mapped memory. |
| */ |
| if (len + pad <= edev->rx_copybreak) { |
| skb_put_data(skb, page_address(page) + offset, len); |
| qede_reuse_page(rxq, bd); |
| goto out; |
| } |
| |
| frag = &skb_shinfo(skb)->frags[0]; |
| |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
| page, offset, len, rxq->rx_buf_seg_size); |
| |
| va = skb_frag_address(frag); |
| pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); |
| |
| /* Align the pull_len to optimize memcpy */ |
| memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); |
| |
| /* Correct the skb & frag sizes offset after the pull */ |
| skb_frag_size_sub(frag, pull_len); |
| frag->page_offset += pull_len; |
| skb->data_len -= pull_len; |
| skb->tail += pull_len; |
| |
| if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { |
| /* Incr page ref count to reuse on allocation failure so |
| * that it doesn't get freed while freeing SKB [as its |
| * already mapped there]. |
| */ |
| page_ref_inc(page); |
| dev_kfree_skb_any(skb); |
| return NULL; |
| } |
| |
| out: |
| /* We've consumed the first BD and prepared an SKB */ |
| qede_rx_bd_ring_consume(rxq); |
| return skb; |
| } |
| |
| static int qede_rx_build_jumbo(struct qede_dev *edev, |
| struct qede_rx_queue *rxq, |
| struct sk_buff *skb, |
| struct eth_fast_path_rx_reg_cqe *cqe, |
| u16 first_bd_len) |
| { |
| u16 pkt_len = le16_to_cpu(cqe->pkt_len); |
| struct sw_rx_data *bd; |
| u16 bd_cons_idx; |
| u8 num_frags; |
| |
| pkt_len -= first_bd_len; |
| |
| /* We've already used one BD for the SKB. Now take care of the rest */ |
| for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { |
| u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : |
| pkt_len; |
| |
| if (unlikely(!cur_size)) { |
| DP_ERR(edev, |
| "Still got %d BDs for mapping jumbo, but length became 0\n", |
| num_frags); |
| goto out; |
| } |
| |
| /* We need a replacement buffer for each BD */ |
| if (unlikely(qede_alloc_rx_buffer(rxq, true))) |
| goto out; |
| |
| /* Now that we've allocated the replacement buffer, |
| * we can safely consume the next BD and map it to the SKB. |
| */ |
| bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; |
| bd = &rxq->sw_rx_ring[bd_cons_idx]; |
| qede_rx_bd_ring_consume(rxq); |
| |
| dma_unmap_page(rxq->dev, bd->mapping, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, |
| bd->data, 0, cur_size); |
| |
| skb->truesize += PAGE_SIZE; |
| skb->data_len += cur_size; |
| skb->len += cur_size; |
| pkt_len -= cur_size; |
| } |
| |
| if (unlikely(pkt_len)) |
| DP_ERR(edev, |
| "Mapped all BDs of jumbo, but still have %d bytes\n", |
| pkt_len); |
| |
| out: |
| return num_frags; |
| } |
| |
| static int qede_rx_process_tpa_cqe(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct qede_rx_queue *rxq, |
| union eth_rx_cqe *cqe, |
| enum eth_rx_cqe_type type) |
| { |
| switch (type) { |
| case ETH_RX_CQE_TYPE_TPA_START: |
| qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); |
| return 0; |
| case ETH_RX_CQE_TYPE_TPA_CONT: |
| qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); |
| return 0; |
| case ETH_RX_CQE_TYPE_TPA_END: |
| return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); |
| default: |
| return 0; |
| } |
| } |
| |
| static int qede_rx_process_cqe(struct qede_dev *edev, |
| struct qede_fastpath *fp, |
| struct qede_rx_queue *rxq) |
| { |
| struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); |
| struct eth_fast_path_rx_reg_cqe *fp_cqe; |
| u16 len, pad, bd_cons_idx, parse_flag; |
| enum eth_rx_cqe_type cqe_type; |
| union eth_rx_cqe *cqe; |
| struct sw_rx_data *bd; |
| struct sk_buff *skb; |
| __le16 flags; |
| u8 csum_flag; |
| |
| /* Get the CQE from the completion ring */ |
| cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); |
| cqe_type = cqe->fast_path_regular.type; |
| |
| /* Process an unlikely slowpath event */ |
| if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { |
| struct eth_slow_path_rx_cqe *sp_cqe; |
| |
| sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; |
| edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); |
| return 0; |
| } |
| |
| /* Handle TPA cqes */ |
| if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) |
| return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); |
| |
| /* Get the data from the SW ring; Consume it only after it's evident |
| * we wouldn't recycle it. |
| */ |
| bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; |
| bd = &rxq->sw_rx_ring[bd_cons_idx]; |
| |
| fp_cqe = &cqe->fast_path_regular; |
| len = le16_to_cpu(fp_cqe->len_on_first_bd); |
| pad = fp_cqe->placement_offset + rxq->rx_headroom; |
| |
| /* Run eBPF program if one is attached */ |
| if (xdp_prog) |
| if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe, |
| &pad, &len)) |
| return 0; |
| |
| /* If this is an error packet then drop it */ |
| flags = cqe->fast_path_regular.pars_flags.flags; |
| parse_flag = le16_to_cpu(flags); |
| |
| csum_flag = qede_check_csum(parse_flag); |
| if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { |
| if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) { |
| rxq->rx_ip_frags++; |
| } else { |
| DP_NOTICE(edev, |
| "CQE has error, flags = %x, dropping incoming packet\n", |
| parse_flag); |
| rxq->rx_hw_errors++; |
| qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); |
| return 0; |
| } |
| } |
| |
| /* Basic validation passed; Need to prepare an SKB. This would also |
| * guarantee to finally consume the first BD upon success. |
| */ |
| skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad); |
| if (!skb) { |
| rxq->rx_alloc_errors++; |
| qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); |
| return 0; |
| } |
| |
| /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed |
| * by a single cqe. |
| */ |
| if (fp_cqe->bd_num > 1) { |
| u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, |
| fp_cqe, len); |
| |
| if (unlikely(unmapped_frags > 0)) { |
| qede_recycle_rx_bd_ring(rxq, unmapped_frags); |
| dev_kfree_skb_any(skb); |
| return 0; |
| } |
| } |
| |
| /* The SKB contains all the data. Now prepare meta-magic */ |
| skb->protocol = eth_type_trans(skb, edev->ndev); |
| qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); |
| qede_set_skb_csum(skb, csum_flag); |
| skb_record_rx_queue(skb, rxq->rxq_id); |
| qede_ptp_record_rx_ts(edev, cqe, skb); |
| |
| /* SKB is prepared - pass it to stack */ |
| qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); |
| |
| return 1; |
| } |
| |
| static int qede_rx_int(struct qede_fastpath *fp, int budget) |
| { |
| struct qede_rx_queue *rxq = fp->rxq; |
| struct qede_dev *edev = fp->edev; |
| int work_done = 0, rcv_pkts = 0; |
| u16 hw_comp_cons, sw_comp_cons; |
| |
| hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| |
| /* Memory barrier to prevent the CPU from doing speculative reads of CQE |
| * / BD in the while-loop before reading hw_comp_cons. If the CQE is |
| * read before it is written by FW, then FW writes CQE and SB, and then |
| * the CPU reads the hw_comp_cons, it will use an old CQE. |
| */ |
| rmb(); |
| |
| /* Loop to complete all indicated BDs */ |
| while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { |
| rcv_pkts += qede_rx_process_cqe(edev, fp, rxq); |
| qed_chain_recycle_consumed(&rxq->rx_comp_ring); |
| sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| work_done++; |
| } |
| |
| rxq->rcv_pkts += rcv_pkts; |
| |
| /* Allocate replacement buffers */ |
| while (rxq->num_rx_buffers - rxq->filled_buffers) |
| if (qede_alloc_rx_buffer(rxq, false)) |
| break; |
| |
| /* Update producers */ |
| qede_update_rx_prod(edev, rxq); |
| |
| return work_done; |
| } |
| |
| static bool qede_poll_is_more_work(struct qede_fastpath *fp) |
| { |
| qed_sb_update_sb_idx(fp->sb_info); |
| |
| /* *_has_*_work() reads the status block, thus we need to ensure that |
| * status block indices have been actually read (qed_sb_update_sb_idx) |
| * prior to this check (*_has_*_work) so that we won't write the |
| * "newer" value of the status block to HW (if there was a DMA right |
| * after qede_has_rx_work and if there is no rmb, the memory reading |
| * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). |
| * In this case there will never be another interrupt until there is |
| * another update of the status block, while there is still unhandled |
| * work. |
| */ |
| rmb(); |
| |
| if (likely(fp->type & QEDE_FASTPATH_RX)) |
| if (qede_has_rx_work(fp->rxq)) |
| return true; |
| |
| if (fp->type & QEDE_FASTPATH_XDP) |
| if (qede_txq_has_work(fp->xdp_tx)) |
| return true; |
| |
| if (likely(fp->type & QEDE_FASTPATH_TX)) |
| if (qede_txq_has_work(fp->txq)) |
| return true; |
| |
| return false; |
| } |
| |
| /********************* |
| * NDO & API related * |
| *********************/ |
| int qede_poll(struct napi_struct *napi, int budget) |
| { |
| struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, |
| napi); |
| struct qede_dev *edev = fp->edev; |
| int rx_work_done = 0; |
| |
| if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq)) |
| qede_tx_int(edev, fp->txq); |
| |
| if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) |
| qede_xdp_tx_int(edev, fp->xdp_tx); |
| |
| rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && |
| qede_has_rx_work(fp->rxq)) ? |
| qede_rx_int(fp, budget) : 0; |
| if (rx_work_done < budget) { |
| if (!qede_poll_is_more_work(fp)) { |
| napi_complete_done(napi, rx_work_done); |
| |
| /* Update and reenable interrupts */ |
| qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); |
| } else { |
| rx_work_done = budget; |
| } |
| } |
| |
| if (fp->xdp_xmit) { |
| u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); |
| |
| fp->xdp_xmit = 0; |
| fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); |
| qede_update_tx_producer(fp->xdp_tx); |
| } |
| |
| return rx_work_done; |
| } |
| |
| irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) |
| { |
| struct qede_fastpath *fp = fp_cookie; |
| |
| qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); |
| |
| napi_schedule_irqoff(&fp->napi); |
| return IRQ_HANDLED; |
| } |
| |
| /* Main transmit function */ |
| netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct qede_dev *edev = netdev_priv(ndev); |
| struct netdev_queue *netdev_txq; |
| struct qede_tx_queue *txq; |
| struct eth_tx_1st_bd *first_bd; |
| struct eth_tx_2nd_bd *second_bd = NULL; |
| struct eth_tx_3rd_bd *third_bd = NULL; |
| struct eth_tx_bd *tx_data_bd = NULL; |
| u16 txq_index, val = 0; |
| u8 nbd = 0; |
| dma_addr_t mapping; |
| int rc, frag_idx = 0, ipv6_ext = 0; |
| u8 xmit_type; |
| u16 idx; |
| u16 hlen; |
| bool data_split = false; |
| |
| /* Get tx-queue context and netdev index */ |
| txq_index = skb_get_queue_mapping(skb); |
| WARN_ON(txq_index >= QEDE_TSS_COUNT(edev)); |
| txq = edev->fp_array[edev->fp_num_rx + txq_index].txq; |
| netdev_txq = netdev_get_tx_queue(ndev, txq_index); |
| |
| WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); |
| |
| xmit_type = qede_xmit_type(skb, &ipv6_ext); |
| |
| #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) |
| if (qede_pkt_req_lin(skb, xmit_type)) { |
| if (skb_linearize(skb)) { |
| DP_NOTICE(edev, |
| "SKB linearization failed - silently dropping this SKB\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| } |
| #endif |
| |
| /* Fill the entry in the SW ring and the BDs in the FW ring */ |
| idx = txq->sw_tx_prod; |
| txq->sw_tx_ring.skbs[idx].skb = skb; |
| first_bd = (struct eth_tx_1st_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(first_bd, 0, sizeof(*first_bd)); |
| first_bd->data.bd_flags.bitfields = |
| 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) |
| qede_ptp_tx_ts(edev, skb); |
| |
| /* Map skb linear data for DMA and set in the first BD */ |
| mapping = dma_map_single(txq->dev, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(txq->dev, mapping))) { |
| DP_NOTICE(edev, "SKB mapping failed\n"); |
| qede_free_failed_tx_pkt(txq, first_bd, 0, false); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| nbd++; |
| BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); |
| |
| /* In case there is IPv6 with extension headers or LSO we need 2nd and |
| * 3rd BDs. |
| */ |
| if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { |
| second_bd = (struct eth_tx_2nd_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(second_bd, 0, sizeof(*second_bd)); |
| |
| nbd++; |
| third_bd = (struct eth_tx_3rd_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| memset(third_bd, 0, sizeof(*third_bd)); |
| |
| nbd++; |
| /* We need to fill in additional data in second_bd... */ |
| tx_data_bd = (struct eth_tx_bd *)second_bd; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; |
| } |
| |
| /* Fill the parsing flags & params according to the requested offload */ |
| if (xmit_type & XMIT_L4_CSUM) { |
| /* We don't re-calculate IP checksum as it is already done by |
| * the upper stack |
| */ |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; |
| |
| if (xmit_type & XMIT_ENC) { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; |
| |
| val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); |
| } |
| |
| /* Legacy FW had flipped behavior in regard to this bit - |
| * I.e., needed to set to prevent FW from touching encapsulated |
| * packets when it didn't need to. |
| */ |
| if (unlikely(txq->is_legacy)) |
| val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); |
| |
| /* If the packet is IPv6 with extension header, indicate that |
| * to FW and pass few params, since the device cracker doesn't |
| * support parsing IPv6 with extension header/s. |
| */ |
| if (unlikely(ipv6_ext)) |
| qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); |
| } |
| |
| if (xmit_type & XMIT_LSO) { |
| first_bd->data.bd_flags.bitfields |= |
| (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); |
| third_bd->data.lso_mss = |
| cpu_to_le16(skb_shinfo(skb)->gso_size); |
| |
| if (unlikely(xmit_type & XMIT_ENC)) { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; |
| |
| if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { |
| u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; |
| |
| first_bd->data.bd_flags.bitfields |= 1 << tmp; |
| } |
| hlen = qede_get_skb_hlen(skb, true); |
| } else { |
| first_bd->data.bd_flags.bitfields |= |
| 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; |
| hlen = qede_get_skb_hlen(skb, false); |
| } |
| |
| /* @@@TBD - if will not be removed need to check */ |
| third_bd->data.bitfields |= |
| cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); |
| |
| /* Make life easier for FW guys who can't deal with header and |
| * data on same BD. If we need to split, use the second bd... |
| */ |
| if (unlikely(skb_headlen(skb) > hlen)) { |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "TSO split header size is %d (%x:%x)\n", |
| first_bd->nbytes, first_bd->addr.hi, |
| first_bd->addr.lo); |
| |
| mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), |
| le32_to_cpu(first_bd->addr.lo)) + |
| hlen; |
| |
| BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, |
| le16_to_cpu(first_bd->nbytes) - |
| hlen); |
| |
| /* this marks the BD as one that has no |
| * individual mapping |
| */ |
| txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; |
| |
| first_bd->nbytes = cpu_to_le16(hlen); |
| |
| tx_data_bd = (struct eth_tx_bd *)third_bd; |
| data_split = true; |
| } |
| } else { |
| val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << |
| ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT); |
| } |
| |
| first_bd->data.bitfields = cpu_to_le16(val); |
| |
| /* Handle fragmented skb */ |
| /* special handle for frags inside 2nd and 3rd bds.. */ |
| while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { |
| rc = map_frag_to_bd(txq, |
| &skb_shinfo(skb)->frags[frag_idx], |
| tx_data_bd); |
| if (rc) { |
| qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| |
| if (tx_data_bd == (struct eth_tx_bd *)second_bd) |
| tx_data_bd = (struct eth_tx_bd *)third_bd; |
| else |
| tx_data_bd = NULL; |
| |
| frag_idx++; |
| } |
| |
| /* map last frags into 4th, 5th .... */ |
| for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { |
| tx_data_bd = (struct eth_tx_bd *) |
| qed_chain_produce(&txq->tx_pbl); |
| |
| memset(tx_data_bd, 0, sizeof(*tx_data_bd)); |
| |
| rc = map_frag_to_bd(txq, |
| &skb_shinfo(skb)->frags[frag_idx], |
| tx_data_bd); |
| if (rc) { |
| qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); |
| qede_update_tx_producer(txq); |
| return NETDEV_TX_OK; |
| } |
| } |
| |
| /* update the first BD with the actual num BDs */ |
| first_bd->data.nbds = nbd; |
| |
| netdev_tx_sent_queue(netdev_txq, skb->len); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Advance packet producer only before sending the packet since mapping |
| * of pages may fail. |
| */ |
| txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; |
| |
| /* 'next page' entries are counted in the producer value */ |
| txq->tx_db.data.bd_prod = |
| cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); |
| |
| if (!skb->xmit_more || netif_xmit_stopped(netdev_txq)) |
| qede_update_tx_producer(txq); |
| |
| if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) |
| < (MAX_SKB_FRAGS + 1))) { |
| if (skb->xmit_more) |
| qede_update_tx_producer(txq); |
| |
| netif_tx_stop_queue(netdev_txq); |
| txq->stopped_cnt++; |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "Stop queue was called\n"); |
| /* paired memory barrier is in qede_tx_int(), we have to keep |
| * ordering of set_bit() in netif_tx_stop_queue() and read of |
| * fp->bd_tx_cons |
| */ |
| smp_mb(); |
| |
| if ((qed_chain_get_elem_left(&txq->tx_pbl) >= |
| (MAX_SKB_FRAGS + 1)) && |
| (edev->state == QEDE_STATE_OPEN)) { |
| netif_tx_wake_queue(netdev_txq); |
| DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| "Wake queue was called\n"); |
| } |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* 8B udp header + 8B base tunnel header + 32B option length */ |
| #define QEDE_MAX_TUN_HDR_LEN 48 |
| |
| netdev_features_t qede_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| if (skb->encapsulation) { |
| u8 l4_proto = 0; |
| |
| switch (vlan_get_protocol(skb)) { |
| case htons(ETH_P_IP): |
| l4_proto = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| l4_proto = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return features; |
| } |
| |
| /* Disable offloads for geneve tunnels, as HW can't parse |
| * the geneve header which has option length greater than 32b |
| * and disable offloads for the ports which are not offloaded. |
| */ |
| if (l4_proto == IPPROTO_UDP) { |
| struct qede_dev *edev = netdev_priv(dev); |
| u16 hdrlen, vxln_port, gnv_port; |
| |
| hdrlen = QEDE_MAX_TUN_HDR_LEN; |
| vxln_port = edev->vxlan_dst_port; |
| gnv_port = edev->geneve_dst_port; |
| |
| if ((skb_inner_mac_header(skb) - |
| skb_transport_header(skb)) > hdrlen || |
| (ntohs(udp_hdr(skb)->dest) != vxln_port && |
| ntohs(udp_hdr(skb)->dest) != gnv_port)) |
| return features & ~(NETIF_F_CSUM_MASK | |
| NETIF_F_GSO_MASK); |
| } |
| } |
| |
| return features; |
| } |