| /* |
| * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* |
| * GK20A does not have dedicated video memory, and to accurately represent this |
| * fact Nouveau will not create a RAM device for it. Therefore its instmem |
| * implementation must be done directly on top of system memory, while providing |
| * coherent read and write operations. |
| * |
| * Instmem can be allocated through two means: |
| * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory |
| * pages contiguous to the GPU. This is the preferred way. |
| * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically |
| * contiguous memory. |
| * |
| * In both cases CPU read and writes are performed using PRAMIN (i.e. using the |
| * GPU path) to ensure these operations are coherent for the GPU. This allows us |
| * to use more "relaxed" allocation parameters when using the DMA API, since we |
| * never need a kernel mapping. |
| */ |
| |
| #include <subdev/fb.h> |
| #include <core/mm.h> |
| #include <core/device.h> |
| |
| #ifdef __KERNEL__ |
| #include <linux/dma-attrs.h> |
| #include <linux/iommu.h> |
| #include <nouveau_platform.h> |
| #endif |
| |
| #include "priv.h" |
| |
| struct gk20a_instobj_priv { |
| struct nvkm_instobj base; |
| /* Must be second member here - see nouveau_gpuobj_map_vm() */ |
| struct nvkm_mem *mem; |
| /* Pointed by mem */ |
| struct nvkm_mem _mem; |
| }; |
| |
| /* |
| * Used for objects allocated using the DMA API |
| */ |
| struct gk20a_instobj_dma { |
| struct gk20a_instobj_priv base; |
| |
| void *cpuaddr; |
| dma_addr_t handle; |
| struct nvkm_mm_node r; |
| }; |
| |
| /* |
| * Used for objects flattened using the IOMMU API |
| */ |
| struct gk20a_instobj_iommu { |
| struct gk20a_instobj_priv base; |
| |
| /* array of base.mem->size pages */ |
| struct page *pages[]; |
| }; |
| |
| struct gk20a_instmem_priv { |
| struct nvkm_instmem base; |
| spinlock_t lock; |
| u64 addr; |
| |
| /* Only used if IOMMU if present */ |
| struct mutex *mm_mutex; |
| struct nvkm_mm *mm; |
| struct iommu_domain *domain; |
| unsigned long iommu_pgshift; |
| |
| /* Only used by DMA API */ |
| struct dma_attrs attrs; |
| }; |
| |
| /* |
| * Use PRAMIN to read/write data and avoid coherency issues. |
| * PRAMIN uses the GPU path and ensures data will always be coherent. |
| * |
| * A dynamic mapping based solution would be desirable in the future, but |
| * the issue remains of how to maintain coherency efficiently. On ARM it is |
| * not easy (if possible at all?) to create uncached temporary mappings. |
| */ |
| |
| static u32 |
| gk20a_instobj_rd32(struct nvkm_object *object, u64 offset) |
| { |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object); |
| struct gk20a_instobj_priv *node = (void *)object; |
| unsigned long flags; |
| u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; |
| u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; |
| u32 data; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| if (unlikely(priv->addr != base)) { |
| nv_wr32(priv, 0x001700, base >> 16); |
| priv->addr = base; |
| } |
| data = nv_rd32(priv, 0x700000 + addr); |
| spin_unlock_irqrestore(&priv->lock, flags); |
| return data; |
| } |
| |
| static void |
| gk20a_instobj_wr32(struct nvkm_object *object, u64 offset, u32 data) |
| { |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object); |
| struct gk20a_instobj_priv *node = (void *)object; |
| unsigned long flags; |
| u64 base = (node->mem->offset + offset) & 0xffffff00000ULL; |
| u64 addr = (node->mem->offset + offset) & 0x000000fffffULL; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| if (unlikely(priv->addr != base)) { |
| nv_wr32(priv, 0x001700, base >> 16); |
| priv->addr = base; |
| } |
| nv_wr32(priv, 0x700000 + addr, data); |
| spin_unlock_irqrestore(&priv->lock, flags); |
| } |
| |
| static void |
| gk20a_instobj_dtor_dma(struct gk20a_instobj_priv *_node) |
| { |
| struct gk20a_instobj_dma *node = (void *)_node; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); |
| struct device *dev = nv_device_base(nv_device(priv)); |
| |
| if (unlikely(!node->cpuaddr)) |
| return; |
| |
| dma_free_attrs(dev, _node->mem->size << PAGE_SHIFT, node->cpuaddr, |
| node->handle, &priv->attrs); |
| } |
| |
| static void |
| gk20a_instobj_dtor_iommu(struct gk20a_instobj_priv *_node) |
| { |
| struct gk20a_instobj_iommu *node = (void *)_node; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); |
| struct nvkm_mm_node *r; |
| int i; |
| |
| if (unlikely(list_empty(&_node->mem->regions))) |
| return; |
| |
| r = list_first_entry(&_node->mem->regions, struct nvkm_mm_node, |
| rl_entry); |
| |
| /* clear bit 34 to unmap pages */ |
| r->offset &= ~BIT(34 - priv->iommu_pgshift); |
| |
| /* Unmap pages from GPU address space and free them */ |
| for (i = 0; i < _node->mem->size; i++) { |
| iommu_unmap(priv->domain, |
| (r->offset + i) << priv->iommu_pgshift, PAGE_SIZE); |
| __free_page(node->pages[i]); |
| } |
| |
| /* Release area from GPU address space */ |
| mutex_lock(priv->mm_mutex); |
| nvkm_mm_free(priv->mm, &r); |
| mutex_unlock(priv->mm_mutex); |
| } |
| |
| static void |
| gk20a_instobj_dtor(struct nvkm_object *object) |
| { |
| struct gk20a_instobj_priv *node = (void *)object; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node); |
| |
| if (priv->domain) |
| gk20a_instobj_dtor_iommu(node); |
| else |
| gk20a_instobj_dtor_dma(node); |
| |
| nvkm_instobj_destroy(&node->base); |
| } |
| |
| static int |
| gk20a_instobj_ctor_dma(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, u32 npages, u32 align, |
| struct gk20a_instobj_priv **_node) |
| { |
| struct gk20a_instobj_dma *node; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); |
| struct device *dev = nv_device_base(nv_device(parent)); |
| int ret; |
| |
| ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node), |
| (void **)&node); |
| *_node = &node->base; |
| if (ret) |
| return ret; |
| |
| node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, |
| &node->handle, GFP_KERNEL, |
| &priv->attrs); |
| if (!node->cpuaddr) { |
| nv_error(priv, "cannot allocate DMA memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* alignment check */ |
| if (unlikely(node->handle & (align - 1))) |
| nv_warn(priv, "memory not aligned as requested: %pad (0x%x)\n", |
| &node->handle, align); |
| |
| /* present memory for being mapped using small pages */ |
| node->r.type = 12; |
| node->r.offset = node->handle >> 12; |
| node->r.length = (npages << PAGE_SHIFT) >> 12; |
| |
| node->base._mem.offset = node->handle; |
| |
| INIT_LIST_HEAD(&node->base._mem.regions); |
| list_add_tail(&node->r.rl_entry, &node->base._mem.regions); |
| |
| return 0; |
| } |
| |
| static int |
| gk20a_instobj_ctor_iommu(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, u32 npages, u32 align, |
| struct gk20a_instobj_priv **_node) |
| { |
| struct gk20a_instobj_iommu *node; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); |
| struct nvkm_mm_node *r; |
| int ret; |
| int i; |
| |
| ret = nvkm_instobj_create_(parent, engine, oclass, |
| sizeof(*node) + sizeof(node->pages[0]) * npages, |
| (void **)&node); |
| *_node = &node->base; |
| if (ret) |
| return ret; |
| |
| /* Allocate backing memory */ |
| for (i = 0; i < npages; i++) { |
| struct page *p = alloc_page(GFP_KERNEL); |
| |
| if (p == NULL) { |
| ret = -ENOMEM; |
| goto free_pages; |
| } |
| node->pages[i] = p; |
| } |
| |
| mutex_lock(priv->mm_mutex); |
| /* Reserve area from GPU address space */ |
| ret = nvkm_mm_head(priv->mm, 0, 1, npages, npages, |
| align >> priv->iommu_pgshift, &r); |
| mutex_unlock(priv->mm_mutex); |
| if (ret) { |
| nv_error(priv, "virtual space is full!\n"); |
| goto free_pages; |
| } |
| |
| /* Map into GPU address space */ |
| for (i = 0; i < npages; i++) { |
| struct page *p = node->pages[i]; |
| u32 offset = (r->offset + i) << priv->iommu_pgshift; |
| |
| ret = iommu_map(priv->domain, offset, page_to_phys(p), |
| PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); |
| if (ret < 0) { |
| nv_error(priv, "IOMMU mapping failure: %d\n", ret); |
| |
| while (i-- > 0) { |
| offset -= PAGE_SIZE; |
| iommu_unmap(priv->domain, offset, PAGE_SIZE); |
| } |
| goto release_area; |
| } |
| } |
| |
| /* Bit 34 tells that an address is to be resolved through the IOMMU */ |
| r->offset |= BIT(34 - priv->iommu_pgshift); |
| |
| node->base._mem.offset = ((u64)r->offset) << priv->iommu_pgshift; |
| |
| INIT_LIST_HEAD(&node->base._mem.regions); |
| list_add_tail(&r->rl_entry, &node->base._mem.regions); |
| |
| return 0; |
| |
| release_area: |
| mutex_lock(priv->mm_mutex); |
| nvkm_mm_free(priv->mm, &r); |
| mutex_unlock(priv->mm_mutex); |
| |
| free_pages: |
| for (i = 0; i < npages && node->pages[i] != NULL; i++) |
| __free_page(node->pages[i]); |
| |
| return ret; |
| } |
| |
| static int |
| gk20a_instobj_ctor(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, void *data, u32 _size, |
| struct nvkm_object **pobject) |
| { |
| struct nvkm_instobj_args *args = data; |
| struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent); |
| struct gk20a_instobj_priv *node; |
| u32 size, align; |
| int ret; |
| |
| nv_debug(parent, "%s (%s): size: %x align: %x\n", __func__, |
| priv->domain ? "IOMMU" : "DMA", args->size, args->align); |
| |
| /* Round size and align to page bounds */ |
| size = max(roundup(args->size, PAGE_SIZE), PAGE_SIZE); |
| align = max(roundup(args->align, PAGE_SIZE), PAGE_SIZE); |
| |
| if (priv->domain) |
| ret = gk20a_instobj_ctor_iommu(parent, engine, oclass, |
| size >> PAGE_SHIFT, align, &node); |
| else |
| ret = gk20a_instobj_ctor_dma(parent, engine, oclass, |
| size >> PAGE_SHIFT, align, &node); |
| *pobject = nv_object(node); |
| if (ret) |
| return ret; |
| |
| node->mem = &node->_mem; |
| |
| /* present memory for being mapped using small pages */ |
| node->mem->size = size >> 12; |
| node->mem->memtype = 0; |
| node->mem->page_shift = 12; |
| |
| node->base.addr = node->mem->offset; |
| node->base.size = size; |
| |
| nv_debug(parent, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", |
| size, align, node->mem->offset); |
| |
| return 0; |
| } |
| |
| static struct nvkm_instobj_impl |
| gk20a_instobj_oclass = { |
| .base.ofuncs = &(struct nvkm_ofuncs) { |
| .ctor = gk20a_instobj_ctor, |
| .dtor = gk20a_instobj_dtor, |
| .init = _nvkm_instobj_init, |
| .fini = _nvkm_instobj_fini, |
| .rd32 = gk20a_instobj_rd32, |
| .wr32 = gk20a_instobj_wr32, |
| }, |
| }; |
| |
| |
| |
| static int |
| gk20a_instmem_fini(struct nvkm_object *object, bool suspend) |
| { |
| struct gk20a_instmem_priv *priv = (void *)object; |
| priv->addr = ~0ULL; |
| return nvkm_instmem_fini(&priv->base, suspend); |
| } |
| |
| static int |
| gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, void *data, u32 size, |
| struct nvkm_object **pobject) |
| { |
| struct gk20a_instmem_priv *priv; |
| struct nouveau_platform_device *plat; |
| int ret; |
| |
| ret = nvkm_instmem_create(parent, engine, oclass, &priv); |
| *pobject = nv_object(priv); |
| if (ret) |
| return ret; |
| |
| spin_lock_init(&priv->lock); |
| |
| plat = nv_device_to_platform(nv_device(parent)); |
| if (plat->gpu->iommu.domain) { |
| priv->domain = plat->gpu->iommu.domain; |
| priv->mm = plat->gpu->iommu.mm; |
| priv->iommu_pgshift = plat->gpu->iommu.pgshift; |
| priv->mm_mutex = &plat->gpu->iommu.mutex; |
| |
| nv_info(priv, "using IOMMU\n"); |
| } else { |
| init_dma_attrs(&priv->attrs); |
| /* |
| * We will access instmem through PRAMIN and thus do not need a |
| * consistent CPU pointer or kernel mapping |
| */ |
| dma_set_attr(DMA_ATTR_NON_CONSISTENT, &priv->attrs); |
| dma_set_attr(DMA_ATTR_WEAK_ORDERING, &priv->attrs); |
| dma_set_attr(DMA_ATTR_WRITE_COMBINE, &priv->attrs); |
| dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &priv->attrs); |
| |
| nv_info(priv, "using DMA API\n"); |
| } |
| |
| return 0; |
| } |
| |
| struct nvkm_oclass * |
| gk20a_instmem_oclass = &(struct nvkm_instmem_impl) { |
| .base.handle = NV_SUBDEV(INSTMEM, 0xea), |
| .base.ofuncs = &(struct nvkm_ofuncs) { |
| .ctor = gk20a_instmem_ctor, |
| .dtor = _nvkm_instmem_dtor, |
| .init = _nvkm_instmem_init, |
| .fini = gk20a_instmem_fini, |
| }, |
| .instobj = &gk20a_instobj_oclass.base, |
| }.base; |