blob: 2723623429ac9717dad4e4294e71d5bad9405b68 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Facebook
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/rcupdate_trace.h>
#include <linux/sched/signal.h>
#include <net/bpf_sk_storage.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <net/net_namespace.h>
#include <net/page_pool.h>
#include <linux/error-injection.h>
#include <linux/smp.h>
#include <linux/sock_diag.h>
#include <net/xdp.h>
#define CREATE_TRACE_POINTS
#include <trace/events/bpf_test_run.h>
struct bpf_test_timer {
enum { NO_PREEMPT, NO_MIGRATE } mode;
u32 i;
u64 time_start, time_spent;
};
static void bpf_test_timer_enter(struct bpf_test_timer *t)
__acquires(rcu)
{
rcu_read_lock();
if (t->mode == NO_PREEMPT)
preempt_disable();
else
migrate_disable();
t->time_start = ktime_get_ns();
}
static void bpf_test_timer_leave(struct bpf_test_timer *t)
__releases(rcu)
{
t->time_start = 0;
if (t->mode == NO_PREEMPT)
preempt_enable();
else
migrate_enable();
rcu_read_unlock();
}
static bool bpf_test_timer_continue(struct bpf_test_timer *t, int iterations,
u32 repeat, int *err, u32 *duration)
__must_hold(rcu)
{
t->i += iterations;
if (t->i >= repeat) {
/* We're done. */
t->time_spent += ktime_get_ns() - t->time_start;
do_div(t->time_spent, t->i);
*duration = t->time_spent > U32_MAX ? U32_MAX : (u32)t->time_spent;
*err = 0;
goto reset;
}
if (signal_pending(current)) {
/* During iteration: we've been cancelled, abort. */
*err = -EINTR;
goto reset;
}
if (need_resched()) {
/* During iteration: we need to reschedule between runs. */
t->time_spent += ktime_get_ns() - t->time_start;
bpf_test_timer_leave(t);
cond_resched();
bpf_test_timer_enter(t);
}
/* Do another round. */
return true;
reset:
t->i = 0;
return false;
}
/* We put this struct at the head of each page with a context and frame
* initialised when the page is allocated, so we don't have to do this on each
* repetition of the test run.
*/
struct xdp_page_head {
struct xdp_buff orig_ctx;
struct xdp_buff ctx;
struct xdp_frame frm;
u8 data[];
};
struct xdp_test_data {
struct xdp_buff *orig_ctx;
struct xdp_rxq_info rxq;
struct net_device *dev;
struct page_pool *pp;
struct xdp_frame **frames;
struct sk_buff **skbs;
struct xdp_mem_info mem;
u32 batch_size;
u32 frame_cnt;
};
#define TEST_XDP_FRAME_SIZE (PAGE_SIZE - sizeof(struct xdp_page_head))
#define TEST_XDP_MAX_BATCH 256
static void xdp_test_run_init_page(struct page *page, void *arg)
{
struct xdp_page_head *head = phys_to_virt(page_to_phys(page));
struct xdp_buff *new_ctx, *orig_ctx;
u32 headroom = XDP_PACKET_HEADROOM;
struct xdp_test_data *xdp = arg;
size_t frm_len, meta_len;
struct xdp_frame *frm;
void *data;
orig_ctx = xdp->orig_ctx;
frm_len = orig_ctx->data_end - orig_ctx->data_meta;
meta_len = orig_ctx->data - orig_ctx->data_meta;
headroom -= meta_len;
new_ctx = &head->ctx;
frm = &head->frm;
data = &head->data;
memcpy(data + headroom, orig_ctx->data_meta, frm_len);
xdp_init_buff(new_ctx, TEST_XDP_FRAME_SIZE, &xdp->rxq);
xdp_prepare_buff(new_ctx, data, headroom, frm_len, true);
new_ctx->data = new_ctx->data_meta + meta_len;
xdp_update_frame_from_buff(new_ctx, frm);
frm->mem = new_ctx->rxq->mem;
memcpy(&head->orig_ctx, new_ctx, sizeof(head->orig_ctx));
}
static int xdp_test_run_setup(struct xdp_test_data *xdp, struct xdp_buff *orig_ctx)
{
struct page_pool *pp;
int err = -ENOMEM;
struct page_pool_params pp_params = {
.order = 0,
.flags = 0,
.pool_size = xdp->batch_size,
.nid = NUMA_NO_NODE,
.init_callback = xdp_test_run_init_page,
.init_arg = xdp,
};
xdp->frames = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->frames)
return -ENOMEM;
xdp->skbs = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL);
if (!xdp->skbs)
goto err_skbs;
pp = page_pool_create(&pp_params);
if (IS_ERR(pp)) {
err = PTR_ERR(pp);
goto err_pp;
}
/* will copy 'mem.id' into pp->xdp_mem_id */
err = xdp_reg_mem_model(&xdp->mem, MEM_TYPE_PAGE_POOL, pp);
if (err)
goto err_mmodel;
xdp->pp = pp;
/* We create a 'fake' RXQ referencing the original dev, but with an
* xdp_mem_info pointing to our page_pool
*/
xdp_rxq_info_reg(&xdp->rxq, orig_ctx->rxq->dev, 0, 0);
xdp->rxq.mem.type = MEM_TYPE_PAGE_POOL;
xdp->rxq.mem.id = pp->xdp_mem_id;
xdp->dev = orig_ctx->rxq->dev;
xdp->orig_ctx = orig_ctx;
return 0;
err_mmodel:
page_pool_destroy(pp);
err_pp:
kvfree(xdp->skbs);
err_skbs:
kvfree(xdp->frames);
return err;
}
static void xdp_test_run_teardown(struct xdp_test_data *xdp)
{
xdp_unreg_mem_model(&xdp->mem);
page_pool_destroy(xdp->pp);
kfree(xdp->frames);
kfree(xdp->skbs);
}
static bool ctx_was_changed(struct xdp_page_head *head)
{
return head->orig_ctx.data != head->ctx.data ||
head->orig_ctx.data_meta != head->ctx.data_meta ||
head->orig_ctx.data_end != head->ctx.data_end;
}
static void reset_ctx(struct xdp_page_head *head)
{
if (likely(!ctx_was_changed(head)))
return;
head->ctx.data = head->orig_ctx.data;
head->ctx.data_meta = head->orig_ctx.data_meta;
head->ctx.data_end = head->orig_ctx.data_end;
xdp_update_frame_from_buff(&head->ctx, &head->frm);
}
static int xdp_recv_frames(struct xdp_frame **frames, int nframes,
struct sk_buff **skbs,
struct net_device *dev)
{
gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
int i, n;
LIST_HEAD(list);
n = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, (void **)skbs);
if (unlikely(n == 0)) {
for (i = 0; i < nframes; i++)
xdp_return_frame(frames[i]);
return -ENOMEM;
}
for (i = 0; i < nframes; i++) {
struct xdp_frame *xdpf = frames[i];
struct sk_buff *skb = skbs[i];
skb = __xdp_build_skb_from_frame(xdpf, skb, dev);
if (!skb) {
xdp_return_frame(xdpf);
continue;
}
list_add_tail(&skb->list, &list);
}
netif_receive_skb_list(&list);
return 0;
}
static int xdp_test_run_batch(struct xdp_test_data *xdp, struct bpf_prog *prog,
u32 repeat)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
int err = 0, act, ret, i, nframes = 0, batch_sz;
struct xdp_frame **frames = xdp->frames;
struct xdp_page_head *head;
struct xdp_frame *frm;
bool redirect = false;
struct xdp_buff *ctx;
struct page *page;
batch_sz = min_t(u32, repeat, xdp->batch_size);
local_bh_disable();
xdp_set_return_frame_no_direct();
for (i = 0; i < batch_sz; i++) {
page = page_pool_dev_alloc_pages(xdp->pp);
if (!page) {
err = -ENOMEM;
goto out;
}
head = phys_to_virt(page_to_phys(page));
reset_ctx(head);
ctx = &head->ctx;
frm = &head->frm;
xdp->frame_cnt++;
act = bpf_prog_run_xdp(prog, ctx);
/* if program changed pkt bounds we need to update the xdp_frame */
if (unlikely(ctx_was_changed(head))) {
ret = xdp_update_frame_from_buff(ctx, frm);
if (ret) {
xdp_return_buff(ctx);
continue;
}
}
switch (act) {
case XDP_TX:
/* we can't do a real XDP_TX since we're not in the
* driver, so turn it into a REDIRECT back to the same
* index
*/
ri->tgt_index = xdp->dev->ifindex;
ri->map_id = INT_MAX;
ri->map_type = BPF_MAP_TYPE_UNSPEC;
fallthrough;
case XDP_REDIRECT:
redirect = true;
ret = xdp_do_redirect_frame(xdp->dev, ctx, frm, prog);
if (ret)
xdp_return_buff(ctx);
break;
case XDP_PASS:
frames[nframes++] = frm;
break;
default:
bpf_warn_invalid_xdp_action(NULL, prog, act);
fallthrough;
case XDP_DROP:
xdp_return_buff(ctx);
break;
}
}
out:
if (redirect)
xdp_do_flush();
if (nframes) {
ret = xdp_recv_frames(frames, nframes, xdp->skbs, xdp->dev);
if (ret)
err = ret;
}
xdp_clear_return_frame_no_direct();
local_bh_enable();
return err;
}
static int bpf_test_run_xdp_live(struct bpf_prog *prog, struct xdp_buff *ctx,
u32 repeat, u32 batch_size, u32 *time)
{
struct xdp_test_data xdp = { .batch_size = batch_size };
struct bpf_test_timer t = { .mode = NO_MIGRATE };
int ret;
if (!repeat)
repeat = 1;
ret = xdp_test_run_setup(&xdp, ctx);
if (ret)
return ret;
bpf_test_timer_enter(&t);
do {
xdp.frame_cnt = 0;
ret = xdp_test_run_batch(&xdp, prog, repeat - t.i);
if (unlikely(ret < 0))
break;
} while (bpf_test_timer_continue(&t, xdp.frame_cnt, repeat, &ret, time));
bpf_test_timer_leave(&t);
xdp_test_run_teardown(&xdp);
return ret;
}
static int bpf_test_run(struct bpf_prog *prog, void *ctx, u32 repeat,
u32 *retval, u32 *time, bool xdp)
{
struct bpf_prog_array_item item = {.prog = prog};
struct bpf_run_ctx *old_ctx;
struct bpf_cg_run_ctx run_ctx;
struct bpf_test_timer t = { NO_MIGRATE };
enum bpf_cgroup_storage_type stype;
int ret;
for_each_cgroup_storage_type(stype) {
item.cgroup_storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
if (IS_ERR(item.cgroup_storage[stype])) {
item.cgroup_storage[stype] = NULL;
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return -ENOMEM;
}
}
if (!repeat)
repeat = 1;
bpf_test_timer_enter(&t);
old_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
do {
run_ctx.prog_item = &item;
if (xdp)
*retval = bpf_prog_run_xdp(prog, ctx);
else
*retval = bpf_prog_run(prog, ctx);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, time));
bpf_reset_run_ctx(old_ctx);
bpf_test_timer_leave(&t);
for_each_cgroup_storage_type(stype)
bpf_cgroup_storage_free(item.cgroup_storage[stype]);
return ret;
}
static int bpf_test_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
struct skb_shared_info *sinfo, u32 size,
u32 retval, u32 duration)
{
void __user *data_out = u64_to_user_ptr(kattr->test.data_out);
int err = -EFAULT;
u32 copy_size = size;
/* Clamp copy if the user has provided a size hint, but copy the full
* buffer if not to retain old behaviour.
*/
if (kattr->test.data_size_out &&
copy_size > kattr->test.data_size_out) {
copy_size = kattr->test.data_size_out;
err = -ENOSPC;
}
if (data_out) {
int len = sinfo ? copy_size - sinfo->xdp_frags_size : copy_size;
if (len < 0) {
err = -ENOSPC;
goto out;
}
if (copy_to_user(data_out, data, len))
goto out;
if (sinfo) {
int i, offset = len;
u32 data_len;
for (i = 0; i < sinfo->nr_frags; i++) {
skb_frag_t *frag = &sinfo->frags[i];
if (offset >= copy_size) {
err = -ENOSPC;
break;
}
data_len = min_t(u32, copy_size - offset,
skb_frag_size(frag));
if (copy_to_user(data_out + offset,
skb_frag_address(frag),
data_len))
goto out;
offset += data_len;
}
}
}
if (copy_to_user(&uattr->test.data_size_out, &size, sizeof(size)))
goto out;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
if (copy_to_user(&uattr->test.duration, &duration, sizeof(duration)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
/* Integer types of various sizes and pointer combinations cover variety of
* architecture dependent calling conventions. 7+ can be supported in the
* future.
*/
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"Global functions as their definitions will be in vmlinux BTF");
int noinline bpf_fentry_test1(int a)
{
return a + 1;
}
EXPORT_SYMBOL_GPL(bpf_fentry_test1);
int noinline bpf_fentry_test2(int a, u64 b)
{
return a + b;
}
int noinline bpf_fentry_test3(char a, int b, u64 c)
{
return a + b + c;
}
int noinline bpf_fentry_test4(void *a, char b, int c, u64 d)
{
return (long)a + b + c + d;
}
int noinline bpf_fentry_test5(u64 a, void *b, short c, int d, u64 e)
{
return a + (long)b + c + d + e;
}
int noinline bpf_fentry_test6(u64 a, void *b, short c, int d, void *e, u64 f)
{
return a + (long)b + c + d + (long)e + f;
}
struct bpf_fentry_test_t {
struct bpf_fentry_test_t *a;
};
int noinline bpf_fentry_test7(struct bpf_fentry_test_t *arg)
{
return (long)arg;
}
int noinline bpf_fentry_test8(struct bpf_fentry_test_t *arg)
{
return (long)arg->a;
}
int noinline bpf_modify_return_test(int a, int *b)
{
*b += 1;
return a + *b;
}
u64 noinline bpf_kfunc_call_test1(struct sock *sk, u32 a, u64 b, u32 c, u64 d)
{
return a + b + c + d;
}
int noinline bpf_kfunc_call_test2(struct sock *sk, u32 a, u32 b)
{
return a + b;
}
struct sock * noinline bpf_kfunc_call_test3(struct sock *sk)
{
return sk;
}
struct prog_test_member1 {
int a;
};
struct prog_test_member {
struct prog_test_member1 m;
int c;
};
struct prog_test_ref_kfunc {
int a;
int b;
struct prog_test_member memb;
struct prog_test_ref_kfunc *next;
refcount_t cnt;
};
static struct prog_test_ref_kfunc prog_test_struct = {
.a = 42,
.b = 108,
.next = &prog_test_struct,
.cnt = REFCOUNT_INIT(1),
};
noinline struct prog_test_ref_kfunc *
bpf_kfunc_call_test_acquire(unsigned long *scalar_ptr)
{
refcount_inc(&prog_test_struct.cnt);
return &prog_test_struct;
}
noinline struct prog_test_member *
bpf_kfunc_call_memb_acquire(void)
{
WARN_ON_ONCE(1);
return NULL;
}
noinline void bpf_kfunc_call_test_release(struct prog_test_ref_kfunc *p)
{
if (!p)
return;
refcount_dec(&p->cnt);
}
noinline void bpf_kfunc_call_memb_release(struct prog_test_member *p)
{
}
noinline void bpf_kfunc_call_memb1_release(struct prog_test_member1 *p)
{
WARN_ON_ONCE(1);
}
static int *__bpf_kfunc_call_test_get_mem(struct prog_test_ref_kfunc *p, const int size)
{
if (size > 2 * sizeof(int))
return NULL;
return (int *)p;
}
noinline int *bpf_kfunc_call_test_get_rdwr_mem(struct prog_test_ref_kfunc *p, const int rdwr_buf_size)
{
return __bpf_kfunc_call_test_get_mem(p, rdwr_buf_size);
}
noinline int *bpf_kfunc_call_test_get_rdonly_mem(struct prog_test_ref_kfunc *p, const int rdonly_buf_size)
{
return __bpf_kfunc_call_test_get_mem(p, rdonly_buf_size);
}
/* the next 2 ones can't be really used for testing expect to ensure
* that the verifier rejects the call.
* Acquire functions must return struct pointers, so these ones are
* failing.
*/
noinline int *bpf_kfunc_call_test_acq_rdonly_mem(struct prog_test_ref_kfunc *p, const int rdonly_buf_size)
{
return __bpf_kfunc_call_test_get_mem(p, rdonly_buf_size);
}
noinline void bpf_kfunc_call_int_mem_release(int *p)
{
}
noinline struct prog_test_ref_kfunc *
bpf_kfunc_call_test_kptr_get(struct prog_test_ref_kfunc **pp, int a, int b)
{
struct prog_test_ref_kfunc *p = READ_ONCE(*pp);
if (!p)
return NULL;
refcount_inc(&p->cnt);
return p;
}
struct prog_test_pass1 {
int x0;
struct {
int x1;
struct {
int x2;
struct {
int x3;
};
};
};
};
struct prog_test_pass2 {
int len;
short arr1[4];
struct {
char arr2[4];
unsigned long arr3[8];
} x;
};
struct prog_test_fail1 {
void *p;
int x;
};
struct prog_test_fail2 {
int x8;
struct prog_test_pass1 x;
};
struct prog_test_fail3 {
int len;
char arr1[2];
char arr2[];
};
noinline void bpf_kfunc_call_test_pass_ctx(struct __sk_buff *skb)
{
}
noinline void bpf_kfunc_call_test_pass1(struct prog_test_pass1 *p)
{
}
noinline void bpf_kfunc_call_test_pass2(struct prog_test_pass2 *p)
{
}
noinline void bpf_kfunc_call_test_fail1(struct prog_test_fail1 *p)
{
}
noinline void bpf_kfunc_call_test_fail2(struct prog_test_fail2 *p)
{
}
noinline void bpf_kfunc_call_test_fail3(struct prog_test_fail3 *p)
{
}
noinline void bpf_kfunc_call_test_mem_len_pass1(void *mem, int mem__sz)
{
}
noinline void bpf_kfunc_call_test_mem_len_fail1(void *mem, int len)
{
}
noinline void bpf_kfunc_call_test_mem_len_fail2(u64 *mem, int len)
{
}
noinline void bpf_kfunc_call_test_ref(struct prog_test_ref_kfunc *p)
{
}
noinline void bpf_kfunc_call_test_destructive(void)
{
}
__diag_pop();
BTF_SET8_START(bpf_test_modify_return_ids)
BTF_ID_FLAGS(func, bpf_modify_return_test)
BTF_ID_FLAGS(func, bpf_fentry_test1, KF_SLEEPABLE)
BTF_SET8_END(bpf_test_modify_return_ids)
static const struct btf_kfunc_id_set bpf_test_modify_return_set = {
.owner = THIS_MODULE,
.set = &bpf_test_modify_return_ids,
};
BTF_SET8_START(test_sk_check_kfunc_ids)
BTF_ID_FLAGS(func, bpf_kfunc_call_test1)
BTF_ID_FLAGS(func, bpf_kfunc_call_test2)
BTF_ID_FLAGS(func, bpf_kfunc_call_test3)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_acquire, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_kfunc_call_memb_acquire, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_kfunc_call_memb_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_kfunc_call_memb1_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_get_rdwr_mem, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_get_rdonly_mem, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_acq_rdonly_mem, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_kfunc_call_int_mem_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_kptr_get, KF_ACQUIRE | KF_RET_NULL | KF_KPTR_GET)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass_ctx)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass1)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass2)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail1)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail2)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail3)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_pass1)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_fail1)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_fail2)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_ref, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_kfunc_call_test_destructive, KF_DESTRUCTIVE)
BTF_SET8_END(test_sk_check_kfunc_ids)
static void *bpf_test_init(const union bpf_attr *kattr, u32 user_size,
u32 size, u32 headroom, u32 tailroom)
{
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
void *data;
if (size < ETH_HLEN || size > PAGE_SIZE - headroom - tailroom)
return ERR_PTR(-EINVAL);
if (user_size > size)
return ERR_PTR(-EMSGSIZE);
size = SKB_DATA_ALIGN(size);
data = kzalloc(size + headroom + tailroom, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (copy_from_user(data + headroom, data_in, user_size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
return data;
}
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_fentry_test_t arg = {};
u16 side_effect = 0, ret = 0;
int b = 2, err = -EFAULT;
u32 retval = 0;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
switch (prog->expected_attach_type) {
case BPF_TRACE_FENTRY:
case BPF_TRACE_FEXIT:
if (bpf_fentry_test1(1) != 2 ||
bpf_fentry_test2(2, 3) != 5 ||
bpf_fentry_test3(4, 5, 6) != 15 ||
bpf_fentry_test4((void *)7, 8, 9, 10) != 34 ||
bpf_fentry_test5(11, (void *)12, 13, 14, 15) != 65 ||
bpf_fentry_test6(16, (void *)17, 18, 19, (void *)20, 21) != 111 ||
bpf_fentry_test7((struct bpf_fentry_test_t *)0) != 0 ||
bpf_fentry_test8(&arg) != 0)
goto out;
break;
case BPF_MODIFY_RETURN:
ret = bpf_modify_return_test(1, &b);
if (b != 2)
side_effect = 1;
break;
default:
goto out;
}
retval = ((u32)side_effect << 16) | ret;
if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval)))
goto out;
err = 0;
out:
trace_bpf_test_finish(&err);
return err;
}
struct bpf_raw_tp_test_run_info {
struct bpf_prog *prog;
void *ctx;
u32 retval;
};
static void
__bpf_prog_test_run_raw_tp(void *data)
{
struct bpf_raw_tp_test_run_info *info = data;
rcu_read_lock();
info->retval = bpf_prog_run(info->prog, info->ctx);
rcu_read_unlock();
}
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
struct bpf_raw_tp_test_run_info info;
int cpu = kattr->test.cpu, err = 0;
int current_cpu;
/* doesn't support data_in/out, ctx_out, duration, or repeat */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > MAX_BPF_FUNC_ARGS * sizeof(u64))
return -EINVAL;
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 && cpu != 0)
return -EINVAL;
if (ctx_size_in) {
info.ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(info.ctx))
return PTR_ERR(info.ctx);
} else {
info.ctx = NULL;
}
info.prog = prog;
current_cpu = get_cpu();
if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 ||
cpu == current_cpu) {
__bpf_prog_test_run_raw_tp(&info);
} else if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
/* smp_call_function_single() also checks cpu_online()
* after csd_lock(). However, since cpu is from user
* space, let's do an extra quick check to filter out
* invalid value before smp_call_function_single().
*/
err = -ENXIO;
} else {
err = smp_call_function_single(cpu, __bpf_prog_test_run_raw_tp,
&info, 1);
}
put_cpu();
if (!err &&
copy_to_user(&uattr->test.retval, &info.retval, sizeof(u32)))
err = -EFAULT;
kfree(info.ctx);
return err;
}
static void *bpf_ctx_init(const union bpf_attr *kattr, u32 max_size)
{
void __user *data_in = u64_to_user_ptr(kattr->test.ctx_in);
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
u32 size = kattr->test.ctx_size_in;
void *data;
int err;
if (!data_in && !data_out)
return NULL;
data = kzalloc(max_size, GFP_USER);
if (!data)
return ERR_PTR(-ENOMEM);
if (data_in) {
err = bpf_check_uarg_tail_zero(USER_BPFPTR(data_in), max_size, size);
if (err) {
kfree(data);
return ERR_PTR(err);
}
size = min_t(u32, max_size, size);
if (copy_from_user(data, data_in, size)) {
kfree(data);
return ERR_PTR(-EFAULT);
}
}
return data;
}
static int bpf_ctx_finish(const union bpf_attr *kattr,
union bpf_attr __user *uattr, const void *data,
u32 size)
{
void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out);
int err = -EFAULT;
u32 copy_size = size;
if (!data || !data_out)
return 0;
if (copy_size > kattr->test.ctx_size_out) {
copy_size = kattr->test.ctx_size_out;
err = -ENOSPC;
}
if (copy_to_user(data_out, data, copy_size))
goto out;
if (copy_to_user(&uattr->test.ctx_size_out, &size, sizeof(size)))
goto out;
if (err != -ENOSPC)
err = 0;
out:
return err;
}
/**
* range_is_zero - test whether buffer is initialized
* @buf: buffer to check
* @from: check from this position
* @to: check up until (excluding) this position
*
* This function returns true if the there is a non-zero byte
* in the buf in the range [from,to).
*/
static inline bool range_is_zero(void *buf, size_t from, size_t to)
{
return !memchr_inv((u8 *)buf + from, 0, to - from);
}
static int convert___skb_to_skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return 0;
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(__skb, 0, offsetof(struct __sk_buff, mark)))
return -EINVAL;
/* mark is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, mark),
offsetof(struct __sk_buff, priority)))
return -EINVAL;
/* priority is allowed */
/* ingress_ifindex is allowed */
/* ifindex is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, ifindex),
offsetof(struct __sk_buff, cb)))
return -EINVAL;
/* cb is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, cb),
offsetof(struct __sk_buff, tstamp)))
return -EINVAL;
/* tstamp is allowed */
/* wire_len is allowed */
/* gso_segs is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
offsetof(struct __sk_buff, gso_size)))
return -EINVAL;
/* gso_size is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_size),
offsetof(struct __sk_buff, hwtstamp)))
return -EINVAL;
/* hwtstamp is allowed */
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, hwtstamp),
sizeof(struct __sk_buff)))
return -EINVAL;
skb->mark = __skb->mark;
skb->priority = __skb->priority;
skb->skb_iif = __skb->ingress_ifindex;
skb->tstamp = __skb->tstamp;
memcpy(&cb->data, __skb->cb, QDISC_CB_PRIV_LEN);
if (__skb->wire_len == 0) {
cb->pkt_len = skb->len;
} else {
if (__skb->wire_len < skb->len ||
__skb->wire_len > GSO_LEGACY_MAX_SIZE)
return -EINVAL;
cb->pkt_len = __skb->wire_len;
}
if (__skb->gso_segs > GSO_MAX_SEGS)
return -EINVAL;
skb_shinfo(skb)->gso_segs = __skb->gso_segs;
skb_shinfo(skb)->gso_size = __skb->gso_size;
skb_shinfo(skb)->hwtstamps.hwtstamp = __skb->hwtstamp;
return 0;
}
static void convert_skb_to___skb(struct sk_buff *skb, struct __sk_buff *__skb)
{
struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb;
if (!__skb)
return;
__skb->mark = skb->mark;
__skb->priority = skb->priority;
__skb->ingress_ifindex = skb->skb_iif;
__skb->ifindex = skb->dev->ifindex;
__skb->tstamp = skb->tstamp;
memcpy(__skb->cb, &cb->data, QDISC_CB_PRIV_LEN);
__skb->wire_len = cb->pkt_len;
__skb->gso_segs = skb_shinfo(skb)->gso_segs;
__skb->hwtstamp = skb_shinfo(skb)->hwtstamps.hwtstamp;
}
static struct proto bpf_dummy_proto = {
.name = "bpf_dummy",
.owner = THIS_MODULE,
.obj_size = sizeof(struct sock),
};
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool is_l2 = false, is_direct_pkt_access = false;
struct net *net = current->nsproxy->net_ns;
struct net_device *dev = net->loopback_dev;
u32 size = kattr->test.data_size_in;
u32 repeat = kattr->test.repeat;
struct __sk_buff *ctx = NULL;
u32 retval, duration;
int hh_len = ETH_HLEN;
struct sk_buff *skb;
struct sock *sk;
void *data;
int ret;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in,
size, NET_SKB_PAD + NET_IP_ALIGN,
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (IS_ERR(data))
return PTR_ERR(data);
ctx = bpf_ctx_init(kattr, sizeof(struct __sk_buff));
if (IS_ERR(ctx)) {
kfree(data);
return PTR_ERR(ctx);
}
switch (prog->type) {
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
is_l2 = true;
fallthrough;
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_XMIT:
is_direct_pkt_access = true;
break;
default:
break;
}
sk = sk_alloc(net, AF_UNSPEC, GFP_USER, &bpf_dummy_proto, 1);
if (!sk) {
kfree(data);
kfree(ctx);
return -ENOMEM;
}
sock_init_data(NULL, sk);
skb = slab_build_skb(data);
if (!skb) {
kfree(data);
kfree(ctx);
sk_free(sk);
return -ENOMEM;
}
skb->sk = sk;
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
__skb_put(skb, size);
if (ctx && ctx->ifindex > 1) {
dev = dev_get_by_index(net, ctx->ifindex);
if (!dev) {
ret = -ENODEV;
goto out;
}
}
skb->protocol = eth_type_trans(skb, dev);
skb_reset_network_header(skb);
switch (skb->protocol) {
case htons(ETH_P_IP):
sk->sk_family = AF_INET;
if (sizeof(struct iphdr) <= skb_headlen(skb)) {
sk->sk_rcv_saddr = ip_hdr(skb)->saddr;
sk->sk_daddr = ip_hdr(skb)->daddr;
}
break;
#if IS_ENABLED(CONFIG_IPV6)
case htons(ETH_P_IPV6):
sk->sk_family = AF_INET6;
if (sizeof(struct ipv6hdr) <= skb_headlen(skb)) {
sk->sk_v6_rcv_saddr = ipv6_hdr(skb)->saddr;
sk->sk_v6_daddr = ipv6_hdr(skb)->daddr;
}
break;
#endif
default:
break;
}
if (is_l2)
__skb_push(skb, hh_len);
if (is_direct_pkt_access)
bpf_compute_data_pointers(skb);
ret = convert___skb_to_skb(skb, ctx);
if (ret)
goto out;
ret = bpf_test_run(prog, skb, repeat, &retval, &duration, false);
if (ret)
goto out;
if (!is_l2) {
if (skb_headroom(skb) < hh_len) {
int nhead = HH_DATA_ALIGN(hh_len - skb_headroom(skb));
if (pskb_expand_head(skb, nhead, 0, GFP_USER)) {
ret = -ENOMEM;
goto out;
}
}
memset(__skb_push(skb, hh_len), 0, hh_len);
}
convert_skb_to___skb(skb, ctx);
size = skb->len;
/* bpf program can never convert linear skb to non-linear */
if (WARN_ON_ONCE(skb_is_nonlinear(skb)))
size = skb_headlen(skb);
ret = bpf_test_finish(kattr, uattr, skb->data, NULL, size, retval,
duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct __sk_buff));
out:
if (dev && dev != net->loopback_dev)
dev_put(dev);
kfree_skb(skb);
sk_free(sk);
kfree(ctx);
return ret;
}
static int xdp_convert_md_to_buff(struct xdp_md *xdp_md, struct xdp_buff *xdp)
{
unsigned int ingress_ifindex, rx_queue_index;
struct netdev_rx_queue *rxqueue;
struct net_device *device;
if (!xdp_md)
return 0;
if (xdp_md->egress_ifindex != 0)
return -EINVAL;
ingress_ifindex = xdp_md->ingress_ifindex;
rx_queue_index = xdp_md->rx_queue_index;
if (!ingress_ifindex && rx_queue_index)
return -EINVAL;
if (ingress_ifindex) {
device = dev_get_by_index(current->nsproxy->net_ns,
ingress_ifindex);
if (!device)
return -ENODEV;
if (rx_queue_index >= device->real_num_rx_queues)
goto free_dev;
rxqueue = __netif_get_rx_queue(device, rx_queue_index);
if (!xdp_rxq_info_is_reg(&rxqueue->xdp_rxq))
goto free_dev;
xdp->rxq = &rxqueue->xdp_rxq;
/* The device is now tracked in the xdp->rxq for later
* dev_put()
*/
}
xdp->data = xdp->data_meta + xdp_md->data;
return 0;
free_dev:
dev_put(device);
return -EINVAL;
}
static void xdp_convert_buff_to_md(struct xdp_buff *xdp, struct xdp_md *xdp_md)
{
if (!xdp_md)
return;
xdp_md->data = xdp->data - xdp->data_meta;
xdp_md->data_end = xdp->data_end - xdp->data_meta;
if (xdp_md->ingress_ifindex)
dev_put(xdp->rxq->dev);
}
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
bool do_live = (kattr->test.flags & BPF_F_TEST_XDP_LIVE_FRAMES);
u32 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
u32 batch_size = kattr->test.batch_size;
u32 retval = 0, duration, max_data_sz;
u32 size = kattr->test.data_size_in;
u32 headroom = XDP_PACKET_HEADROOM;
u32 repeat = kattr->test.repeat;
struct netdev_rx_queue *rxqueue;
struct skb_shared_info *sinfo;
struct xdp_buff xdp = {};
int i, ret = -EINVAL;
struct xdp_md *ctx;
void *data;
if (prog->expected_attach_type == BPF_XDP_DEVMAP ||
prog->expected_attach_type == BPF_XDP_CPUMAP)
return -EINVAL;
if (kattr->test.flags & ~BPF_F_TEST_XDP_LIVE_FRAMES)
return -EINVAL;
if (do_live) {
if (!batch_size)
batch_size = NAPI_POLL_WEIGHT;
else if (batch_size > TEST_XDP_MAX_BATCH)
return -E2BIG;
headroom += sizeof(struct xdp_page_head);
} else if (batch_size) {
return -EINVAL;
}
ctx = bpf_ctx_init(kattr, sizeof(struct xdp_md));
if (IS_ERR(ctx))
return PTR_ERR(ctx);
if (ctx) {
/* There can't be user provided data before the meta data */
if (ctx->data_meta || ctx->data_end != size ||
ctx->data > ctx->data_end ||
unlikely(xdp_metalen_invalid(ctx->data)) ||
(do_live && (kattr->test.data_out || kattr->test.ctx_out)))
goto free_ctx;
/* Meta data is allocated from the headroom */
headroom -= ctx->data;
}
max_data_sz = 4096 - headroom - tailroom;
if (size > max_data_sz) {
/* disallow live data mode for jumbo frames */
if (do_live)
goto free_ctx;
size = max_data_sz;
}
data = bpf_test_init(kattr, size, max_data_sz, headroom, tailroom);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
goto free_ctx;
}
rxqueue = __netif_get_rx_queue(current->nsproxy->net_ns->loopback_dev, 0);
rxqueue->xdp_rxq.frag_size = headroom + max_data_sz + tailroom;
xdp_init_buff(&xdp, rxqueue->xdp_rxq.frag_size, &rxqueue->xdp_rxq);
xdp_prepare_buff(&xdp, data, headroom, size, true);
sinfo = xdp_get_shared_info_from_buff(&xdp);
ret = xdp_convert_md_to_buff(ctx, &xdp);
if (ret)
goto free_data;
if (unlikely(kattr->test.data_size_in > size)) {
void __user *data_in = u64_to_user_ptr(kattr->test.data_in);
while (size < kattr->test.data_size_in) {
struct page *page;
skb_frag_t *frag;
u32 data_len;
if (sinfo->nr_frags == MAX_SKB_FRAGS) {
ret = -ENOMEM;
goto out;
}
page = alloc_page(GFP_KERNEL);
if (!page) {
ret = -ENOMEM;
goto out;
}
frag = &sinfo->frags[sinfo->nr_frags++];
__skb_frag_set_page(frag, page);
data_len = min_t(u32, kattr->test.data_size_in - size,
PAGE_SIZE);
skb_frag_size_set(frag, data_len);
if (copy_from_user(page_address(page), data_in + size,
data_len)) {
ret = -EFAULT;
goto out;
}
sinfo->xdp_frags_size += data_len;
size += data_len;
}
xdp_buff_set_frags_flag(&xdp);
}
if (repeat > 1)
bpf_prog_change_xdp(NULL, prog);
if (do_live)
ret = bpf_test_run_xdp_live(prog, &xdp, repeat, batch_size, &duration);
else
ret = bpf_test_run(prog, &xdp, repeat, &retval, &duration, true);
/* We convert the xdp_buff back to an xdp_md before checking the return
* code so the reference count of any held netdevice will be decremented
* even if the test run failed.
*/
xdp_convert_buff_to_md(&xdp, ctx);
if (ret)
goto out;
size = xdp.data_end - xdp.data_meta + sinfo->xdp_frags_size;
ret = bpf_test_finish(kattr, uattr, xdp.data_meta, sinfo, size,
retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, ctx,
sizeof(struct xdp_md));
out:
if (repeat > 1)
bpf_prog_change_xdp(prog, NULL);
free_data:
for (i = 0; i < sinfo->nr_frags; i++)
__free_page(skb_frag_page(&sinfo->frags[i]));
kfree(data);
free_ctx:
kfree(ctx);
return ret;
}
static int verify_user_bpf_flow_keys(struct bpf_flow_keys *ctx)
{
/* make sure the fields we don't use are zeroed */
if (!range_is_zero(ctx, 0, offsetof(struct bpf_flow_keys, flags)))
return -EINVAL;
/* flags is allowed */
if (!range_is_zero(ctx, offsetofend(struct bpf_flow_keys, flags),
sizeof(struct bpf_flow_keys)))
return -EINVAL;
return 0;
}
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
u32 size = kattr->test.data_size_in;
struct bpf_flow_dissector ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_flow_keys *user_ctx;
struct bpf_flow_keys flow_keys;
const struct ethhdr *eth;
unsigned int flags = 0;
u32 retval, duration;
void *data;
int ret;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (size < ETH_HLEN)
return -EINVAL;
data = bpf_test_init(kattr, kattr->test.data_size_in, size, 0, 0);
if (IS_ERR(data))
return PTR_ERR(data);
eth = (struct ethhdr *)data;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(struct bpf_flow_keys));
if (IS_ERR(user_ctx)) {
kfree(data);
return PTR_ERR(user_ctx);
}
if (user_ctx) {
ret = verify_user_bpf_flow_keys(user_ctx);
if (ret)
goto out;
flags = user_ctx->flags;
}
ctx.flow_keys = &flow_keys;
ctx.data = data;
ctx.data_end = (__u8 *)data + size;
bpf_test_timer_enter(&t);
do {
retval = bpf_flow_dissect(prog, &ctx, eth->h_proto, ETH_HLEN,
size, flags);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
ret = bpf_test_finish(kattr, uattr, &flow_keys, NULL,
sizeof(flow_keys), retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx,
sizeof(struct bpf_flow_keys));
out:
kfree(user_ctx);
kfree(data);
return ret;
}
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
struct bpf_test_timer t = { NO_PREEMPT };
struct bpf_prog_array *progs = NULL;
struct bpf_sk_lookup_kern ctx = {};
u32 repeat = kattr->test.repeat;
struct bpf_sk_lookup *user_ctx;
u32 retval, duration;
int ret = -EINVAL;
if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size)
return -EINVAL;
if (kattr->test.data_in || kattr->test.data_size_in || kattr->test.data_out ||
kattr->test.data_size_out)
return -EINVAL;
if (!repeat)
repeat = 1;
user_ctx = bpf_ctx_init(kattr, sizeof(*user_ctx));
if (IS_ERR(user_ctx))
return PTR_ERR(user_ctx);
if (!user_ctx)
return -EINVAL;
if (user_ctx->sk)
goto out;
if (!range_is_zero(user_ctx, offsetofend(typeof(*user_ctx), local_port), sizeof(*user_ctx)))
goto out;
if (user_ctx->local_port > U16_MAX) {
ret = -ERANGE;
goto out;
}
ctx.family = (u16)user_ctx->family;
ctx.protocol = (u16)user_ctx->protocol;
ctx.dport = (u16)user_ctx->local_port;
ctx.sport = user_ctx->remote_port;
switch (ctx.family) {
case AF_INET:
ctx.v4.daddr = (__force __be32)user_ctx->local_ip4;
ctx.v4.saddr = (__force __be32)user_ctx->remote_ip4;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
ctx.v6.daddr = (struct in6_addr *)user_ctx->local_ip6;
ctx.v6.saddr = (struct in6_addr *)user_ctx->remote_ip6;
break;
#endif
default:
ret = -EAFNOSUPPORT;
goto out;
}
progs = bpf_prog_array_alloc(1, GFP_KERNEL);
if (!progs) {
ret = -ENOMEM;
goto out;
}
progs->items[0].prog = prog;
bpf_test_timer_enter(&t);
do {
ctx.selected_sk = NULL;
retval = BPF_PROG_SK_LOOKUP_RUN_ARRAY(progs, ctx, bpf_prog_run);
} while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration));
bpf_test_timer_leave(&t);
if (ret < 0)
goto out;
user_ctx->cookie = 0;
if (ctx.selected_sk) {
if (ctx.selected_sk->sk_reuseport && !ctx.no_reuseport) {
ret = -EOPNOTSUPP;
goto out;
}
user_ctx->cookie = sock_gen_cookie(ctx.selected_sk);
}
ret = bpf_test_finish(kattr, uattr, NULL, NULL, 0, retval, duration);
if (!ret)
ret = bpf_ctx_finish(kattr, uattr, user_ctx, sizeof(*user_ctx));
out:
bpf_prog_array_free(progs);
kfree(user_ctx);
return ret;
}
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in);
__u32 ctx_size_in = kattr->test.ctx_size_in;
void *ctx = NULL;
u32 retval;
int err = 0;
/* doesn't support data_in/out, ctx_out, duration, or repeat or flags */
if (kattr->test.data_in || kattr->test.data_out ||
kattr->test.ctx_out || kattr->test.duration ||
kattr->test.repeat || kattr->test.flags ||
kattr->test.batch_size)
return -EINVAL;
if (ctx_size_in < prog->aux->max_ctx_offset ||
ctx_size_in > U16_MAX)
return -EINVAL;
if (ctx_size_in) {
ctx = memdup_user(ctx_in, ctx_size_in);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
}
rcu_read_lock_trace();
retval = bpf_prog_run_pin_on_cpu(prog, ctx);
rcu_read_unlock_trace();
if (copy_to_user(&uattr->test.retval, &retval, sizeof(u32))) {
err = -EFAULT;
goto out;
}
if (ctx_size_in)
if (copy_to_user(ctx_in, ctx, ctx_size_in))
err = -EFAULT;
out:
kfree(ctx);
return err;
}
static const struct btf_kfunc_id_set bpf_prog_test_kfunc_set = {
.owner = THIS_MODULE,
.set = &test_sk_check_kfunc_ids,
};
BTF_ID_LIST(bpf_prog_test_dtor_kfunc_ids)
BTF_ID(struct, prog_test_ref_kfunc)
BTF_ID(func, bpf_kfunc_call_test_release)
BTF_ID(struct, prog_test_member)
BTF_ID(func, bpf_kfunc_call_memb_release)
static int __init bpf_prog_test_run_init(void)
{
const struct btf_id_dtor_kfunc bpf_prog_test_dtor_kfunc[] = {
{
.btf_id = bpf_prog_test_dtor_kfunc_ids[0],
.kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[1]
},
{
.btf_id = bpf_prog_test_dtor_kfunc_ids[2],
.kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[3],
},
};
int ret;
ret = register_btf_fmodret_id_set(&bpf_test_modify_return_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_prog_test_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_prog_test_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &bpf_prog_test_kfunc_set);
return ret ?: register_btf_id_dtor_kfuncs(bpf_prog_test_dtor_kfunc,
ARRAY_SIZE(bpf_prog_test_dtor_kfunc),
THIS_MODULE);
}
late_initcall(bpf_prog_test_run_init);