| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * File: mca.c |
| * Purpose: Generic MCA handling layer |
| * |
| * Copyright (C) 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * Copyright (C) 2002 Dell Inc. |
| * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> |
| * |
| * Copyright (C) 2002 Intel |
| * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> |
| * |
| * Copyright (C) 2001 Intel |
| * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> |
| * |
| * Copyright (C) 2000 Intel |
| * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> |
| * |
| * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. |
| * Copyright (C) Vijay Chander <vijay@engr.sgi.com> |
| * |
| * Copyright (C) 2006 FUJITSU LIMITED |
| * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> |
| * |
| * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> |
| * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, |
| * added min save state dump, added INIT handler. |
| * |
| * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> |
| * Added setup of CMCI and CPEI IRQs, logging of corrected platform |
| * errors, completed code for logging of corrected & uncorrected |
| * machine check errors, and updated for conformance with Nov. 2000 |
| * revision of the SAL 3.0 spec. |
| * |
| * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> |
| * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, |
| * set SAL default return values, changed error record structure to |
| * linked list, added init call to sal_get_state_info_size(). |
| * |
| * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> |
| * GUID cleanups. |
| * |
| * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> |
| * Added INIT backtrace support. |
| * |
| * 2003-12-08 Keith Owens <kaos@sgi.com> |
| * smp_call_function() must not be called from interrupt context |
| * (can deadlock on tasklist_lock). |
| * Use keventd to call smp_call_function(). |
| * |
| * 2004-02-01 Keith Owens <kaos@sgi.com> |
| * Avoid deadlock when using printk() for MCA and INIT records. |
| * Delete all record printing code, moved to salinfo_decode in user |
| * space. Mark variables and functions static where possible. |
| * Delete dead variables and functions. Reorder to remove the need |
| * for forward declarations and to consolidate related code. |
| * |
| * 2005-08-12 Keith Owens <kaos@sgi.com> |
| * Convert MCA/INIT handlers to use per event stacks and SAL/OS |
| * state. |
| * |
| * 2005-10-07 Keith Owens <kaos@sgi.com> |
| * Add notify_die() hooks. |
| * |
| * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> |
| * Add printing support for MCA/INIT. |
| * |
| * 2007-04-27 Russ Anderson <rja@sgi.com> |
| * Support multiple cpus going through OS_MCA in the same event. |
| */ |
| #include <linux/jiffies.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/memblock.h> |
| #include <linux/acpi.h> |
| #include <linux/timer.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/smp.h> |
| #include <linux/workqueue.h> |
| #include <linux/cpumask.h> |
| #include <linux/kdebug.h> |
| #include <linux/cpu.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/delay.h> |
| #include <asm/meminit.h> |
| #include <asm/page.h> |
| #include <asm/ptrace.h> |
| #include <asm/sal.h> |
| #include <asm/mca.h> |
| #include <asm/kexec.h> |
| |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| #include <asm/tlb.h> |
| |
| #include "mca_drv.h" |
| #include "entry.h" |
| #include "irq.h" |
| |
| #if defined(IA64_MCA_DEBUG_INFO) |
| # define IA64_MCA_DEBUG(fmt...) printk(fmt) |
| #else |
| # define IA64_MCA_DEBUG(fmt...) |
| #endif |
| |
| #define NOTIFY_INIT(event, regs, arg, spin) \ |
| do { \ |
| if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ |
| == NOTIFY_STOP) && ((spin) == 1)) \ |
| ia64_mca_spin(__func__); \ |
| } while (0) |
| |
| #define NOTIFY_MCA(event, regs, arg, spin) \ |
| do { \ |
| if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ |
| == NOTIFY_STOP) && ((spin) == 1)) \ |
| ia64_mca_spin(__func__); \ |
| } while (0) |
| |
| /* Used by mca_asm.S */ |
| DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ |
| DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ |
| DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ |
| DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ |
| DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ |
| |
| unsigned long __per_cpu_mca[NR_CPUS]; |
| |
| /* In mca_asm.S */ |
| extern void ia64_os_init_dispatch_monarch (void); |
| extern void ia64_os_init_dispatch_slave (void); |
| |
| static int monarch_cpu = -1; |
| |
| static ia64_mc_info_t ia64_mc_info; |
| |
| #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ |
| #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ |
| #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ |
| #define CPE_HISTORY_LENGTH 5 |
| #define CMC_HISTORY_LENGTH 5 |
| |
| static struct timer_list cpe_poll_timer; |
| static struct timer_list cmc_poll_timer; |
| /* |
| * This variable tells whether we are currently in polling mode. |
| * Start with this in the wrong state so we won't play w/ timers |
| * before the system is ready. |
| */ |
| static int cmc_polling_enabled = 1; |
| |
| /* |
| * Clearing this variable prevents CPE polling from getting activated |
| * in mca_late_init. Use it if your system doesn't provide a CPEI, |
| * but encounters problems retrieving CPE logs. This should only be |
| * necessary for debugging. |
| */ |
| static int cpe_poll_enabled = 1; |
| |
| extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); |
| |
| static int mca_init __initdata; |
| |
| /* |
| * limited & delayed printing support for MCA/INIT handler |
| */ |
| |
| #define mprintk(fmt...) ia64_mca_printk(fmt) |
| |
| #define MLOGBUF_SIZE (512+256*NR_CPUS) |
| #define MLOGBUF_MSGMAX 256 |
| static char mlogbuf[MLOGBUF_SIZE]; |
| static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ |
| static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ |
| static unsigned long mlogbuf_start; |
| static unsigned long mlogbuf_end; |
| static unsigned int mlogbuf_finished = 0; |
| static unsigned long mlogbuf_timestamp = 0; |
| |
| static int loglevel_save = -1; |
| #define BREAK_LOGLEVEL(__console_loglevel) \ |
| oops_in_progress = 1; \ |
| if (loglevel_save < 0) \ |
| loglevel_save = __console_loglevel; \ |
| __console_loglevel = 15; |
| |
| #define RESTORE_LOGLEVEL(__console_loglevel) \ |
| if (loglevel_save >= 0) { \ |
| __console_loglevel = loglevel_save; \ |
| loglevel_save = -1; \ |
| } \ |
| mlogbuf_finished = 0; \ |
| oops_in_progress = 0; |
| |
| /* |
| * Push messages into buffer, print them later if not urgent. |
| */ |
| void ia64_mca_printk(const char *fmt, ...) |
| { |
| va_list args; |
| int printed_len; |
| char temp_buf[MLOGBUF_MSGMAX]; |
| char *p; |
| |
| va_start(args, fmt); |
| printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); |
| va_end(args); |
| |
| /* Copy the output into mlogbuf */ |
| if (oops_in_progress) { |
| /* mlogbuf was abandoned, use printk directly instead. */ |
| printk("%s", temp_buf); |
| } else { |
| spin_lock(&mlogbuf_wlock); |
| for (p = temp_buf; *p; p++) { |
| unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; |
| if (next != mlogbuf_start) { |
| mlogbuf[mlogbuf_end] = *p; |
| mlogbuf_end = next; |
| } else { |
| /* buffer full */ |
| break; |
| } |
| } |
| mlogbuf[mlogbuf_end] = '\0'; |
| spin_unlock(&mlogbuf_wlock); |
| } |
| } |
| EXPORT_SYMBOL(ia64_mca_printk); |
| |
| /* |
| * Print buffered messages. |
| * NOTE: call this after returning normal context. (ex. from salinfod) |
| */ |
| void ia64_mlogbuf_dump(void) |
| { |
| char temp_buf[MLOGBUF_MSGMAX]; |
| char *p; |
| unsigned long index; |
| unsigned long flags; |
| unsigned int printed_len; |
| |
| /* Get output from mlogbuf */ |
| while (mlogbuf_start != mlogbuf_end) { |
| temp_buf[0] = '\0'; |
| p = temp_buf; |
| printed_len = 0; |
| |
| spin_lock_irqsave(&mlogbuf_rlock, flags); |
| |
| index = mlogbuf_start; |
| while (index != mlogbuf_end) { |
| *p = mlogbuf[index]; |
| index = (index + 1) % MLOGBUF_SIZE; |
| if (!*p) |
| break; |
| p++; |
| if (++printed_len >= MLOGBUF_MSGMAX - 1) |
| break; |
| } |
| *p = '\0'; |
| if (temp_buf[0]) |
| printk("%s", temp_buf); |
| mlogbuf_start = index; |
| |
| mlogbuf_timestamp = 0; |
| spin_unlock_irqrestore(&mlogbuf_rlock, flags); |
| } |
| } |
| EXPORT_SYMBOL(ia64_mlogbuf_dump); |
| |
| /* |
| * Call this if system is going to down or if immediate flushing messages to |
| * console is required. (ex. recovery was failed, crash dump is going to be |
| * invoked, long-wait rendezvous etc.) |
| * NOTE: this should be called from monarch. |
| */ |
| static void ia64_mlogbuf_finish(int wait) |
| { |
| BREAK_LOGLEVEL(console_loglevel); |
| |
| spin_lock_init(&mlogbuf_rlock); |
| ia64_mlogbuf_dump(); |
| printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " |
| "MCA/INIT might be dodgy or fail.\n"); |
| |
| if (!wait) |
| return; |
| |
| /* wait for console */ |
| printk("Delaying for 5 seconds...\n"); |
| udelay(5*1000000); |
| |
| mlogbuf_finished = 1; |
| } |
| |
| /* |
| * Print buffered messages from INIT context. |
| */ |
| static void ia64_mlogbuf_dump_from_init(void) |
| { |
| if (mlogbuf_finished) |
| return; |
| |
| if (mlogbuf_timestamp && |
| time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { |
| printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " |
| " and the system seems to be messed up.\n"); |
| ia64_mlogbuf_finish(0); |
| return; |
| } |
| |
| if (!spin_trylock(&mlogbuf_rlock)) { |
| printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " |
| "Generated messages other than stack dump will be " |
| "buffered to mlogbuf and will be printed later.\n"); |
| printk(KERN_ERR "INIT: If messages would not printed after " |
| "this INIT, wait 30sec and assert INIT again.\n"); |
| if (!mlogbuf_timestamp) |
| mlogbuf_timestamp = jiffies; |
| return; |
| } |
| spin_unlock(&mlogbuf_rlock); |
| ia64_mlogbuf_dump(); |
| } |
| |
| static inline void |
| ia64_mca_spin(const char *func) |
| { |
| if (monarch_cpu == smp_processor_id()) |
| ia64_mlogbuf_finish(0); |
| mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); |
| while (1) |
| cpu_relax(); |
| } |
| /* |
| * IA64_MCA log support |
| */ |
| #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ |
| #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ |
| |
| typedef struct ia64_state_log_s |
| { |
| spinlock_t isl_lock; |
| int isl_index; |
| unsigned long isl_count; |
| ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ |
| } ia64_state_log_t; |
| |
| static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; |
| |
| #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) |
| #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) |
| #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) |
| #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index |
| #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index |
| #define IA64_LOG_INDEX_INC(it) \ |
| {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ |
| ia64_state_log[it].isl_count++;} |
| #define IA64_LOG_INDEX_DEC(it) \ |
| ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index |
| #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) |
| #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) |
| #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count |
| |
| static inline void ia64_log_allocate(int it, u64 size) |
| { |
| ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = |
| (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); |
| if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) |
| panic("%s: Failed to allocate %llu bytes\n", __func__, size); |
| |
| ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = |
| (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); |
| if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) |
| panic("%s: Failed to allocate %llu bytes\n", __func__, size); |
| } |
| |
| /* |
| * ia64_log_init |
| * Reset the OS ia64 log buffer |
| * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) |
| * Outputs : None |
| */ |
| static void __init |
| ia64_log_init(int sal_info_type) |
| { |
| u64 max_size = 0; |
| |
| IA64_LOG_NEXT_INDEX(sal_info_type) = 0; |
| IA64_LOG_LOCK_INIT(sal_info_type); |
| |
| // SAL will tell us the maximum size of any error record of this type |
| max_size = ia64_sal_get_state_info_size(sal_info_type); |
| if (!max_size) |
| /* alloc_bootmem() doesn't like zero-sized allocations! */ |
| return; |
| |
| // set up OS data structures to hold error info |
| ia64_log_allocate(sal_info_type, max_size); |
| } |
| |
| /* |
| * ia64_log_get |
| * |
| * Get the current MCA log from SAL and copy it into the OS log buffer. |
| * |
| * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) |
| * irq_safe whether you can use printk at this point |
| * Outputs : size (total record length) |
| * *buffer (ptr to error record) |
| * |
| */ |
| static u64 |
| ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) |
| { |
| sal_log_record_header_t *log_buffer; |
| u64 total_len = 0; |
| unsigned long s; |
| |
| IA64_LOG_LOCK(sal_info_type); |
| |
| /* Get the process state information */ |
| log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); |
| |
| total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); |
| |
| if (total_len) { |
| IA64_LOG_INDEX_INC(sal_info_type); |
| IA64_LOG_UNLOCK(sal_info_type); |
| if (irq_safe) { |
| IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", |
| __func__, sal_info_type, total_len); |
| } |
| *buffer = (u8 *) log_buffer; |
| return total_len; |
| } else { |
| IA64_LOG_UNLOCK(sal_info_type); |
| return 0; |
| } |
| } |
| |
| /* |
| * ia64_mca_log_sal_error_record |
| * |
| * This function retrieves a specified error record type from SAL |
| * and wakes up any processes waiting for error records. |
| * |
| * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) |
| * FIXME: remove MCA and irq_safe. |
| */ |
| static void |
| ia64_mca_log_sal_error_record(int sal_info_type) |
| { |
| u8 *buffer; |
| sal_log_record_header_t *rh; |
| u64 size; |
| int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; |
| #ifdef IA64_MCA_DEBUG_INFO |
| static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; |
| #endif |
| |
| size = ia64_log_get(sal_info_type, &buffer, irq_safe); |
| if (!size) |
| return; |
| |
| salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); |
| |
| if (irq_safe) |
| IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", |
| smp_processor_id(), |
| sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); |
| |
| /* Clear logs from corrected errors in case there's no user-level logger */ |
| rh = (sal_log_record_header_t *)buffer; |
| if (rh->severity == sal_log_severity_corrected) |
| ia64_sal_clear_state_info(sal_info_type); |
| } |
| |
| /* |
| * search_mca_table |
| * See if the MCA surfaced in an instruction range |
| * that has been tagged as recoverable. |
| * |
| * Inputs |
| * first First address range to check |
| * last Last address range to check |
| * ip Instruction pointer, address we are looking for |
| * |
| * Return value: |
| * 1 on Success (in the table)/ 0 on Failure (not in the table) |
| */ |
| int |
| search_mca_table (const struct mca_table_entry *first, |
| const struct mca_table_entry *last, |
| unsigned long ip) |
| { |
| const struct mca_table_entry *curr; |
| u64 curr_start, curr_end; |
| |
| curr = first; |
| while (curr <= last) { |
| curr_start = (u64) &curr->start_addr + curr->start_addr; |
| curr_end = (u64) &curr->end_addr + curr->end_addr; |
| |
| if ((ip >= curr_start) && (ip <= curr_end)) { |
| return 1; |
| } |
| curr++; |
| } |
| return 0; |
| } |
| |
| /* Given an address, look for it in the mca tables. */ |
| int mca_recover_range(unsigned long addr) |
| { |
| extern struct mca_table_entry __start___mca_table[]; |
| extern struct mca_table_entry __stop___mca_table[]; |
| |
| return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); |
| } |
| EXPORT_SYMBOL_GPL(mca_recover_range); |
| |
| int cpe_vector = -1; |
| int ia64_cpe_irq = -1; |
| |
| static irqreturn_t |
| ia64_mca_cpe_int_handler (int cpe_irq, void *arg) |
| { |
| static unsigned long cpe_history[CPE_HISTORY_LENGTH]; |
| static int index; |
| static DEFINE_SPINLOCK(cpe_history_lock); |
| |
| IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", |
| __func__, cpe_irq, smp_processor_id()); |
| |
| /* SAL spec states this should run w/ interrupts enabled */ |
| local_irq_enable(); |
| |
| spin_lock(&cpe_history_lock); |
| if (!cpe_poll_enabled && cpe_vector >= 0) { |
| |
| int i, count = 1; /* we know 1 happened now */ |
| unsigned long now = jiffies; |
| |
| for (i = 0; i < CPE_HISTORY_LENGTH; i++) { |
| if (now - cpe_history[i] <= HZ) |
| count++; |
| } |
| |
| IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); |
| if (count >= CPE_HISTORY_LENGTH) { |
| |
| cpe_poll_enabled = 1; |
| spin_unlock(&cpe_history_lock); |
| disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); |
| |
| /* |
| * Corrected errors will still be corrected, but |
| * make sure there's a log somewhere that indicates |
| * something is generating more than we can handle. |
| */ |
| printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); |
| |
| mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); |
| |
| /* lock already released, get out now */ |
| goto out; |
| } else { |
| cpe_history[index++] = now; |
| if (index == CPE_HISTORY_LENGTH) |
| index = 0; |
| } |
| } |
| spin_unlock(&cpe_history_lock); |
| out: |
| /* Get the CPE error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); |
| |
| local_irq_disable(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_register_cpev |
| * |
| * Register the corrected platform error vector with SAL. |
| * |
| * Inputs |
| * cpev Corrected Platform Error Vector number |
| * |
| * Outputs |
| * None |
| */ |
| void |
| ia64_mca_register_cpev (int cpev) |
| { |
| /* Register the CPE interrupt vector with SAL */ |
| struct ia64_sal_retval isrv; |
| |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); |
| if (isrv.status) { |
| printk(KERN_ERR "Failed to register Corrected Platform " |
| "Error interrupt vector with SAL (status %ld)\n", isrv.status); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: corrected platform error " |
| "vector %#x registered\n", __func__, cpev); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_setup |
| * |
| * Setup the corrected machine check vector register in the processor. |
| * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * None |
| * |
| * Outputs |
| * None |
| */ |
| void |
| ia64_mca_cmc_vector_setup (void) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = 0; |
| cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ |
| cmcv.cmcv_vector = IA64_CMC_VECTOR; |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", |
| __func__, smp_processor_id(), IA64_CMC_VECTOR); |
| |
| IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", |
| __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_disable |
| * |
| * Mask the corrected machine check vector register in the processor. |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * dummy(unused) |
| * |
| * Outputs |
| * None |
| */ |
| static void |
| ia64_mca_cmc_vector_disable (void *dummy) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); |
| |
| cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", |
| __func__, smp_processor_id(), cmcv.cmcv_vector); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_enable |
| * |
| * Unmask the corrected machine check vector register in the processor. |
| * This function is invoked on a per-processor basis. |
| * |
| * Inputs |
| * dummy(unused) |
| * |
| * Outputs |
| * None |
| */ |
| static void |
| ia64_mca_cmc_vector_enable (void *dummy) |
| { |
| cmcv_reg_t cmcv; |
| |
| cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); |
| |
| cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ |
| ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); |
| |
| IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", |
| __func__, smp_processor_id(), cmcv.cmcv_vector); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_disable_keventd |
| * |
| * Called via keventd (smp_call_function() is not safe in interrupt context) to |
| * disable the cmc interrupt vector. |
| */ |
| static void |
| ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) |
| { |
| on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); |
| } |
| |
| /* |
| * ia64_mca_cmc_vector_enable_keventd |
| * |
| * Called via keventd (smp_call_function() is not safe in interrupt context) to |
| * enable the cmc interrupt vector. |
| */ |
| static void |
| ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) |
| { |
| on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); |
| } |
| |
| /* |
| * ia64_mca_wakeup |
| * |
| * Send an inter-cpu interrupt to wake-up a particular cpu. |
| * |
| * Inputs : cpuid |
| * Outputs : None |
| */ |
| static void |
| ia64_mca_wakeup(int cpu) |
| { |
| ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); |
| } |
| |
| /* |
| * ia64_mca_wakeup_all |
| * |
| * Wakeup all the slave cpus which have rendez'ed previously. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| static void |
| ia64_mca_wakeup_all(void) |
| { |
| int cpu; |
| |
| /* Clear the Rendez checkin flag for all cpus */ |
| for_each_online_cpu(cpu) { |
| if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) |
| ia64_mca_wakeup(cpu); |
| } |
| |
| } |
| |
| /* |
| * ia64_mca_rendez_interrupt_handler |
| * |
| * This is handler used to put slave processors into spinloop |
| * while the monarch processor does the mca handling and later |
| * wake each slave up once the monarch is done. The state |
| * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed |
| * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates |
| * the cpu has come out of OS rendezvous. |
| * |
| * Inputs : None |
| * Outputs : None |
| */ |
| static irqreturn_t |
| ia64_mca_rendez_int_handler(int rendez_irq, void *arg) |
| { |
| unsigned long flags; |
| int cpu = smp_processor_id(); |
| struct ia64_mca_notify_die nd = |
| { .sos = NULL, .monarch_cpu = &monarch_cpu }; |
| |
| /* Mask all interrupts */ |
| local_irq_save(flags); |
| |
| NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); |
| |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; |
| /* Register with the SAL monarch that the slave has |
| * reached SAL |
| */ |
| ia64_sal_mc_rendez(); |
| |
| NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); |
| |
| /* Wait for the monarch cpu to exit. */ |
| while (monarch_cpu != -1) |
| cpu_relax(); /* spin until monarch leaves */ |
| |
| NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); |
| |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| /* Enable all interrupts */ |
| local_irq_restore(flags); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_wakeup_int_handler |
| * |
| * The interrupt handler for processing the inter-cpu interrupt to the |
| * slave cpu which was spinning in the rendez loop. |
| * Since this spinning is done by turning off the interrupts and |
| * polling on the wakeup-interrupt bit in the IRR, there is |
| * nothing useful to be done in the handler. |
| * |
| * Inputs : wakeup_irq (Wakeup-interrupt bit) |
| * arg (Interrupt handler specific argument) |
| * Outputs : None |
| * |
| */ |
| static irqreturn_t |
| ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| /* Function pointer for extra MCA recovery */ |
| int (*ia64_mca_ucmc_extension) |
| (void*,struct ia64_sal_os_state*) |
| = NULL; |
| |
| int |
| ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) |
| { |
| if (ia64_mca_ucmc_extension) |
| return 1; |
| |
| ia64_mca_ucmc_extension = fn; |
| return 0; |
| } |
| |
| void |
| ia64_unreg_MCA_extension(void) |
| { |
| if (ia64_mca_ucmc_extension) |
| ia64_mca_ucmc_extension = NULL; |
| } |
| |
| EXPORT_SYMBOL(ia64_reg_MCA_extension); |
| EXPORT_SYMBOL(ia64_unreg_MCA_extension); |
| |
| |
| static inline void |
| copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) |
| { |
| u64 fslot, tslot, nat; |
| *tr = *fr; |
| fslot = ((unsigned long)fr >> 3) & 63; |
| tslot = ((unsigned long)tr >> 3) & 63; |
| *tnat &= ~(1UL << tslot); |
| nat = (fnat >> fslot) & 1; |
| *tnat |= (nat << tslot); |
| } |
| |
| /* Change the comm field on the MCA/INT task to include the pid that |
| * was interrupted, it makes for easier debugging. If that pid was 0 |
| * (swapper or nested MCA/INIT) then use the start of the previous comm |
| * field suffixed with its cpu. |
| */ |
| |
| static void |
| ia64_mca_modify_comm(const struct task_struct *previous_current) |
| { |
| char *p, comm[sizeof(current->comm)]; |
| if (previous_current->pid) |
| snprintf(comm, sizeof(comm), "%s %d", |
| current->comm, previous_current->pid); |
| else { |
| int l; |
| if ((p = strchr(previous_current->comm, ' '))) |
| l = p - previous_current->comm; |
| else |
| l = strlen(previous_current->comm); |
| snprintf(comm, sizeof(comm), "%s %*s %d", |
| current->comm, l, previous_current->comm, |
| task_thread_info(previous_current)->cpu); |
| } |
| memcpy(current->comm, comm, sizeof(current->comm)); |
| } |
| |
| static void |
| finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, |
| unsigned long *nat) |
| { |
| const pal_min_state_area_t *ms = sos->pal_min_state; |
| const u64 *bank; |
| |
| /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use |
| * pmsa_{xip,xpsr,xfs} |
| */ |
| if (ia64_psr(regs)->ic) { |
| regs->cr_iip = ms->pmsa_iip; |
| regs->cr_ipsr = ms->pmsa_ipsr; |
| regs->cr_ifs = ms->pmsa_ifs; |
| } else { |
| regs->cr_iip = ms->pmsa_xip; |
| regs->cr_ipsr = ms->pmsa_xpsr; |
| regs->cr_ifs = ms->pmsa_xfs; |
| |
| sos->iip = ms->pmsa_iip; |
| sos->ipsr = ms->pmsa_ipsr; |
| sos->ifs = ms->pmsa_ifs; |
| } |
| regs->pr = ms->pmsa_pr; |
| regs->b0 = ms->pmsa_br0; |
| regs->ar_rsc = ms->pmsa_rsc; |
| copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); |
| copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); |
| copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); |
| copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); |
| copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); |
| copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); |
| copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); |
| copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); |
| copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); |
| copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); |
| copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); |
| if (ia64_psr(regs)->bn) |
| bank = ms->pmsa_bank1_gr; |
| else |
| bank = ms->pmsa_bank0_gr; |
| copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); |
| copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); |
| copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); |
| copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); |
| copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); |
| copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); |
| copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); |
| copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); |
| copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); |
| copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); |
| copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); |
| copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); |
| copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); |
| copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); |
| copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); |
| copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); |
| } |
| |
| /* On entry to this routine, we are running on the per cpu stack, see |
| * mca_asm.h. The original stack has not been touched by this event. Some of |
| * the original stack's registers will be in the RBS on this stack. This stack |
| * also contains a partial pt_regs and switch_stack, the rest of the data is in |
| * PAL minstate. |
| * |
| * The first thing to do is modify the original stack to look like a blocked |
| * task so we can run backtrace on the original task. Also mark the per cpu |
| * stack as current to ensure that we use the correct task state, it also means |
| * that we can do backtrace on the MCA/INIT handler code itself. |
| */ |
| |
| static struct task_struct * |
| ia64_mca_modify_original_stack(struct pt_regs *regs, |
| const struct switch_stack *sw, |
| struct ia64_sal_os_state *sos, |
| const char *type) |
| { |
| char *p; |
| ia64_va va; |
| extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ |
| const pal_min_state_area_t *ms = sos->pal_min_state; |
| struct task_struct *previous_current; |
| struct pt_regs *old_regs; |
| struct switch_stack *old_sw; |
| unsigned size = sizeof(struct pt_regs) + |
| sizeof(struct switch_stack) + 16; |
| unsigned long *old_bspstore, *old_bsp; |
| unsigned long *new_bspstore, *new_bsp; |
| unsigned long old_unat, old_rnat, new_rnat, nat; |
| u64 slots, loadrs = regs->loadrs; |
| u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; |
| u64 ar_bspstore = regs->ar_bspstore; |
| u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); |
| const char *msg; |
| int cpu = smp_processor_id(); |
| |
| previous_current = curr_task(cpu); |
| ia64_set_curr_task(cpu, current); |
| if ((p = strchr(current->comm, ' '))) |
| *p = '\0'; |
| |
| /* Best effort attempt to cope with MCA/INIT delivered while in |
| * physical mode. |
| */ |
| regs->cr_ipsr = ms->pmsa_ipsr; |
| if (ia64_psr(regs)->dt == 0) { |
| va.l = r12; |
| if (va.f.reg == 0) { |
| va.f.reg = 7; |
| r12 = va.l; |
| } |
| va.l = r13; |
| if (va.f.reg == 0) { |
| va.f.reg = 7; |
| r13 = va.l; |
| } |
| } |
| if (ia64_psr(regs)->rt == 0) { |
| va.l = ar_bspstore; |
| if (va.f.reg == 0) { |
| va.f.reg = 7; |
| ar_bspstore = va.l; |
| } |
| va.l = ar_bsp; |
| if (va.f.reg == 0) { |
| va.f.reg = 7; |
| ar_bsp = va.l; |
| } |
| } |
| |
| /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers |
| * have been copied to the old stack, the old stack may fail the |
| * validation tests below. So ia64_old_stack() must restore the dirty |
| * registers from the new stack. The old and new bspstore probably |
| * have different alignments, so loadrs calculated on the old bsp |
| * cannot be used to restore from the new bsp. Calculate a suitable |
| * loadrs for the new stack and save it in the new pt_regs, where |
| * ia64_old_stack() can get it. |
| */ |
| old_bspstore = (unsigned long *)ar_bspstore; |
| old_bsp = (unsigned long *)ar_bsp; |
| slots = ia64_rse_num_regs(old_bspstore, old_bsp); |
| new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); |
| new_bsp = ia64_rse_skip_regs(new_bspstore, slots); |
| regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; |
| |
| /* Verify the previous stack state before we change it */ |
| if (user_mode(regs)) { |
| msg = "occurred in user space"; |
| /* previous_current is guaranteed to be valid when the task was |
| * in user space, so ... |
| */ |
| ia64_mca_modify_comm(previous_current); |
| goto no_mod; |
| } |
| |
| if (r13 != sos->prev_IA64_KR_CURRENT) { |
| msg = "inconsistent previous current and r13"; |
| goto no_mod; |
| } |
| |
| if (!mca_recover_range(ms->pmsa_iip)) { |
| if ((r12 - r13) >= KERNEL_STACK_SIZE) { |
| msg = "inconsistent r12 and r13"; |
| goto no_mod; |
| } |
| if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { |
| msg = "inconsistent ar.bspstore and r13"; |
| goto no_mod; |
| } |
| va.p = old_bspstore; |
| if (va.f.reg < 5) { |
| msg = "old_bspstore is in the wrong region"; |
| goto no_mod; |
| } |
| if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { |
| msg = "inconsistent ar.bsp and r13"; |
| goto no_mod; |
| } |
| size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; |
| if (ar_bspstore + size > r12) { |
| msg = "no room for blocked state"; |
| goto no_mod; |
| } |
| } |
| |
| ia64_mca_modify_comm(previous_current); |
| |
| /* Make the original task look blocked. First stack a struct pt_regs, |
| * describing the state at the time of interrupt. mca_asm.S built a |
| * partial pt_regs, copy it and fill in the blanks using minstate. |
| */ |
| p = (char *)r12 - sizeof(*regs); |
| old_regs = (struct pt_regs *)p; |
| memcpy(old_regs, regs, sizeof(*regs)); |
| old_regs->loadrs = loadrs; |
| old_unat = old_regs->ar_unat; |
| finish_pt_regs(old_regs, sos, &old_unat); |
| |
| /* Next stack a struct switch_stack. mca_asm.S built a partial |
| * switch_stack, copy it and fill in the blanks using pt_regs and |
| * minstate. |
| * |
| * In the synthesized switch_stack, b0 points to ia64_leave_kernel, |
| * ar.pfs is set to 0. |
| * |
| * unwind.c::unw_unwind() does special processing for interrupt frames. |
| * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate |
| * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not |
| * that this is documented, of course. Set PRED_NON_SYSCALL in the |
| * switch_stack on the original stack so it will unwind correctly when |
| * unwind.c reads pt_regs. |
| * |
| * thread.ksp is updated to point to the synthesized switch_stack. |
| */ |
| p -= sizeof(struct switch_stack); |
| old_sw = (struct switch_stack *)p; |
| memcpy(old_sw, sw, sizeof(*sw)); |
| old_sw->caller_unat = old_unat; |
| old_sw->ar_fpsr = old_regs->ar_fpsr; |
| copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); |
| copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); |
| copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); |
| copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); |
| old_sw->b0 = (u64)ia64_leave_kernel; |
| old_sw->b1 = ms->pmsa_br1; |
| old_sw->ar_pfs = 0; |
| old_sw->ar_unat = old_unat; |
| old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); |
| previous_current->thread.ksp = (u64)p - 16; |
| |
| /* Finally copy the original stack's registers back to its RBS. |
| * Registers from ar.bspstore through ar.bsp at the time of the event |
| * are in the current RBS, copy them back to the original stack. The |
| * copy must be done register by register because the original bspstore |
| * and the current one have different alignments, so the saved RNAT |
| * data occurs at different places. |
| * |
| * mca_asm does cover, so the old_bsp already includes all registers at |
| * the time of MCA/INIT. It also does flushrs, so all registers before |
| * this function have been written to backing store on the MCA/INIT |
| * stack. |
| */ |
| new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); |
| old_rnat = regs->ar_rnat; |
| while (slots--) { |
| if (ia64_rse_is_rnat_slot(new_bspstore)) { |
| new_rnat = ia64_get_rnat(new_bspstore++); |
| } |
| if (ia64_rse_is_rnat_slot(old_bspstore)) { |
| *old_bspstore++ = old_rnat; |
| old_rnat = 0; |
| } |
| nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; |
| old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); |
| old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); |
| *old_bspstore++ = *new_bspstore++; |
| } |
| old_sw->ar_bspstore = (unsigned long)old_bspstore; |
| old_sw->ar_rnat = old_rnat; |
| |
| sos->prev_task = previous_current; |
| return previous_current; |
| |
| no_mod: |
| mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", |
| smp_processor_id(), type, msg); |
| old_unat = regs->ar_unat; |
| finish_pt_regs(regs, sos, &old_unat); |
| return previous_current; |
| } |
| |
| /* The monarch/slave interaction is based on monarch_cpu and requires that all |
| * slaves have entered rendezvous before the monarch leaves. If any cpu has |
| * not entered rendezvous yet then wait a bit. The assumption is that any |
| * slave that has not rendezvoused after a reasonable time is never going to do |
| * so. In this context, slave includes cpus that respond to the MCA rendezvous |
| * interrupt, as well as cpus that receive the INIT slave event. |
| */ |
| |
| static void |
| ia64_wait_for_slaves(int monarch, const char *type) |
| { |
| int c, i , wait; |
| |
| /* |
| * wait 5 seconds total for slaves (arbitrary) |
| */ |
| for (i = 0; i < 5000; i++) { |
| wait = 0; |
| for_each_online_cpu(c) { |
| if (c == monarch) |
| continue; |
| if (ia64_mc_info.imi_rendez_checkin[c] |
| == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { |
| udelay(1000); /* short wait */ |
| wait = 1; |
| break; |
| } |
| } |
| if (!wait) |
| goto all_in; |
| } |
| |
| /* |
| * Maybe slave(s) dead. Print buffered messages immediately. |
| */ |
| ia64_mlogbuf_finish(0); |
| mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); |
| for_each_online_cpu(c) { |
| if (c == monarch) |
| continue; |
| if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) |
| mprintk(" %d", c); |
| } |
| mprintk("\n"); |
| return; |
| |
| all_in: |
| mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); |
| return; |
| } |
| |
| /* mca_insert_tr |
| * |
| * Switch rid when TR reload and needed! |
| * iord: 1: itr, 2: itr; |
| * |
| */ |
| static void mca_insert_tr(u64 iord) |
| { |
| |
| int i; |
| u64 old_rr; |
| struct ia64_tr_entry *p; |
| unsigned long psr; |
| int cpu = smp_processor_id(); |
| |
| if (!ia64_idtrs[cpu]) |
| return; |
| |
| psr = ia64_clear_ic(); |
| for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { |
| p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; |
| if (p->pte & 0x1) { |
| old_rr = ia64_get_rr(p->ifa); |
| if (old_rr != p->rr) { |
| ia64_set_rr(p->ifa, p->rr); |
| ia64_srlz_d(); |
| } |
| ia64_ptr(iord, p->ifa, p->itir >> 2); |
| ia64_srlz_i(); |
| if (iord & 0x1) { |
| ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); |
| ia64_srlz_i(); |
| } |
| if (iord & 0x2) { |
| ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); |
| ia64_srlz_i(); |
| } |
| if (old_rr != p->rr) { |
| ia64_set_rr(p->ifa, old_rr); |
| ia64_srlz_d(); |
| } |
| } |
| } |
| ia64_set_psr(psr); |
| } |
| |
| /* |
| * ia64_mca_handler |
| * |
| * This is uncorrectable machine check handler called from OS_MCA |
| * dispatch code which is in turn called from SAL_CHECK(). |
| * This is the place where the core of OS MCA handling is done. |
| * Right now the logs are extracted and displayed in a well-defined |
| * format. This handler code is supposed to be run only on the |
| * monarch processor. Once the monarch is done with MCA handling |
| * further MCA logging is enabled by clearing logs. |
| * Monarch also has the duty of sending wakeup-IPIs to pull the |
| * slave processors out of rendezvous spinloop. |
| * |
| * If multiple processors call into OS_MCA, the first will become |
| * the monarch. Subsequent cpus will be recorded in the mca_cpu |
| * bitmask. After the first monarch has processed its MCA, it |
| * will wake up the next cpu in the mca_cpu bitmask and then go |
| * into the rendezvous loop. When all processors have serviced |
| * their MCA, the last monarch frees up the rest of the processors. |
| */ |
| void |
| ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, |
| struct ia64_sal_os_state *sos) |
| { |
| int recover, cpu = smp_processor_id(); |
| struct task_struct *previous_current; |
| struct ia64_mca_notify_die nd = |
| { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; |
| static atomic_t mca_count; |
| static cpumask_t mca_cpu; |
| |
| if (atomic_add_return(1, &mca_count) == 1) { |
| monarch_cpu = cpu; |
| sos->monarch = 1; |
| } else { |
| cpumask_set_cpu(cpu, &mca_cpu); |
| sos->monarch = 0; |
| } |
| mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " |
| "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); |
| |
| previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); |
| |
| NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); |
| |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; |
| if (sos->monarch) { |
| ia64_wait_for_slaves(cpu, "MCA"); |
| |
| /* Wakeup all the processors which are spinning in the |
| * rendezvous loop. They will leave SAL, then spin in the OS |
| * with interrupts disabled until this monarch cpu leaves the |
| * MCA handler. That gets control back to the OS so we can |
| * backtrace the other cpus, backtrace when spinning in SAL |
| * does not work. |
| */ |
| ia64_mca_wakeup_all(); |
| } else { |
| while (cpumask_test_cpu(cpu, &mca_cpu)) |
| cpu_relax(); /* spin until monarch wakes us */ |
| } |
| |
| NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); |
| |
| /* Get the MCA error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); |
| |
| /* MCA error recovery */ |
| recover = (ia64_mca_ucmc_extension |
| && ia64_mca_ucmc_extension( |
| IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), |
| sos)); |
| |
| if (recover) { |
| sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); |
| rh->severity = sal_log_severity_corrected; |
| ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); |
| sos->os_status = IA64_MCA_CORRECTED; |
| } else { |
| /* Dump buffered message to console */ |
| ia64_mlogbuf_finish(1); |
| } |
| |
| if (__this_cpu_read(ia64_mca_tr_reload)) { |
| mca_insert_tr(0x1); /*Reload dynamic itrs*/ |
| mca_insert_tr(0x2); /*Reload dynamic itrs*/ |
| } |
| |
| NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); |
| |
| if (atomic_dec_return(&mca_count) > 0) { |
| int i; |
| |
| /* wake up the next monarch cpu, |
| * and put this cpu in the rendez loop. |
| */ |
| for_each_online_cpu(i) { |
| if (cpumask_test_cpu(i, &mca_cpu)) { |
| monarch_cpu = i; |
| cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ |
| while (monarch_cpu != -1) |
| cpu_relax(); /* spin until last cpu leaves */ |
| ia64_set_curr_task(cpu, previous_current); |
| ia64_mc_info.imi_rendez_checkin[cpu] |
| = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| return; |
| } |
| } |
| } |
| ia64_set_curr_task(cpu, previous_current); |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| monarch_cpu = -1; /* This frees the slaves and previous monarchs */ |
| } |
| |
| static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); |
| static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); |
| |
| /* |
| * ia64_mca_cmc_int_handler |
| * |
| * This is corrected machine check interrupt handler. |
| * Right now the logs are extracted and displayed in a well-defined |
| * format. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * |
| * Outputs |
| * None |
| */ |
| static irqreturn_t |
| ia64_mca_cmc_int_handler(int cmc_irq, void *arg) |
| { |
| static unsigned long cmc_history[CMC_HISTORY_LENGTH]; |
| static int index; |
| static DEFINE_SPINLOCK(cmc_history_lock); |
| |
| IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", |
| __func__, cmc_irq, smp_processor_id()); |
| |
| /* SAL spec states this should run w/ interrupts enabled */ |
| local_irq_enable(); |
| |
| spin_lock(&cmc_history_lock); |
| if (!cmc_polling_enabled) { |
| int i, count = 1; /* we know 1 happened now */ |
| unsigned long now = jiffies; |
| |
| for (i = 0; i < CMC_HISTORY_LENGTH; i++) { |
| if (now - cmc_history[i] <= HZ) |
| count++; |
| } |
| |
| IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); |
| if (count >= CMC_HISTORY_LENGTH) { |
| |
| cmc_polling_enabled = 1; |
| spin_unlock(&cmc_history_lock); |
| /* If we're being hit with CMC interrupts, we won't |
| * ever execute the schedule_work() below. Need to |
| * disable CMC interrupts on this processor now. |
| */ |
| ia64_mca_cmc_vector_disable(NULL); |
| schedule_work(&cmc_disable_work); |
| |
| /* |
| * Corrected errors will still be corrected, but |
| * make sure there's a log somewhere that indicates |
| * something is generating more than we can handle. |
| */ |
| printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); |
| |
| mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); |
| |
| /* lock already released, get out now */ |
| goto out; |
| } else { |
| cmc_history[index++] = now; |
| if (index == CMC_HISTORY_LENGTH) |
| index = 0; |
| } |
| } |
| spin_unlock(&cmc_history_lock); |
| out: |
| /* Get the CMC error record and log it */ |
| ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); |
| |
| local_irq_disable(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cmc_int_caller |
| * |
| * Triggered by sw interrupt from CMC polling routine. Calls |
| * real interrupt handler and either triggers a sw interrupt |
| * on the next cpu or does cleanup at the end. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * Outputs |
| * handled |
| */ |
| static irqreturn_t |
| ia64_mca_cmc_int_caller(int cmc_irq, void *arg) |
| { |
| static int start_count = -1; |
| unsigned int cpuid; |
| |
| cpuid = smp_processor_id(); |
| |
| /* If first cpu, update count */ |
| if (start_count == -1) |
| start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); |
| |
| ia64_mca_cmc_int_handler(cmc_irq, arg); |
| |
| cpuid = cpumask_next(cpuid+1, cpu_online_mask); |
| |
| if (cpuid < nr_cpu_ids) { |
| ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); |
| } else { |
| /* If no log record, switch out of polling mode */ |
| if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { |
| |
| printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); |
| schedule_work(&cmc_enable_work); |
| cmc_polling_enabled = 0; |
| |
| } else { |
| |
| mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); |
| } |
| |
| start_count = -1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cmc_poll |
| * |
| * Poll for Corrected Machine Checks (CMCs) |
| * |
| * Inputs : dummy(unused) |
| * Outputs : None |
| * |
| */ |
| static void |
| ia64_mca_cmc_poll (struct timer_list *unused) |
| { |
| /* Trigger a CMC interrupt cascade */ |
| ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, |
| IA64_IPI_DM_INT, 0); |
| } |
| |
| /* |
| * ia64_mca_cpe_int_caller |
| * |
| * Triggered by sw interrupt from CPE polling routine. Calls |
| * real interrupt handler and either triggers a sw interrupt |
| * on the next cpu or does cleanup at the end. |
| * |
| * Inputs |
| * interrupt number |
| * client data arg ptr |
| * Outputs |
| * handled |
| */ |
| static irqreturn_t |
| ia64_mca_cpe_int_caller(int cpe_irq, void *arg) |
| { |
| static int start_count = -1; |
| static int poll_time = MIN_CPE_POLL_INTERVAL; |
| unsigned int cpuid; |
| |
| cpuid = smp_processor_id(); |
| |
| /* If first cpu, update count */ |
| if (start_count == -1) |
| start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); |
| |
| ia64_mca_cpe_int_handler(cpe_irq, arg); |
| |
| cpuid = cpumask_next(cpuid+1, cpu_online_mask); |
| |
| if (cpuid < NR_CPUS) { |
| ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); |
| } else { |
| /* |
| * If a log was recorded, increase our polling frequency, |
| * otherwise, backoff or return to interrupt mode. |
| */ |
| if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { |
| poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); |
| } else if (cpe_vector < 0) { |
| poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); |
| } else { |
| poll_time = MIN_CPE_POLL_INTERVAL; |
| |
| printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); |
| enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); |
| cpe_poll_enabled = 0; |
| } |
| |
| if (cpe_poll_enabled) |
| mod_timer(&cpe_poll_timer, jiffies + poll_time); |
| start_count = -1; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ia64_mca_cpe_poll |
| * |
| * Poll for Corrected Platform Errors (CPEs), trigger interrupt |
| * on first cpu, from there it will trickle through all the cpus. |
| * |
| * Inputs : dummy(unused) |
| * Outputs : None |
| * |
| */ |
| static void |
| ia64_mca_cpe_poll (struct timer_list *unused) |
| { |
| /* Trigger a CPE interrupt cascade */ |
| ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, |
| IA64_IPI_DM_INT, 0); |
| } |
| |
| static int |
| default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) |
| { |
| int c; |
| struct task_struct *g, *t; |
| if (val != DIE_INIT_MONARCH_PROCESS) |
| return NOTIFY_DONE; |
| #ifdef CONFIG_KEXEC |
| if (atomic_read(&kdump_in_progress)) |
| return NOTIFY_DONE; |
| #endif |
| |
| /* |
| * FIXME: mlogbuf will brim over with INIT stack dumps. |
| * To enable show_stack from INIT, we use oops_in_progress which should |
| * be used in real oops. This would cause something wrong after INIT. |
| */ |
| BREAK_LOGLEVEL(console_loglevel); |
| ia64_mlogbuf_dump_from_init(); |
| |
| printk(KERN_ERR "Processes interrupted by INIT -"); |
| for_each_online_cpu(c) { |
| struct ia64_sal_os_state *s; |
| t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); |
| s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); |
| g = s->prev_task; |
| if (g) { |
| if (g->pid) |
| printk(" %d", g->pid); |
| else |
| printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); |
| } |
| } |
| printk("\n\n"); |
| if (read_trylock(&tasklist_lock)) { |
| do_each_thread (g, t) { |
| printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); |
| show_stack(t, NULL, KERN_DEFAULT); |
| } while_each_thread (g, t); |
| read_unlock(&tasklist_lock); |
| } |
| /* FIXME: This will not restore zapped printk locks. */ |
| RESTORE_LOGLEVEL(console_loglevel); |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * C portion of the OS INIT handler |
| * |
| * Called from ia64_os_init_dispatch |
| * |
| * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for |
| * this event. This code is used for both monarch and slave INIT events, see |
| * sos->monarch. |
| * |
| * All INIT events switch to the INIT stack and change the previous process to |
| * blocked status. If one of the INIT events is the monarch then we are |
| * probably processing the nmi button/command. Use the monarch cpu to dump all |
| * the processes. The slave INIT events all spin until the monarch cpu |
| * returns. We can also get INIT slave events for MCA, in which case the MCA |
| * process is the monarch. |
| */ |
| |
| void |
| ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, |
| struct ia64_sal_os_state *sos) |
| { |
| static atomic_t slaves; |
| static atomic_t monarchs; |
| struct task_struct *previous_current; |
| int cpu = smp_processor_id(); |
| struct ia64_mca_notify_die nd = |
| { .sos = sos, .monarch_cpu = &monarch_cpu }; |
| |
| NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); |
| |
| mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", |
| sos->proc_state_param, cpu, sos->monarch); |
| salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); |
| |
| previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); |
| sos->os_status = IA64_INIT_RESUME; |
| |
| /* FIXME: Workaround for broken proms that drive all INIT events as |
| * slaves. The last slave that enters is promoted to be a monarch. |
| * Remove this code in September 2006, that gives platforms a year to |
| * fix their proms and get their customers updated. |
| */ |
| if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { |
| mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", |
| __func__, cpu); |
| atomic_dec(&slaves); |
| sos->monarch = 1; |
| } |
| |
| /* FIXME: Workaround for broken proms that drive all INIT events as |
| * monarchs. Second and subsequent monarchs are demoted to slaves. |
| * Remove this code in September 2006, that gives platforms a year to |
| * fix their proms and get their customers updated. |
| */ |
| if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { |
| mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", |
| __func__, cpu); |
| atomic_dec(&monarchs); |
| sos->monarch = 0; |
| } |
| |
| if (!sos->monarch) { |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; |
| |
| #ifdef CONFIG_KEXEC |
| while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) |
| udelay(1000); |
| #else |
| while (monarch_cpu == -1) |
| cpu_relax(); /* spin until monarch enters */ |
| #endif |
| |
| NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); |
| NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); |
| |
| #ifdef CONFIG_KEXEC |
| while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) |
| udelay(1000); |
| #else |
| while (monarch_cpu != -1) |
| cpu_relax(); /* spin until monarch leaves */ |
| #endif |
| |
| NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); |
| |
| mprintk("Slave on cpu %d returning to normal service.\n", cpu); |
| ia64_set_curr_task(cpu, previous_current); |
| ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| atomic_dec(&slaves); |
| return; |
| } |
| |
| monarch_cpu = cpu; |
| NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); |
| |
| /* |
| * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be |
| * generated via the BMC's command-line interface, but since the console is on the |
| * same serial line, the user will need some time to switch out of the BMC before |
| * the dump begins. |
| */ |
| mprintk("Delaying for 5 seconds...\n"); |
| udelay(5*1000000); |
| ia64_wait_for_slaves(cpu, "INIT"); |
| /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through |
| * to default_monarch_init_process() above and just print all the |
| * tasks. |
| */ |
| NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); |
| NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); |
| |
| mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); |
| atomic_dec(&monarchs); |
| ia64_set_curr_task(cpu, previous_current); |
| monarch_cpu = -1; |
| return; |
| } |
| |
| static int __init |
| ia64_mca_disable_cpe_polling(char *str) |
| { |
| cpe_poll_enabled = 0; |
| return 1; |
| } |
| |
| __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); |
| |
| /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on |
| * these stacks can never sleep, they cannot return from the kernel to user |
| * space, they do not appear in a normal ps listing. So there is no need to |
| * format most of the fields. |
| */ |
| |
| static void |
| format_mca_init_stack(void *mca_data, unsigned long offset, |
| const char *type, int cpu) |
| { |
| struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); |
| struct thread_info *ti; |
| memset(p, 0, KERNEL_STACK_SIZE); |
| ti = task_thread_info(p); |
| ti->flags = _TIF_MCA_INIT; |
| ti->preempt_count = 1; |
| ti->task = p; |
| ti->cpu = cpu; |
| p->stack = ti; |
| p->state = TASK_UNINTERRUPTIBLE; |
| cpumask_set_cpu(cpu, &p->cpus_mask); |
| INIT_LIST_HEAD(&p->tasks); |
| p->parent = p->real_parent = p->group_leader = p; |
| INIT_LIST_HEAD(&p->children); |
| INIT_LIST_HEAD(&p->sibling); |
| strncpy(p->comm, type, sizeof(p->comm)-1); |
| } |
| |
| /* Caller prevents this from being called after init */ |
| static void * __ref mca_bootmem(void) |
| { |
| return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); |
| } |
| |
| /* Do per-CPU MCA-related initialization. */ |
| void |
| ia64_mca_cpu_init(void *cpu_data) |
| { |
| void *pal_vaddr; |
| void *data; |
| long sz = sizeof(struct ia64_mca_cpu); |
| int cpu = smp_processor_id(); |
| static int first_time = 1; |
| |
| /* |
| * Structure will already be allocated if cpu has been online, |
| * then offlined. |
| */ |
| if (__per_cpu_mca[cpu]) { |
| data = __va(__per_cpu_mca[cpu]); |
| } else { |
| if (first_time) { |
| data = mca_bootmem(); |
| first_time = 0; |
| } else |
| data = (void *)__get_free_pages(GFP_KERNEL, |
| get_order(sz)); |
| if (!data) |
| panic("Could not allocate MCA memory for cpu %d\n", |
| cpu); |
| } |
| format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), |
| "MCA", cpu); |
| format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), |
| "INIT", cpu); |
| __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); |
| |
| /* |
| * Stash away a copy of the PTE needed to map the per-CPU page. |
| * We may need it during MCA recovery. |
| */ |
| __this_cpu_write(ia64_mca_per_cpu_pte, |
| pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); |
| |
| /* |
| * Also, stash away a copy of the PAL address and the PTE |
| * needed to map it. |
| */ |
| pal_vaddr = efi_get_pal_addr(); |
| if (!pal_vaddr) |
| return; |
| __this_cpu_write(ia64_mca_pal_base, |
| GRANULEROUNDDOWN((unsigned long) pal_vaddr)); |
| __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), |
| PAGE_KERNEL))); |
| } |
| |
| static int ia64_mca_cpu_online(unsigned int cpu) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| if (!cmc_polling_enabled) |
| ia64_mca_cmc_vector_enable(NULL); |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| /* |
| * ia64_mca_init |
| * |
| * Do all the system level mca specific initialization. |
| * |
| * 1. Register spinloop and wakeup request interrupt vectors |
| * |
| * 2. Register OS_MCA handler entry point |
| * |
| * 3. Register OS_INIT handler entry point |
| * |
| * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. |
| * |
| * Note that this initialization is done very early before some kernel |
| * services are available. |
| * |
| * Inputs : None |
| * |
| * Outputs : None |
| */ |
| void __init |
| ia64_mca_init(void) |
| { |
| ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; |
| ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; |
| ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; |
| int i; |
| long rc; |
| struct ia64_sal_retval isrv; |
| unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ |
| static struct notifier_block default_init_monarch_nb = { |
| .notifier_call = default_monarch_init_process, |
| .priority = 0/* we need to notified last */ |
| }; |
| |
| IA64_MCA_DEBUG("%s: begin\n", __func__); |
| |
| /* Clear the Rendez checkin flag for all cpus */ |
| for(i = 0 ; i < NR_CPUS; i++) |
| ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; |
| |
| /* |
| * Register the rendezvous spinloop and wakeup mechanism with SAL |
| */ |
| |
| /* Register the rendezvous interrupt vector with SAL */ |
| while (1) { |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, |
| SAL_MC_PARAM_MECHANISM_INT, |
| IA64_MCA_RENDEZ_VECTOR, |
| timeout, |
| SAL_MC_PARAM_RZ_ALWAYS); |
| rc = isrv.status; |
| if (rc == 0) |
| break; |
| if (rc == -2) { |
| printk(KERN_INFO "Increasing MCA rendezvous timeout from " |
| "%ld to %ld milliseconds\n", timeout, isrv.v0); |
| timeout = isrv.v0; |
| NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); |
| continue; |
| } |
| printk(KERN_ERR "Failed to register rendezvous interrupt " |
| "with SAL (status %ld)\n", rc); |
| return; |
| } |
| |
| /* Register the wakeup interrupt vector with SAL */ |
| isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, |
| SAL_MC_PARAM_MECHANISM_INT, |
| IA64_MCA_WAKEUP_VECTOR, |
| 0, 0); |
| rc = isrv.status; |
| if (rc) { |
| printk(KERN_ERR "Failed to register wakeup interrupt with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); |
| |
| ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); |
| /* |
| * XXX - disable SAL checksum by setting size to 0; should be |
| * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); |
| */ |
| ia64_mc_info.imi_mca_handler_size = 0; |
| |
| /* Register the os mca handler with SAL */ |
| if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, |
| ia64_mc_info.imi_mca_handler, |
| ia64_tpa(mca_hldlr_ptr->gp), |
| ia64_mc_info.imi_mca_handler_size, |
| 0, 0, 0))) |
| { |
| printk(KERN_ERR "Failed to register OS MCA handler with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, |
| ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); |
| |
| /* |
| * XXX - disable SAL checksum by setting size to 0, should be |
| * size of the actual init handler in mca_asm.S. |
| */ |
| ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); |
| ia64_mc_info.imi_monarch_init_handler_size = 0; |
| ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); |
| ia64_mc_info.imi_slave_init_handler_size = 0; |
| |
| IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, |
| ia64_mc_info.imi_monarch_init_handler); |
| |
| /* Register the os init handler with SAL */ |
| if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, |
| ia64_mc_info.imi_monarch_init_handler, |
| ia64_tpa(ia64_getreg(_IA64_REG_GP)), |
| ia64_mc_info.imi_monarch_init_handler_size, |
| ia64_mc_info.imi_slave_init_handler, |
| ia64_tpa(ia64_getreg(_IA64_REG_GP)), |
| ia64_mc_info.imi_slave_init_handler_size))) |
| { |
| printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " |
| "(status %ld)\n", rc); |
| return; |
| } |
| if (register_die_notifier(&default_init_monarch_nb)) { |
| printk(KERN_ERR "Failed to register default monarch INIT process\n"); |
| return; |
| } |
| |
| IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); |
| |
| /* Initialize the areas set aside by the OS to buffer the |
| * platform/processor error states for MCA/INIT/CMC |
| * handling. |
| */ |
| ia64_log_init(SAL_INFO_TYPE_MCA); |
| ia64_log_init(SAL_INFO_TYPE_INIT); |
| ia64_log_init(SAL_INFO_TYPE_CMC); |
| ia64_log_init(SAL_INFO_TYPE_CPE); |
| |
| mca_init = 1; |
| printk(KERN_INFO "MCA related initialization done\n"); |
| } |
| |
| |
| /* |
| * These pieces cannot be done in ia64_mca_init() because it is called before |
| * early_irq_init() which would wipe out our percpu irq registrations. But we |
| * cannot leave them until ia64_mca_late_init() because by then all the other |
| * processors have been brought online and have set their own CMC vectors to |
| * point at a non-existant action. Called from arch_early_irq_init(). |
| */ |
| void __init ia64_mca_irq_init(void) |
| { |
| /* |
| * Configure the CMCI/P vector and handler. Interrupts for CMC are |
| * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). |
| */ |
| register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0, |
| "cmc_hndlr"); |
| register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0, |
| "cmc_poll"); |
| ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ |
| |
| /* Setup the MCA rendezvous interrupt vector */ |
| register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler, |
| 0, "mca_rdzv"); |
| |
| /* Setup the MCA wakeup interrupt vector */ |
| register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler, |
| 0, "mca_wkup"); |
| |
| /* Setup the CPEI/P handler */ |
| register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0, |
| "cpe_poll"); |
| } |
| |
| /* |
| * ia64_mca_late_init |
| * |
| * Opportunity to setup things that require initialization later |
| * than ia64_mca_init. Setup a timer to poll for CPEs if the |
| * platform doesn't support an interrupt driven mechanism. |
| * |
| * Inputs : None |
| * Outputs : Status |
| */ |
| static int __init |
| ia64_mca_late_init(void) |
| { |
| if (!mca_init) |
| return 0; |
| |
| /* Setup the CMCI/P vector and handler */ |
| timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); |
| |
| /* Unmask/enable the vector */ |
| cmc_polling_enabled = 0; |
| cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", |
| ia64_mca_cpu_online, NULL); |
| IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); |
| |
| /* Setup the CPEI/P vector and handler */ |
| cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); |
| timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); |
| |
| { |
| unsigned int irq; |
| |
| if (cpe_vector >= 0) { |
| /* If platform supports CPEI, enable the irq. */ |
| irq = local_vector_to_irq(cpe_vector); |
| if (irq > 0) { |
| cpe_poll_enabled = 0; |
| irq_set_status_flags(irq, IRQ_PER_CPU); |
| if (request_irq(irq, ia64_mca_cpe_int_handler, |
| 0, "cpe_hndlr", NULL)) |
| pr_err("Failed to register cpe_hndlr interrupt\n"); |
| ia64_cpe_irq = irq; |
| ia64_mca_register_cpev(cpe_vector); |
| IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", |
| __func__); |
| return 0; |
| } |
| printk(KERN_ERR "%s: Failed to find irq for CPE " |
| "interrupt handler, vector %d\n", |
| __func__, cpe_vector); |
| } |
| /* If platform doesn't support CPEI, get the timer going. */ |
| if (cpe_poll_enabled) { |
| ia64_mca_cpe_poll(0UL); |
| IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); |
| } |
| } |
| |
| return 0; |
| } |
| |
| device_initcall(ia64_mca_late_init); |