| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Linux/PA-RISC Project (http://www.parisc-linux.org/) |
| * |
| * Floating-point emulation code |
| * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> |
| */ |
| /* |
| * BEGIN_DESC |
| * |
| * File: |
| * @(#) pa/fp/fpudispatch.c $Revision: 1.1 $ |
| * |
| * Purpose: |
| * <<please update with a synopsis of the functionality provided by this file>> |
| * |
| * External Interfaces: |
| * <<the following list was autogenerated, please review>> |
| * emfpudispatch(ir, dummy1, dummy2, fpregs) |
| * fpudispatch(ir, excp_code, holder, fpregs) |
| * |
| * Internal Interfaces: |
| * <<the following list was autogenerated, please review>> |
| * static u_int decode_06(u_int, u_int *) |
| * static u_int decode_0c(u_int, u_int, u_int, u_int *) |
| * static u_int decode_0e(u_int, u_int, u_int, u_int *) |
| * static u_int decode_26(u_int, u_int *) |
| * static u_int decode_2e(u_int, u_int *) |
| * static void update_status_cbit(u_int *, u_int, u_int, u_int) |
| * |
| * Theory: |
| * <<please update with a overview of the operation of this file>> |
| * |
| * END_DESC |
| */ |
| |
| #define FPUDEBUG 0 |
| |
| #include "float.h" |
| #include <linux/bug.h> |
| #include <linux/kernel.h> |
| #include <asm/processor.h> |
| /* #include <sys/debug.h> */ |
| /* #include <machine/sys/mdep_private.h> */ |
| |
| #define COPR_INST 0x30000000 |
| |
| /* |
| * definition of extru macro. If pos and len are constants, the compiler |
| * will generate an extru instruction when optimized |
| */ |
| #define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1)) |
| /* definitions of bit field locations in the instruction */ |
| #define fpmajorpos 5 |
| #define fpr1pos 10 |
| #define fpr2pos 15 |
| #define fptpos 31 |
| #define fpsubpos 18 |
| #define fpclass1subpos 16 |
| #define fpclasspos 22 |
| #define fpfmtpos 20 |
| #define fpdfpos 18 |
| #define fpnulpos 26 |
| /* |
| * the following are the extra bits for the 0E major op |
| */ |
| #define fpxr1pos 24 |
| #define fpxr2pos 19 |
| #define fpxtpos 25 |
| #define fpxpos 23 |
| #define fp0efmtpos 20 |
| /* |
| * the following are for the multi-ops |
| */ |
| #define fprm1pos 10 |
| #define fprm2pos 15 |
| #define fptmpos 31 |
| #define fprapos 25 |
| #define fptapos 20 |
| #define fpmultifmt 26 |
| /* |
| * the following are for the fused FP instructions |
| */ |
| /* fprm1pos 10 */ |
| /* fprm2pos 15 */ |
| #define fpraupos 18 |
| #define fpxrm2pos 19 |
| /* fpfmtpos 20 */ |
| #define fpralpos 23 |
| #define fpxrm1pos 24 |
| /* fpxtpos 25 */ |
| #define fpfusedsubop 26 |
| /* fptpos 31 */ |
| |
| /* |
| * offset to constant zero in the FP emulation registers |
| */ |
| #define fpzeroreg (32*sizeof(double)/sizeof(u_int)) |
| |
| /* |
| * extract the major opcode from the instruction |
| */ |
| #define get_major(op) extru(op,fpmajorpos,6) |
| /* |
| * extract the two bit class field from the FP instruction. The class is at bit |
| * positions 21-22 |
| */ |
| #define get_class(op) extru(op,fpclasspos,2) |
| /* |
| * extract the 3 bit subop field. For all but class 1 instructions, it is |
| * located at bit positions 16-18 |
| */ |
| #define get_subop(op) extru(op,fpsubpos,3) |
| /* |
| * extract the 2 or 3 bit subop field from class 1 instructions. It is located |
| * at bit positions 15-16 (PA1.1) or 14-16 (PA2.0) |
| */ |
| #define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */ |
| #define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */ |
| |
| /* definitions of unimplemented exceptions */ |
| #define MAJOR_0C_EXCP 0x09 |
| #define MAJOR_0E_EXCP 0x0b |
| #define MAJOR_06_EXCP 0x03 |
| #define MAJOR_26_EXCP 0x23 |
| #define MAJOR_2E_EXCP 0x2b |
| #define PA83_UNIMP_EXCP 0x01 |
| |
| /* |
| * Special Defines for TIMEX specific code |
| */ |
| |
| #define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2) |
| #define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG) |
| |
| /* |
| * Static function definitions |
| */ |
| #define _PROTOTYPES |
| #if defined(_PROTOTYPES) || defined(_lint) |
| static u_int decode_0c(u_int, u_int, u_int, u_int *); |
| static u_int decode_0e(u_int, u_int, u_int, u_int *); |
| static u_int decode_06(u_int, u_int *); |
| static u_int decode_26(u_int, u_int *); |
| static u_int decode_2e(u_int, u_int *); |
| static void update_status_cbit(u_int *, u_int, u_int, u_int); |
| #else /* !_PROTOTYPES&&!_lint */ |
| static u_int decode_0c(); |
| static u_int decode_0e(); |
| static u_int decode_06(); |
| static u_int decode_26(); |
| static u_int decode_2e(); |
| static void update_status_cbit(); |
| #endif /* _PROTOTYPES&&!_lint */ |
| |
| #define VASSERT(x) |
| |
| static void parisc_linux_get_fpu_type(u_int fpregs[]) |
| { |
| /* on pa-linux the fpu type is not filled in by the |
| * caller; it is constructed here |
| */ |
| if (boot_cpu_data.cpu_type == pcxs) |
| fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG; |
| else if (boot_cpu_data.cpu_type == pcxt || |
| boot_cpu_data.cpu_type == pcxt_) |
| fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG; |
| else if (boot_cpu_data.cpu_type >= pcxu) |
| fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG; |
| } |
| |
| /* |
| * this routine will decode the excepting floating point instruction and |
| * call the appropriate emulation routine. |
| * It is called by decode_fpu with the following parameters: |
| * fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register) |
| * where current_ir is the instruction to be emulated, |
| * unimplemented_code is the exception_code that the hardware generated |
| * and &Fpu_register is the address of emulated FP reg 0. |
| */ |
| u_int |
| fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[]) |
| { |
| u_int class, subop; |
| u_int fpu_type_flags; |
| |
| /* All FP emulation code assumes that ints are 4-bytes in length */ |
| VASSERT(sizeof(int) == 4); |
| |
| parisc_linux_get_fpu_type(fpregs); |
| |
| fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ |
| |
| class = get_class(ir); |
| if (class == 1) { |
| if (fpu_type_flags & PA2_0_FPU_FLAG) |
| subop = get_subop1_PA2_0(ir); |
| else |
| subop = get_subop1_PA1_1(ir); |
| } |
| else |
| subop = get_subop(ir); |
| |
| if (FPUDEBUG) printk("class %d subop %d\n", class, subop); |
| |
| switch (excp_code) { |
| case MAJOR_0C_EXCP: |
| case PA83_UNIMP_EXCP: |
| return(decode_0c(ir,class,subop,fpregs)); |
| case MAJOR_0E_EXCP: |
| return(decode_0e(ir,class,subop,fpregs)); |
| case MAJOR_06_EXCP: |
| return(decode_06(ir,fpregs)); |
| case MAJOR_26_EXCP: |
| return(decode_26(ir,fpregs)); |
| case MAJOR_2E_EXCP: |
| return(decode_2e(ir,fpregs)); |
| default: |
| /* "crashme Night Gallery painting nr 2. (asm_crash.s). |
| * This was fixed for multi-user kernels, but |
| * workstation kernels had a panic here. This allowed |
| * any arbitrary user to panic the kernel by executing |
| * setting the FP exception registers to strange values |
| * and generating an emulation trap. The emulation and |
| * exception code must never be able to panic the |
| * kernel. |
| */ |
| return(UNIMPLEMENTEDEXCEPTION); |
| } |
| } |
| |
| /* |
| * this routine is called by $emulation_trap to emulate a coprocessor |
| * instruction if one doesn't exist |
| */ |
| u_int |
| emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[]) |
| { |
| u_int class, subop, major; |
| u_int fpu_type_flags; |
| |
| /* All FP emulation code assumes that ints are 4-bytes in length */ |
| VASSERT(sizeof(int) == 4); |
| |
| fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ |
| |
| major = get_major(ir); |
| class = get_class(ir); |
| if (class == 1) { |
| if (fpu_type_flags & PA2_0_FPU_FLAG) |
| subop = get_subop1_PA2_0(ir); |
| else |
| subop = get_subop1_PA1_1(ir); |
| } |
| else |
| subop = get_subop(ir); |
| switch (major) { |
| case 0x0C: |
| return(decode_0c(ir,class,subop,fpregs)); |
| case 0x0E: |
| return(decode_0e(ir,class,subop,fpregs)); |
| case 0x06: |
| return(decode_06(ir,fpregs)); |
| case 0x26: |
| return(decode_26(ir,fpregs)); |
| case 0x2E: |
| return(decode_2e(ir,fpregs)); |
| default: |
| return(PA83_UNIMP_EXCP); |
| } |
| } |
| |
| |
| static u_int |
| decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[]) |
| { |
| u_int r1,r2,t; /* operand register offsets */ |
| u_int fmt; /* also sf for class 1 conversions */ |
| u_int df; /* for class 1 conversions */ |
| u_int *status; |
| u_int retval, local_status; |
| u_int fpu_type_flags; |
| |
| if (ir == COPR_INST) { |
| fpregs[0] = EMULATION_VERSION << 11; |
| return(NOEXCEPTION); |
| } |
| status = &fpregs[0]; /* fp status register */ |
| local_status = fpregs[0]; /* and local copy */ |
| r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int); |
| if (r1 == 0) /* map fr0 source to constant zero */ |
| r1 = fpzeroreg; |
| t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int); |
| if (t == 0 && class != 2) /* don't allow fr0 as a dest */ |
| return(MAJOR_0C_EXCP); |
| fmt = extru(ir,fpfmtpos,2); /* get fmt completer */ |
| |
| switch (class) { |
| case 0: |
| switch (subop) { |
| case 0: /* COPR 0,0 emulated above*/ |
| case 1: |
| return(MAJOR_0C_EXCP); |
| case 2: /* FCPY */ |
| switch (fmt) { |
| case 2: /* illegal */ |
| return(MAJOR_0C_EXCP); |
| case 3: /* quad */ |
| t &= ~3; /* force to even reg #s */ |
| r1 &= ~3; |
| fpregs[t+3] = fpregs[r1+3]; |
| fpregs[t+2] = fpregs[r1+2]; |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| fpregs[t] = fpregs[r1]; |
| return(NOEXCEPTION); |
| } |
| case 3: /* FABS */ |
| switch (fmt) { |
| case 2: /* illegal */ |
| return(MAJOR_0C_EXCP); |
| case 3: /* quad */ |
| t &= ~3; /* force to even reg #s */ |
| r1 &= ~3; |
| fpregs[t+3] = fpregs[r1+3]; |
| fpregs[t+2] = fpregs[r1+2]; |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| /* copy and clear sign bit */ |
| fpregs[t] = fpregs[r1] & 0x7fffffff; |
| return(NOEXCEPTION); |
| } |
| case 6: /* FNEG */ |
| switch (fmt) { |
| case 2: /* illegal */ |
| return(MAJOR_0C_EXCP); |
| case 3: /* quad */ |
| t &= ~3; /* force to even reg #s */ |
| r1 &= ~3; |
| fpregs[t+3] = fpregs[r1+3]; |
| fpregs[t+2] = fpregs[r1+2]; |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| /* copy and invert sign bit */ |
| fpregs[t] = fpregs[r1] ^ 0x80000000; |
| return(NOEXCEPTION); |
| } |
| case 7: /* FNEGABS */ |
| switch (fmt) { |
| case 2: /* illegal */ |
| return(MAJOR_0C_EXCP); |
| case 3: /* quad */ |
| t &= ~3; /* force to even reg #s */ |
| r1 &= ~3; |
| fpregs[t+3] = fpregs[r1+3]; |
| fpregs[t+2] = fpregs[r1+2]; |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| /* copy and set sign bit */ |
| fpregs[t] = fpregs[r1] | 0x80000000; |
| return(NOEXCEPTION); |
| } |
| case 4: /* FSQRT */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fsqrt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fsqrt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 5: /* FRND */ |
| switch (fmt) { |
| case 0: |
| return(sgl_frnd(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_frnd(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| } /* end of switch (subop) */ |
| |
| case 1: /* class 1 */ |
| df = extru(ir,fpdfpos,2); /* get dest format */ |
| if ((df & 2) || (fmt & 2)) { |
| /* |
| * fmt's 2 and 3 are illegal of not implemented |
| * quad conversions |
| */ |
| return(MAJOR_0C_EXCP); |
| } |
| /* |
| * encode source and dest formats into 2 bits. |
| * high bit is source, low bit is dest. |
| * bit = 1 --> double precision |
| */ |
| fmt = (fmt << 1) | df; |
| switch (subop) { |
| case 0: /* FCNVFF */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(MAJOR_0C_EXCP); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvff(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvff(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 1: /* FCNVXF */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 2: /* FCNVFX */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 3: /* FCNVFXT */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 5: /* FCNVUF (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 6: /* FCNVFU (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 7: /* FCNVFUT (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 4: /* undefined */ |
| return(MAJOR_0C_EXCP); |
| } /* end of switch subop */ |
| |
| case 2: /* class 2 */ |
| fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; |
| r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int); |
| if (r2 == 0) |
| r2 = fpzeroreg; |
| if (fpu_type_flags & PA2_0_FPU_FLAG) { |
| /* FTEST if nullify bit set, otherwise FCMP */ |
| if (extru(ir, fpnulpos, 1)) { /* FTEST */ |
| switch (fmt) { |
| case 0: |
| /* |
| * arg0 is not used |
| * second param is the t field used for |
| * ftest,acc and ftest,rej |
| * third param is the subop (y-field) |
| */ |
| BUG(); |
| /* Unsupported |
| * return(ftest(0L,extru(ir,fptpos,5), |
| * &fpregs[0],subop)); |
| */ |
| case 1: |
| case 2: |
| case 3: |
| return(MAJOR_0C_EXCP); |
| } |
| } else { /* FCMP */ |
| switch (fmt) { |
| case 0: |
| retval = sgl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 1: |
| retval = dbl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| } |
| } /* end of if for PA2.0 */ |
| else { /* PA1.0 & PA1.1 */ |
| switch (subop) { |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| return(MAJOR_0C_EXCP); |
| case 0: /* FCMP */ |
| switch (fmt) { |
| case 0: |
| retval = sgl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 1: |
| retval = dbl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 1: /* FTEST */ |
| switch (fmt) { |
| case 0: |
| /* |
| * arg0 is not used |
| * second param is the t field used for |
| * ftest,acc and ftest,rej |
| * third param is the subop (y-field) |
| */ |
| BUG(); |
| /* unsupported |
| * return(ftest(0L,extru(ir,fptpos,5), |
| * &fpregs[0],subop)); |
| */ |
| case 1: |
| case 2: |
| case 3: |
| return(MAJOR_0C_EXCP); |
| } |
| } /* end of switch subop */ |
| } /* end of else for PA1.0 & PA1.1 */ |
| case 3: /* class 3 */ |
| r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int); |
| if (r2 == 0) |
| r2 = fpzeroreg; |
| switch (subop) { |
| case 5: |
| case 6: |
| case 7: |
| return(MAJOR_0C_EXCP); |
| |
| case 0: /* FADD */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fadd(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fadd(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 1: /* FSUB */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fsub(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fsub(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 2: /* FMPY */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fmpy(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fmpy(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 3: /* FDIV */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fdiv(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fdiv(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| case 4: /* FREM */ |
| switch (fmt) { |
| case 0: |
| return(sgl_frem(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_frem(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 2: /* illegal */ |
| case 3: /* quad not implemented */ |
| return(MAJOR_0C_EXCP); |
| } |
| } /* end of class 3 switch */ |
| } /* end of switch(class) */ |
| |
| /* If we get here, something is really wrong! */ |
| return(MAJOR_0C_EXCP); |
| } |
| |
| static u_int |
| decode_0e(ir,class,subop,fpregs) |
| u_int ir,class,subop; |
| u_int fpregs[]; |
| { |
| u_int r1,r2,t; /* operand register offsets */ |
| u_int fmt; /* also sf for class 1 conversions */ |
| u_int df; /* dest format for class 1 conversions */ |
| u_int *status; |
| u_int retval, local_status; |
| u_int fpu_type_flags; |
| |
| status = &fpregs[0]; |
| local_status = fpregs[0]; |
| r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1))); |
| if (r1 == 0) |
| r1 = fpzeroreg; |
| t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1))); |
| if (t == 0 && class != 2) |
| return(MAJOR_0E_EXCP); |
| if (class < 2) /* class 0 or 1 has 2 bit fmt */ |
| fmt = extru(ir,fpfmtpos,2); |
| else /* class 2 and 3 have 1 bit fmt */ |
| fmt = extru(ir,fp0efmtpos,1); |
| /* |
| * An undefined combination, double precision accessing the |
| * right half of a FPR, can get us into trouble. |
| * Let's just force proper alignment on it. |
| */ |
| if (fmt == DBL) { |
| r1 &= ~1; |
| if (class != 1) |
| t &= ~1; |
| } |
| |
| switch (class) { |
| case 0: |
| switch (subop) { |
| case 0: /* unimplemented */ |
| case 1: |
| return(MAJOR_0E_EXCP); |
| case 2: /* FCPY */ |
| switch (fmt) { |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| fpregs[t] = fpregs[r1]; |
| return(NOEXCEPTION); |
| } |
| case 3: /* FABS */ |
| switch (fmt) { |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| fpregs[t] = fpregs[r1] & 0x7fffffff; |
| return(NOEXCEPTION); |
| } |
| case 6: /* FNEG */ |
| switch (fmt) { |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| fpregs[t] = fpregs[r1] ^ 0x80000000; |
| return(NOEXCEPTION); |
| } |
| case 7: /* FNEGABS */ |
| switch (fmt) { |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| case 1: /* double */ |
| fpregs[t+1] = fpregs[r1+1]; |
| case 0: /* single */ |
| fpregs[t] = fpregs[r1] | 0x80000000; |
| return(NOEXCEPTION); |
| } |
| case 4: /* FSQRT */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fsqrt(&fpregs[r1],0, |
| &fpregs[t], status)); |
| case 1: |
| return(dbl_fsqrt(&fpregs[r1],0, |
| &fpregs[t], status)); |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| } |
| case 5: /* FRMD */ |
| switch (fmt) { |
| case 0: |
| return(sgl_frnd(&fpregs[r1],0, |
| &fpregs[t], status)); |
| case 1: |
| return(dbl_frnd(&fpregs[r1],0, |
| &fpregs[t], status)); |
| case 2: |
| case 3: |
| return(MAJOR_0E_EXCP); |
| } |
| } /* end of switch (subop */ |
| |
| case 1: /* class 1 */ |
| df = extru(ir,fpdfpos,2); /* get dest format */ |
| /* |
| * Fix Crashme problem (writing to 31R in double precision) |
| * here too. |
| */ |
| if (df == DBL) { |
| t &= ~1; |
| } |
| if ((df & 2) || (fmt & 2)) |
| return(MAJOR_0E_EXCP); |
| |
| fmt = (fmt << 1) | df; |
| switch (subop) { |
| case 0: /* FCNVFF */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(MAJOR_0E_EXCP); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvff(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvff(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(MAJOR_0E_EXCP); |
| } |
| case 1: /* FCNVXF */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvxf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 2: /* FCNVFX */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfx(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 3: /* FCNVFXT */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 5: /* FCNVUF (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvuf(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 6: /* FCNVFU (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfu(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 7: /* FCNVFUT (PA2.0 only) */ |
| switch(fmt) { |
| case 0: /* sgl/sgl */ |
| return(sgl_to_sgl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 1: /* sgl/dbl */ |
| return(sgl_to_dbl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 2: /* dbl/sgl */ |
| return(dbl_to_sgl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| case 3: /* dbl/dbl */ |
| return(dbl_to_dbl_fcnvfut(&fpregs[r1],0, |
| &fpregs[t],status)); |
| } |
| case 4: /* undefined */ |
| return(MAJOR_0C_EXCP); |
| } /* end of switch subop */ |
| case 2: /* class 2 */ |
| /* |
| * Be careful out there. |
| * Crashme can generate cases where FR31R is specified |
| * as the source or target of a double precision operation. |
| * Since we just pass the address of the floating-point |
| * register to the emulation routines, this can cause |
| * corruption of fpzeroreg. |
| */ |
| if (fmt == DBL) |
| r2 = (extru(ir,fpr2pos,5)<<1); |
| else |
| r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1))); |
| fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; |
| if (r2 == 0) |
| r2 = fpzeroreg; |
| if (fpu_type_flags & PA2_0_FPU_FLAG) { |
| /* FTEST if nullify bit set, otherwise FCMP */ |
| if (extru(ir, fpnulpos, 1)) { /* FTEST */ |
| /* not legal */ |
| return(MAJOR_0E_EXCP); |
| } else { /* FCMP */ |
| switch (fmt) { |
| /* |
| * fmt is only 1 bit long |
| */ |
| case 0: |
| retval = sgl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 1: |
| retval = dbl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| } |
| } |
| } /* end of if for PA2.0 */ |
| else { /* PA1.0 & PA1.1 */ |
| switch (subop) { |
| case 1: |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| return(MAJOR_0E_EXCP); |
| case 0: /* FCMP */ |
| switch (fmt) { |
| /* |
| * fmt is only 1 bit long |
| */ |
| case 0: |
| retval = sgl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| case 1: |
| retval = dbl_fcmp(&fpregs[r1], |
| &fpregs[r2],extru(ir,fptpos,5), |
| &local_status); |
| update_status_cbit(status,local_status, |
| fpu_type_flags, subop); |
| return(retval); |
| } |
| } /* end of switch subop */ |
| } /* end of else for PA1.0 & PA1.1 */ |
| case 3: /* class 3 */ |
| /* |
| * Be careful out there. |
| * Crashme can generate cases where FR31R is specified |
| * as the source or target of a double precision operation. |
| * Since we just pass the address of the floating-point |
| * register to the emulation routines, this can cause |
| * corruption of fpzeroreg. |
| */ |
| if (fmt == DBL) |
| r2 = (extru(ir,fpr2pos,5)<<1); |
| else |
| r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1))); |
| if (r2 == 0) |
| r2 = fpzeroreg; |
| switch (subop) { |
| case 5: |
| case 6: |
| case 7: |
| return(MAJOR_0E_EXCP); |
| |
| /* |
| * Note that fmt is only 1 bit for class 3 */ |
| case 0: /* FADD */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fadd(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fadd(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| } |
| case 1: /* FSUB */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fsub(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fsub(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| } |
| case 2: /* FMPY or XMPYU */ |
| /* |
| * check for integer multiply (x bit set) |
| */ |
| if (extru(ir,fpxpos,1)) { |
| /* |
| * emulate XMPYU |
| */ |
| switch (fmt) { |
| case 0: |
| /* |
| * bad instruction if t specifies |
| * the right half of a register |
| */ |
| if (t & 1) |
| return(MAJOR_0E_EXCP); |
| BUG(); |
| /* unsupported |
| * impyu(&fpregs[r1],&fpregs[r2], |
| * &fpregs[t]); |
| */ |
| return(NOEXCEPTION); |
| case 1: |
| return(MAJOR_0E_EXCP); |
| } |
| } |
| else { /* FMPY */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fmpy(&fpregs[r1], |
| &fpregs[r2],&fpregs[t],status)); |
| case 1: |
| return(dbl_fmpy(&fpregs[r1], |
| &fpregs[r2],&fpregs[t],status)); |
| } |
| } |
| case 3: /* FDIV */ |
| switch (fmt) { |
| case 0: |
| return(sgl_fdiv(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_fdiv(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| } |
| case 4: /* FREM */ |
| switch (fmt) { |
| case 0: |
| return(sgl_frem(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| case 1: |
| return(dbl_frem(&fpregs[r1],&fpregs[r2], |
| &fpregs[t],status)); |
| } |
| } /* end of class 3 switch */ |
| } /* end of switch(class) */ |
| |
| /* If we get here, something is really wrong! */ |
| return(MAJOR_0E_EXCP); |
| } |
| |
| |
| /* |
| * routine to decode the 06 (FMPYADD and FMPYCFXT) instruction |
| */ |
| static u_int |
| decode_06(ir,fpregs) |
| u_int ir; |
| u_int fpregs[]; |
| { |
| u_int rm1, rm2, tm, ra, ta; /* operands */ |
| u_int fmt; |
| u_int error = 0; |
| u_int status; |
| u_int fpu_type_flags; |
| union { |
| double dbl; |
| float flt; |
| struct { u_int i1; u_int i2; } ints; |
| } mtmp, atmp; |
| |
| |
| status = fpregs[0]; /* use a local copy of status reg */ |
| fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */ |
| fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */ |
| if (fmt == 0) { /* DBL */ |
| rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int); |
| if (rm1 == 0) |
| rm1 = fpzeroreg; |
| rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int); |
| if (rm2 == 0) |
| rm2 = fpzeroreg; |
| tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int); |
| if (tm == 0) |
| return(MAJOR_06_EXCP); |
| ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int); |
| ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int); |
| if (ta == 0) |
| return(MAJOR_06_EXCP); |
| |
| if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) { |
| |
| if (ra == 0) { |
| /* special case FMPYCFXT, see sgl case below */ |
| if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2], |
| &mtmp.ints.i1,&status)) |
| error = 1; |
| if (dbl_to_sgl_fcnvfxt(&fpregs[ta], |
| &atmp.ints.i1,&atmp.ints.i1,&status)) |
| error = 1; |
| } |
| else { |
| |
| if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, |
| &status)) |
| error = 1; |
| if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, |
| &status)) |
| error = 1; |
| } |
| } |
| |
| else |
| |
| { |
| if (ra == 0) |
| ra = fpzeroreg; |
| |
| if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, |
| &status)) |
| error = 1; |
| if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, |
| &status)) |
| error = 1; |
| |
| } |
| |
| if (error) |
| return(MAJOR_06_EXCP); |
| else { |
| /* copy results */ |
| fpregs[tm] = mtmp.ints.i1; |
| fpregs[tm+1] = mtmp.ints.i2; |
| fpregs[ta] = atmp.ints.i1; |
| fpregs[ta+1] = atmp.ints.i2; |
| fpregs[0] = status; |
| return(NOEXCEPTION); |
| } |
| } |
| else { /* SGL */ |
| /* |
| * calculate offsets for single precision numbers |
| * See table 6-14 in PA-89 architecture for mapping |
| */ |
| rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */ |
| rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */ |
| |
| rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */ |
| rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */ |
| |
| tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */ |
| tm |= extru(ir,fptmpos-4,1); /* add right word offset */ |
| |
| ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */ |
| ra |= extru(ir,fprapos-4,1); /* add right word offset */ |
| |
| ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */ |
| ta |= extru(ir,fptapos-4,1); /* add right word offset */ |
| |
| if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) { |
| /* special case FMPYCFXT (really 0) |
| * This instruction is only present on the Timex and |
| * Rolex fpu's in so if it is the special case and |
| * one of these fpu's we run the FMPYCFXT instruction |
| */ |
| if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, |
| &status)) |
| error = 1; |
| if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1, |
| &atmp.ints.i1,&status)) |
| error = 1; |
| } |
| else { |
| if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1, |
| &status)) |
| error = 1; |
| if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1, |
| &status)) |
| error = 1; |
| } |
| if (error) |
| return(MAJOR_06_EXCP); |
| else { |
| /* copy results */ |
| fpregs[tm] = mtmp.ints.i1; |
| fpregs[ta] = atmp.ints.i1; |
| fpregs[0] = status; |
| return(NOEXCEPTION); |
| } |
| } |
| } |
| |
| /* |
| * routine to decode the 26 (FMPYSUB) instruction |
| */ |
| static u_int |
| decode_26(ir,fpregs) |
| u_int ir; |
| u_int fpregs[]; |
| { |
| u_int rm1, rm2, tm, ra, ta; /* operands */ |
| u_int fmt; |
| u_int error = 0; |
| u_int status; |
| union { |
| double dbl; |
| float flt; |
| struct { u_int i1; u_int i2; } ints; |
| } mtmp, atmp; |
| |
| |
| status = fpregs[0]; |
| fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */ |
| if (fmt == 0) { /* DBL */ |
| rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int); |
| if (rm1 == 0) |
| rm1 = fpzeroreg; |
| rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int); |
| if (rm2 == 0) |
| rm2 = fpzeroreg; |
| tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int); |
| if (tm == 0) |
| return(MAJOR_26_EXCP); |
| ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int); |
| if (ra == 0) |
| return(MAJOR_26_EXCP); |
| ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int); |
| if (ta == 0) |
| return(MAJOR_26_EXCP); |
| |
| if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status)) |
| error = 1; |
| if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status)) |
| error = 1; |
| if (error) |
| return(MAJOR_26_EXCP); |
| else { |
| /* copy results */ |
| fpregs[tm] = mtmp.ints.i1; |
| fpregs[tm+1] = mtmp.ints.i2; |
| fpregs[ta] = atmp.ints.i1; |
| fpregs[ta+1] = atmp.ints.i2; |
| fpregs[0] = status; |
| return(NOEXCEPTION); |
| } |
| } |
| else { /* SGL */ |
| /* |
| * calculate offsets for single precision numbers |
| * See table 6-14 in PA-89 architecture for mapping |
| */ |
| rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */ |
| rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */ |
| |
| rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */ |
| rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */ |
| |
| tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */ |
| tm |= extru(ir,fptmpos-4,1); /* add right word offset */ |
| |
| ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */ |
| ra |= extru(ir,fprapos-4,1); /* add right word offset */ |
| |
| ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */ |
| ta |= extru(ir,fptapos-4,1); /* add right word offset */ |
| |
| if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status)) |
| error = 1; |
| if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status)) |
| error = 1; |
| if (error) |
| return(MAJOR_26_EXCP); |
| else { |
| /* copy results */ |
| fpregs[tm] = mtmp.ints.i1; |
| fpregs[ta] = atmp.ints.i1; |
| fpregs[0] = status; |
| return(NOEXCEPTION); |
| } |
| } |
| |
| } |
| |
| /* |
| * routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions |
| */ |
| static u_int |
| decode_2e(ir,fpregs) |
| u_int ir; |
| u_int fpregs[]; |
| { |
| u_int rm1, rm2, ra, t; /* operands */ |
| u_int fmt; |
| |
| fmt = extru(ir,fpfmtpos,1); /* get fmt completer */ |
| if (fmt == DBL) { /* DBL */ |
| rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int); |
| if (rm1 == 0) |
| rm1 = fpzeroreg; |
| rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int); |
| if (rm2 == 0) |
| rm2 = fpzeroreg; |
| ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) * |
| sizeof(double)/sizeof(u_int); |
| if (ra == 0) |
| ra = fpzeroreg; |
| t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int); |
| if (t == 0) |
| return(MAJOR_2E_EXCP); |
| |
| if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */ |
| return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2], |
| &fpregs[ra], &fpregs[0], &fpregs[t])); |
| } else { |
| return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2], |
| &fpregs[ra], &fpregs[0], &fpregs[t])); |
| } |
| } /* end DBL */ |
| else { /* SGL */ |
| rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1)); |
| if (rm1 == 0) |
| rm1 = fpzeroreg; |
| rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1)); |
| if (rm2 == 0) |
| rm2 = fpzeroreg; |
| ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3); |
| if (ra == 0) |
| ra = fpzeroreg; |
| t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1))); |
| if (t == 0) |
| return(MAJOR_2E_EXCP); |
| |
| if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */ |
| return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2], |
| &fpregs[ra], &fpregs[0], &fpregs[t])); |
| } else { |
| return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2], |
| &fpregs[ra], &fpregs[0], &fpregs[t])); |
| } |
| } /* end SGL */ |
| } |
| |
| /* |
| * update_status_cbit |
| * |
| * This routine returns the correct FP status register value in |
| * *status, based on the C-bit & V-bit returned by the FCMP |
| * emulation routine in new_status. The architecture type |
| * (PA83, PA89 or PA2.0) is available in fpu_type. The y_field |
| * and the architecture type are used to determine what flavor |
| * of FCMP is being emulated. |
| */ |
| static void |
| update_status_cbit(status, new_status, fpu_type, y_field) |
| u_int *status, new_status; |
| u_int fpu_type; |
| u_int y_field; |
| { |
| /* |
| * For PA89 FPU's which implement the Compare Queue and |
| * for PA2.0 FPU's, update the Compare Queue if the y-field = 0, |
| * otherwise update the specified bit in the Compare Array. |
| * Note that the y-field will always be 0 for non-PA2.0 FPU's. |
| */ |
| if ((fpu_type & TIMEX_EXTEN_FLAG) || |
| (fpu_type & ROLEX_EXTEN_FLAG) || |
| (fpu_type & PA2_0_FPU_FLAG)) { |
| if (y_field == 0) { |
| *status = ((*status & 0x04000000) >> 5) | /* old Cbit */ |
| ((*status & 0x003ff000) >> 1) | /* old CQ */ |
| (new_status & 0xffc007ff); /* all other bits*/ |
| } else { |
| *status = (*status & 0x04000000) | /* old Cbit */ |
| ((new_status & 0x04000000) >> (y_field+4)) | |
| (new_status & ~0x04000000 & /* other bits */ |
| ~(0x04000000 >> (y_field+4))); |
| } |
| } |
| /* if PA83, just update the C-bit */ |
| else { |
| *status = new_status; |
| } |
| } |