| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/highmem.h> |
| #include <linux/gfp.h> |
| #include <linux/slab.h> |
| #include <linux/hugetlb.h> |
| #include <linux/vmalloc.h> |
| #include <linux/srcu.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/file.h> |
| #include <linux/debugfs.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/book3s/64/mmu-hash.h> |
| #include <asm/hvcall.h> |
| #include <asm/synch.h> |
| #include <asm/ppc-opcode.h> |
| #include <asm/cputable.h> |
| #include <asm/pte-walk.h> |
| |
| #include "trace_hv.h" |
| |
| //#define DEBUG_RESIZE_HPT 1 |
| |
| #ifdef DEBUG_RESIZE_HPT |
| #define resize_hpt_debug(resize, ...) \ |
| do { \ |
| printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ |
| printk(__VA_ARGS__); \ |
| } while (0) |
| #else |
| #define resize_hpt_debug(resize, ...) \ |
| do { } while (0) |
| #endif |
| |
| static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, |
| long pte_index, unsigned long pteh, |
| unsigned long ptel, unsigned long *pte_idx_ret); |
| |
| struct kvm_resize_hpt { |
| /* These fields read-only after init */ |
| struct kvm *kvm; |
| struct work_struct work; |
| u32 order; |
| |
| /* These fields protected by kvm->arch.mmu_setup_lock */ |
| |
| /* Possible values and their usage: |
| * <0 an error occurred during allocation, |
| * -EBUSY allocation is in the progress, |
| * 0 allocation made successfuly. |
| */ |
| int error; |
| |
| /* Private to the work thread, until error != -EBUSY, |
| * then protected by kvm->arch.mmu_setup_lock. |
| */ |
| struct kvm_hpt_info hpt; |
| }; |
| |
| int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) |
| { |
| unsigned long hpt = 0; |
| int cma = 0; |
| struct page *page = NULL; |
| struct revmap_entry *rev; |
| unsigned long npte; |
| |
| if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) |
| return -EINVAL; |
| |
| page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); |
| if (page) { |
| hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); |
| memset((void *)hpt, 0, (1ul << order)); |
| cma = 1; |
| } |
| |
| if (!hpt) |
| hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL |
| |__GFP_NOWARN, order - PAGE_SHIFT); |
| |
| if (!hpt) |
| return -ENOMEM; |
| |
| /* HPTEs are 2**4 bytes long */ |
| npte = 1ul << (order - 4); |
| |
| /* Allocate reverse map array */ |
| rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); |
| if (!rev) { |
| if (cma) |
| kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); |
| else |
| free_pages(hpt, order - PAGE_SHIFT); |
| return -ENOMEM; |
| } |
| |
| info->order = order; |
| info->virt = hpt; |
| info->cma = cma; |
| info->rev = rev; |
| |
| return 0; |
| } |
| |
| void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) |
| { |
| atomic64_set(&kvm->arch.mmio_update, 0); |
| kvm->arch.hpt = *info; |
| kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); |
| |
| pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", |
| info->virt, (long)info->order, kvm->arch.lpid); |
| } |
| |
| long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) |
| { |
| long err = -EBUSY; |
| struct kvm_hpt_info info; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| if (kvm->arch.mmu_ready) { |
| kvm->arch.mmu_ready = 0; |
| /* order mmu_ready vs. vcpus_running */ |
| smp_mb(); |
| if (atomic_read(&kvm->arch.vcpus_running)) { |
| kvm->arch.mmu_ready = 1; |
| goto out; |
| } |
| } |
| if (kvm_is_radix(kvm)) { |
| err = kvmppc_switch_mmu_to_hpt(kvm); |
| if (err) |
| goto out; |
| } |
| |
| if (kvm->arch.hpt.order == order) { |
| /* We already have a suitable HPT */ |
| |
| /* Set the entire HPT to 0, i.e. invalid HPTEs */ |
| memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); |
| /* |
| * Reset all the reverse-mapping chains for all memslots |
| */ |
| kvmppc_rmap_reset(kvm); |
| err = 0; |
| goto out; |
| } |
| |
| if (kvm->arch.hpt.virt) { |
| kvmppc_free_hpt(&kvm->arch.hpt); |
| kvmppc_rmap_reset(kvm); |
| } |
| |
| err = kvmppc_allocate_hpt(&info, order); |
| if (err < 0) |
| goto out; |
| kvmppc_set_hpt(kvm, &info); |
| |
| out: |
| if (err == 0) |
| /* Ensure that each vcpu will flush its TLB on next entry. */ |
| cpumask_setall(&kvm->arch.need_tlb_flush); |
| |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return err; |
| } |
| |
| void kvmppc_free_hpt(struct kvm_hpt_info *info) |
| { |
| vfree(info->rev); |
| info->rev = NULL; |
| if (info->cma) |
| kvm_free_hpt_cma(virt_to_page(info->virt), |
| 1 << (info->order - PAGE_SHIFT)); |
| else if (info->virt) |
| free_pages(info->virt, info->order - PAGE_SHIFT); |
| info->virt = 0; |
| info->order = 0; |
| } |
| |
| /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ |
| static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) |
| { |
| return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; |
| } |
| |
| /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ |
| static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) |
| { |
| return (pgsize == 0x10000) ? 0x1000 : 0; |
| } |
| |
| void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, |
| unsigned long porder) |
| { |
| unsigned long i; |
| unsigned long npages; |
| unsigned long hp_v, hp_r; |
| unsigned long addr, hash; |
| unsigned long psize; |
| unsigned long hp0, hp1; |
| unsigned long idx_ret; |
| long ret; |
| struct kvm *kvm = vcpu->kvm; |
| |
| psize = 1ul << porder; |
| npages = memslot->npages >> (porder - PAGE_SHIFT); |
| |
| /* VRMA can't be > 1TB */ |
| if (npages > 1ul << (40 - porder)) |
| npages = 1ul << (40 - porder); |
| /* Can't use more than 1 HPTE per HPTEG */ |
| if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) |
| npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; |
| |
| hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | |
| HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); |
| hp1 = hpte1_pgsize_encoding(psize) | |
| HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; |
| |
| for (i = 0; i < npages; ++i) { |
| addr = i << porder; |
| /* can't use hpt_hash since va > 64 bits */ |
| hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) |
| & kvmppc_hpt_mask(&kvm->arch.hpt); |
| /* |
| * We assume that the hash table is empty and no |
| * vcpus are using it at this stage. Since we create |
| * at most one HPTE per HPTEG, we just assume entry 7 |
| * is available and use it. |
| */ |
| hash = (hash << 3) + 7; |
| hp_v = hp0 | ((addr >> 16) & ~0x7fUL); |
| hp_r = hp1 | addr; |
| ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, |
| &idx_ret); |
| if (ret != H_SUCCESS) { |
| pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", |
| addr, ret); |
| break; |
| } |
| } |
| } |
| |
| int kvmppc_mmu_hv_init(void) |
| { |
| unsigned long host_lpid, rsvd_lpid; |
| |
| if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) |
| return -EINVAL; |
| |
| host_lpid = 0; |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| host_lpid = mfspr(SPRN_LPID); |
| |
| /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| rsvd_lpid = LPID_RSVD; |
| else |
| rsvd_lpid = LPID_RSVD_POWER7; |
| |
| kvmppc_init_lpid(rsvd_lpid + 1); |
| |
| kvmppc_claim_lpid(host_lpid); |
| /* rsvd_lpid is reserved for use in partition switching */ |
| kvmppc_claim_lpid(rsvd_lpid); |
| |
| return 0; |
| } |
| |
| static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, |
| long pte_index, unsigned long pteh, |
| unsigned long ptel, unsigned long *pte_idx_ret) |
| { |
| long ret; |
| |
| preempt_disable(); |
| ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, |
| kvm->mm->pgd, false, pte_idx_ret); |
| preempt_enable(); |
| if (ret == H_TOO_HARD) { |
| /* this can't happen */ |
| pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); |
| ret = H_RESOURCE; /* or something */ |
| } |
| return ret; |
| |
| } |
| |
| static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, |
| gva_t eaddr) |
| { |
| u64 mask; |
| int i; |
| |
| for (i = 0; i < vcpu->arch.slb_nr; i++) { |
| if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) |
| continue; |
| |
| if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) |
| mask = ESID_MASK_1T; |
| else |
| mask = ESID_MASK; |
| |
| if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) |
| return &vcpu->arch.slb[i]; |
| } |
| return NULL; |
| } |
| |
| static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, |
| unsigned long ea) |
| { |
| unsigned long ra_mask; |
| |
| ra_mask = kvmppc_actual_pgsz(v, r) - 1; |
| return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); |
| } |
| |
| static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, |
| struct kvmppc_pte *gpte, bool data, bool iswrite) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvmppc_slb *slbe; |
| unsigned long slb_v; |
| unsigned long pp, key; |
| unsigned long v, orig_v, gr; |
| __be64 *hptep; |
| long int index; |
| int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); |
| |
| if (kvm_is_radix(vcpu->kvm)) |
| return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); |
| |
| /* Get SLB entry */ |
| if (virtmode) { |
| slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); |
| if (!slbe) |
| return -EINVAL; |
| slb_v = slbe->origv; |
| } else { |
| /* real mode access */ |
| slb_v = vcpu->kvm->arch.vrma_slb_v; |
| } |
| |
| preempt_disable(); |
| /* Find the HPTE in the hash table */ |
| index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, |
| HPTE_V_VALID | HPTE_V_ABSENT); |
| if (index < 0) { |
| preempt_enable(); |
| return -ENOENT; |
| } |
| hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); |
| v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); |
| gr = kvm->arch.hpt.rev[index].guest_rpte; |
| |
| unlock_hpte(hptep, orig_v); |
| preempt_enable(); |
| |
| gpte->eaddr = eaddr; |
| gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); |
| |
| /* Get PP bits and key for permission check */ |
| pp = gr & (HPTE_R_PP0 | HPTE_R_PP); |
| key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; |
| key &= slb_v; |
| |
| /* Calculate permissions */ |
| gpte->may_read = hpte_read_permission(pp, key); |
| gpte->may_write = hpte_write_permission(pp, key); |
| gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); |
| |
| /* Storage key permission check for POWER7 */ |
| if (data && virtmode) { |
| int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); |
| if (amrfield & 1) |
| gpte->may_read = 0; |
| if (amrfield & 2) |
| gpte->may_write = 0; |
| } |
| |
| /* Get the guest physical address */ |
| gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); |
| return 0; |
| } |
| |
| /* |
| * Quick test for whether an instruction is a load or a store. |
| * If the instruction is a load or a store, then this will indicate |
| * which it is, at least on server processors. (Embedded processors |
| * have some external PID instructions that don't follow the rule |
| * embodied here.) If the instruction isn't a load or store, then |
| * this doesn't return anything useful. |
| */ |
| static int instruction_is_store(unsigned int instr) |
| { |
| unsigned int mask; |
| |
| mask = 0x10000000; |
| if ((instr & 0xfc000000) == 0x7c000000) |
| mask = 0x100; /* major opcode 31 */ |
| return (instr & mask) != 0; |
| } |
| |
| int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, |
| unsigned long gpa, gva_t ea, int is_store) |
| { |
| u32 last_inst; |
| |
| /* |
| * Fast path - check if the guest physical address corresponds to a |
| * device on the FAST_MMIO_BUS, if so we can avoid loading the |
| * instruction all together, then we can just handle it and return. |
| */ |
| if (is_store) { |
| int idx, ret; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, |
| NULL); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| if (!ret) { |
| kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); |
| return RESUME_GUEST; |
| } |
| } |
| |
| /* |
| * If we fail, we just return to the guest and try executing it again. |
| */ |
| if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != |
| EMULATE_DONE) |
| return RESUME_GUEST; |
| |
| /* |
| * WARNING: We do not know for sure whether the instruction we just |
| * read from memory is the same that caused the fault in the first |
| * place. If the instruction we read is neither an load or a store, |
| * then it can't access memory, so we don't need to worry about |
| * enforcing access permissions. So, assuming it is a load or |
| * store, we just check that its direction (load or store) is |
| * consistent with the original fault, since that's what we |
| * checked the access permissions against. If there is a mismatch |
| * we just return and retry the instruction. |
| */ |
| |
| if (instruction_is_store(last_inst) != !!is_store) |
| return RESUME_GUEST; |
| |
| /* |
| * Emulated accesses are emulated by looking at the hash for |
| * translation once, then performing the access later. The |
| * translation could be invalidated in the meantime in which |
| * point performing the subsequent memory access on the old |
| * physical address could possibly be a security hole for the |
| * guest (but not the host). |
| * |
| * This is less of an issue for MMIO stores since they aren't |
| * globally visible. It could be an issue for MMIO loads to |
| * a certain extent but we'll ignore it for now. |
| */ |
| |
| vcpu->arch.paddr_accessed = gpa; |
| vcpu->arch.vaddr_accessed = ea; |
| return kvmppc_emulate_mmio(vcpu); |
| } |
| |
| int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, |
| unsigned long ea, unsigned long dsisr) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long hpte[3], r; |
| unsigned long hnow_v, hnow_r; |
| __be64 *hptep; |
| unsigned long mmu_seq, psize, pte_size; |
| unsigned long gpa_base, gfn_base; |
| unsigned long gpa, gfn, hva, pfn, hpa; |
| struct kvm_memory_slot *memslot; |
| unsigned long *rmap; |
| struct revmap_entry *rev; |
| struct page *page; |
| long index, ret; |
| bool is_ci; |
| bool writing, write_ok; |
| unsigned int shift; |
| unsigned long rcbits; |
| long mmio_update; |
| pte_t pte, *ptep; |
| |
| if (kvm_is_radix(kvm)) |
| return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); |
| |
| /* |
| * Real-mode code has already searched the HPT and found the |
| * entry we're interested in. Lock the entry and check that |
| * it hasn't changed. If it has, just return and re-execute the |
| * instruction. |
| */ |
| if (ea != vcpu->arch.pgfault_addr) |
| return RESUME_GUEST; |
| |
| if (vcpu->arch.pgfault_cache) { |
| mmio_update = atomic64_read(&kvm->arch.mmio_update); |
| if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { |
| r = vcpu->arch.pgfault_cache->rpte; |
| psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], |
| r); |
| gpa_base = r & HPTE_R_RPN & ~(psize - 1); |
| gfn_base = gpa_base >> PAGE_SHIFT; |
| gpa = gpa_base | (ea & (psize - 1)); |
| return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, |
| dsisr & DSISR_ISSTORE); |
| } |
| } |
| index = vcpu->arch.pgfault_index; |
| hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); |
| rev = &kvm->arch.hpt.rev[index]; |
| preempt_disable(); |
| while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; |
| hpte[1] = be64_to_cpu(hptep[1]); |
| hpte[2] = r = rev->guest_rpte; |
| unlock_hpte(hptep, hpte[0]); |
| preempt_enable(); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); |
| hpte[1] = hpte_new_to_old_r(hpte[1]); |
| } |
| if (hpte[0] != vcpu->arch.pgfault_hpte[0] || |
| hpte[1] != vcpu->arch.pgfault_hpte[1]) |
| return RESUME_GUEST; |
| |
| /* Translate the logical address and get the page */ |
| psize = kvmppc_actual_pgsz(hpte[0], r); |
| gpa_base = r & HPTE_R_RPN & ~(psize - 1); |
| gfn_base = gpa_base >> PAGE_SHIFT; |
| gpa = gpa_base | (ea & (psize - 1)); |
| gfn = gpa >> PAGE_SHIFT; |
| memslot = gfn_to_memslot(kvm, gfn); |
| |
| trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); |
| |
| /* No memslot means it's an emulated MMIO region */ |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) |
| return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, |
| dsisr & DSISR_ISSTORE); |
| |
| /* |
| * This should never happen, because of the slot_is_aligned() |
| * check in kvmppc_do_h_enter(). |
| */ |
| if (gfn_base < memslot->base_gfn) |
| return -EFAULT; |
| |
| /* used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| ret = -EFAULT; |
| page = NULL; |
| writing = (dsisr & DSISR_ISSTORE) != 0; |
| /* If writing != 0, then the HPTE must allow writing, if we get here */ |
| write_ok = writing; |
| hva = gfn_to_hva_memslot(memslot, gfn); |
| |
| /* |
| * Do a fast check first, since __gfn_to_pfn_memslot doesn't |
| * do it with !atomic && !async, which is how we call it. |
| * We always ask for write permission since the common case |
| * is that the page is writable. |
| */ |
| if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { |
| write_ok = true; |
| } else { |
| /* Call KVM generic code to do the slow-path check */ |
| pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, |
| writing, &write_ok); |
| if (is_error_noslot_pfn(pfn)) |
| return -EFAULT; |
| page = NULL; |
| if (pfn_valid(pfn)) { |
| page = pfn_to_page(pfn); |
| if (PageReserved(page)) |
| page = NULL; |
| } |
| } |
| |
| /* |
| * Read the PTE from the process' radix tree and use that |
| * so we get the shift and attribute bits. |
| */ |
| spin_lock(&kvm->mmu_lock); |
| ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); |
| pte = __pte(0); |
| if (ptep) |
| pte = READ_ONCE(*ptep); |
| spin_unlock(&kvm->mmu_lock); |
| /* |
| * If the PTE disappeared temporarily due to a THP |
| * collapse, just return and let the guest try again. |
| */ |
| if (!pte_present(pte)) { |
| if (page) |
| put_page(page); |
| return RESUME_GUEST; |
| } |
| hpa = pte_pfn(pte) << PAGE_SHIFT; |
| pte_size = PAGE_SIZE; |
| if (shift) |
| pte_size = 1ul << shift; |
| is_ci = pte_ci(pte); |
| |
| if (psize > pte_size) |
| goto out_put; |
| if (pte_size > psize) |
| hpa |= hva & (pte_size - psize); |
| |
| /* Check WIMG vs. the actual page we're accessing */ |
| if (!hpte_cache_flags_ok(r, is_ci)) { |
| if (is_ci) |
| goto out_put; |
| /* |
| * Allow guest to map emulated device memory as |
| * uncacheable, but actually make it cacheable. |
| */ |
| r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; |
| } |
| |
| /* |
| * Set the HPTE to point to hpa. |
| * Since the hpa is at PAGE_SIZE granularity, make sure we |
| * don't mask out lower-order bits if psize < PAGE_SIZE. |
| */ |
| if (psize < PAGE_SIZE) |
| psize = PAGE_SIZE; |
| r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; |
| if (hpte_is_writable(r) && !write_ok) |
| r = hpte_make_readonly(r); |
| ret = RESUME_GUEST; |
| preempt_disable(); |
| while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| hnow_v = be64_to_cpu(hptep[0]); |
| hnow_r = be64_to_cpu(hptep[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); |
| hnow_r = hpte_new_to_old_r(hnow_r); |
| } |
| |
| /* |
| * If the HPT is being resized, don't update the HPTE, |
| * instead let the guest retry after the resize operation is complete. |
| * The synchronization for mmu_ready test vs. set is provided |
| * by the HPTE lock. |
| */ |
| if (!kvm->arch.mmu_ready) |
| goto out_unlock; |
| |
| if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || |
| rev->guest_rpte != hpte[2]) |
| /* HPTE has been changed under us; let the guest retry */ |
| goto out_unlock; |
| hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; |
| |
| /* Always put the HPTE in the rmap chain for the page base address */ |
| rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; |
| lock_rmap(rmap); |
| |
| /* Check if we might have been invalidated; let the guest retry if so */ |
| ret = RESUME_GUEST; |
| if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { |
| unlock_rmap(rmap); |
| goto out_unlock; |
| } |
| |
| /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ |
| rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; |
| r &= rcbits | ~(HPTE_R_R | HPTE_R_C); |
| |
| if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { |
| /* HPTE was previously valid, so we need to invalidate it */ |
| unlock_rmap(rmap); |
| hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); |
| kvmppc_invalidate_hpte(kvm, hptep, index); |
| /* don't lose previous R and C bits */ |
| r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); |
| } else { |
| kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| r = hpte_old_to_new_r(hpte[0], r); |
| hpte[0] = hpte_old_to_new_v(hpte[0]); |
| } |
| hptep[1] = cpu_to_be64(r); |
| eieio(); |
| __unlock_hpte(hptep, hpte[0]); |
| asm volatile("ptesync" : : : "memory"); |
| preempt_enable(); |
| if (page && hpte_is_writable(r)) |
| set_page_dirty_lock(page); |
| |
| out_put: |
| trace_kvm_page_fault_exit(vcpu, hpte, ret); |
| |
| if (page) |
| put_page(page); |
| return ret; |
| |
| out_unlock: |
| __unlock_hpte(hptep, be64_to_cpu(hptep[0])); |
| preempt_enable(); |
| goto out_put; |
| } |
| |
| void kvmppc_rmap_reset(struct kvm *kvm) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| slots = kvm_memslots(kvm); |
| kvm_for_each_memslot(memslot, slots) { |
| /* Mutual exclusion with kvm_unmap_hva_range etc. */ |
| spin_lock(&kvm->mmu_lock); |
| /* |
| * This assumes it is acceptable to lose reference and |
| * change bits across a reset. |
| */ |
| memset(memslot->arch.rmap, 0, |
| memslot->npages * sizeof(*memslot->arch.rmap)); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } |
| |
| typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn); |
| |
| static int kvm_handle_hva_range(struct kvm *kvm, |
| unsigned long start, |
| unsigned long end, |
| hva_handler_fn handler) |
| { |
| int ret; |
| int retval = 0; |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| |
| slots = kvm_memslots(kvm); |
| kvm_for_each_memslot(memslot, slots) { |
| unsigned long hva_start, hva_end; |
| gfn_t gfn, gfn_end; |
| |
| hva_start = max(start, memslot->userspace_addr); |
| hva_end = min(end, memslot->userspace_addr + |
| (memslot->npages << PAGE_SHIFT)); |
| if (hva_start >= hva_end) |
| continue; |
| /* |
| * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| * {gfn, gfn+1, ..., gfn_end-1}. |
| */ |
| gfn = hva_to_gfn_memslot(hva_start, memslot); |
| gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| |
| for (; gfn < gfn_end; ++gfn) { |
| ret = handler(kvm, memslot, gfn); |
| retval |= ret; |
| } |
| } |
| |
| return retval; |
| } |
| |
| static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, |
| hva_handler_fn handler) |
| { |
| return kvm_handle_hva_range(kvm, hva, hva + 1, handler); |
| } |
| |
| /* Must be called with both HPTE and rmap locked */ |
| static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, |
| struct kvm_memory_slot *memslot, |
| unsigned long *rmapp, unsigned long gfn) |
| { |
| __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); |
| struct revmap_entry *rev = kvm->arch.hpt.rev; |
| unsigned long j, h; |
| unsigned long ptel, psize, rcbits; |
| |
| j = rev[i].forw; |
| if (j == i) { |
| /* chain is now empty */ |
| *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); |
| } else { |
| /* remove i from chain */ |
| h = rev[i].back; |
| rev[h].forw = j; |
| rev[j].back = h; |
| rev[i].forw = rev[i].back = i; |
| *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; |
| } |
| |
| /* Now check and modify the HPTE */ |
| ptel = rev[i].guest_rpte; |
| psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); |
| if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && |
| hpte_rpn(ptel, psize) == gfn) { |
| hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); |
| kvmppc_invalidate_hpte(kvm, hptep, i); |
| hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); |
| /* Harvest R and C */ |
| rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); |
| *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; |
| if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) |
| kvmppc_update_dirty_map(memslot, gfn, psize); |
| if (rcbits & ~rev[i].guest_rpte) { |
| rev[i].guest_rpte = ptel | rcbits; |
| note_hpte_modification(kvm, &rev[i]); |
| } |
| } |
| } |
| |
| static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| unsigned long i; |
| __be64 *hptep; |
| unsigned long *rmapp; |
| |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| for (;;) { |
| lock_rmap(rmapp); |
| if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { |
| unlock_rmap(rmapp); |
| break; |
| } |
| |
| /* |
| * To avoid an ABBA deadlock with the HPTE lock bit, |
| * we can't spin on the HPTE lock while holding the |
| * rmap chain lock. |
| */ |
| i = *rmapp & KVMPPC_RMAP_INDEX; |
| hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); |
| if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { |
| /* unlock rmap before spinning on the HPTE lock */ |
| unlock_rmap(rmapp); |
| while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) |
| cpu_relax(); |
| continue; |
| } |
| |
| kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); |
| unlock_rmap(rmapp); |
| __unlock_hpte(hptep, be64_to_cpu(hptep[0])); |
| } |
| return 0; |
| } |
| |
| int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| hva_handler_fn handler; |
| |
| handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; |
| kvm_handle_hva_range(kvm, start, end, handler); |
| return 0; |
| } |
| |
| void kvmppc_core_flush_memslot_hv(struct kvm *kvm, |
| struct kvm_memory_slot *memslot) |
| { |
| unsigned long gfn; |
| unsigned long n; |
| unsigned long *rmapp; |
| |
| gfn = memslot->base_gfn; |
| rmapp = memslot->arch.rmap; |
| if (kvm_is_radix(kvm)) { |
| kvmppc_radix_flush_memslot(kvm, memslot); |
| return; |
| } |
| |
| for (n = memslot->npages; n; --n, ++gfn) { |
| /* |
| * Testing the present bit without locking is OK because |
| * the memslot has been marked invalid already, and hence |
| * no new HPTEs referencing this page can be created, |
| * thus the present bit can't go from 0 to 1. |
| */ |
| if (*rmapp & KVMPPC_RMAP_PRESENT) |
| kvm_unmap_rmapp(kvm, memslot, gfn); |
| ++rmapp; |
| } |
| } |
| |
| static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| struct revmap_entry *rev = kvm->arch.hpt.rev; |
| unsigned long head, i, j; |
| __be64 *hptep; |
| int ret = 0; |
| unsigned long *rmapp; |
| |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| retry: |
| lock_rmap(rmapp); |
| if (*rmapp & KVMPPC_RMAP_REFERENCED) { |
| *rmapp &= ~KVMPPC_RMAP_REFERENCED; |
| ret = 1; |
| } |
| if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { |
| unlock_rmap(rmapp); |
| return ret; |
| } |
| |
| i = head = *rmapp & KVMPPC_RMAP_INDEX; |
| do { |
| hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); |
| j = rev[i].forw; |
| |
| /* If this HPTE isn't referenced, ignore it */ |
| if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) |
| continue; |
| |
| if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { |
| /* unlock rmap before spinning on the HPTE lock */ |
| unlock_rmap(rmapp); |
| while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) |
| cpu_relax(); |
| goto retry; |
| } |
| |
| /* Now check and modify the HPTE */ |
| if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && |
| (be64_to_cpu(hptep[1]) & HPTE_R_R)) { |
| kvmppc_clear_ref_hpte(kvm, hptep, i); |
| if (!(rev[i].guest_rpte & HPTE_R_R)) { |
| rev[i].guest_rpte |= HPTE_R_R; |
| note_hpte_modification(kvm, &rev[i]); |
| } |
| ret = 1; |
| } |
| __unlock_hpte(hptep, be64_to_cpu(hptep[0])); |
| } while ((i = j) != head); |
| |
| unlock_rmap(rmapp); |
| return ret; |
| } |
| |
| int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| hva_handler_fn handler; |
| |
| handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; |
| return kvm_handle_hva_range(kvm, start, end, handler); |
| } |
| |
| static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| struct revmap_entry *rev = kvm->arch.hpt.rev; |
| unsigned long head, i, j; |
| unsigned long *hp; |
| int ret = 1; |
| unsigned long *rmapp; |
| |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| if (*rmapp & KVMPPC_RMAP_REFERENCED) |
| return 1; |
| |
| lock_rmap(rmapp); |
| if (*rmapp & KVMPPC_RMAP_REFERENCED) |
| goto out; |
| |
| if (*rmapp & KVMPPC_RMAP_PRESENT) { |
| i = head = *rmapp & KVMPPC_RMAP_INDEX; |
| do { |
| hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); |
| j = rev[i].forw; |
| if (be64_to_cpu(hp[1]) & HPTE_R_R) |
| goto out; |
| } while ((i = j) != head); |
| } |
| ret = 0; |
| |
| out: |
| unlock_rmap(rmapp); |
| return ret; |
| } |
| |
| int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) |
| { |
| hva_handler_fn handler; |
| |
| handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; |
| return kvm_handle_hva(kvm, hva, handler); |
| } |
| |
| void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| hva_handler_fn handler; |
| |
| handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; |
| kvm_handle_hva(kvm, hva, handler); |
| } |
| |
| static int vcpus_running(struct kvm *kvm) |
| { |
| return atomic_read(&kvm->arch.vcpus_running) != 0; |
| } |
| |
| /* |
| * Returns the number of system pages that are dirty. |
| * This can be more than 1 if we find a huge-page HPTE. |
| */ |
| static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) |
| { |
| struct revmap_entry *rev = kvm->arch.hpt.rev; |
| unsigned long head, i, j; |
| unsigned long n; |
| unsigned long v, r; |
| __be64 *hptep; |
| int npages_dirty = 0; |
| |
| retry: |
| lock_rmap(rmapp); |
| if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { |
| unlock_rmap(rmapp); |
| return npages_dirty; |
| } |
| |
| i = head = *rmapp & KVMPPC_RMAP_INDEX; |
| do { |
| unsigned long hptep1; |
| hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); |
| j = rev[i].forw; |
| |
| /* |
| * Checking the C (changed) bit here is racy since there |
| * is no guarantee about when the hardware writes it back. |
| * If the HPTE is not writable then it is stable since the |
| * page can't be written to, and we would have done a tlbie |
| * (which forces the hardware to complete any writeback) |
| * when making the HPTE read-only. |
| * If vcpus are running then this call is racy anyway |
| * since the page could get dirtied subsequently, so we |
| * expect there to be a further call which would pick up |
| * any delayed C bit writeback. |
| * Otherwise we need to do the tlbie even if C==0 in |
| * order to pick up any delayed writeback of C. |
| */ |
| hptep1 = be64_to_cpu(hptep[1]); |
| if (!(hptep1 & HPTE_R_C) && |
| (!hpte_is_writable(hptep1) || vcpus_running(kvm))) |
| continue; |
| |
| if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { |
| /* unlock rmap before spinning on the HPTE lock */ |
| unlock_rmap(rmapp); |
| while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) |
| cpu_relax(); |
| goto retry; |
| } |
| |
| /* Now check and modify the HPTE */ |
| if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { |
| __unlock_hpte(hptep, be64_to_cpu(hptep[0])); |
| continue; |
| } |
| |
| /* need to make it temporarily absent so C is stable */ |
| hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); |
| kvmppc_invalidate_hpte(kvm, hptep, i); |
| v = be64_to_cpu(hptep[0]); |
| r = be64_to_cpu(hptep[1]); |
| if (r & HPTE_R_C) { |
| hptep[1] = cpu_to_be64(r & ~HPTE_R_C); |
| if (!(rev[i].guest_rpte & HPTE_R_C)) { |
| rev[i].guest_rpte |= HPTE_R_C; |
| note_hpte_modification(kvm, &rev[i]); |
| } |
| n = kvmppc_actual_pgsz(v, r); |
| n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| if (n > npages_dirty) |
| npages_dirty = n; |
| eieio(); |
| } |
| v &= ~HPTE_V_ABSENT; |
| v |= HPTE_V_VALID; |
| __unlock_hpte(hptep, v); |
| } while ((i = j) != head); |
| |
| unlock_rmap(rmapp); |
| return npages_dirty; |
| } |
| |
| void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, |
| struct kvm_memory_slot *memslot, |
| unsigned long *map) |
| { |
| unsigned long gfn; |
| |
| if (!vpa->dirty || !vpa->pinned_addr) |
| return; |
| gfn = vpa->gpa >> PAGE_SHIFT; |
| if (gfn < memslot->base_gfn || |
| gfn >= memslot->base_gfn + memslot->npages) |
| return; |
| |
| vpa->dirty = false; |
| if (map) |
| __set_bit_le(gfn - memslot->base_gfn, map); |
| } |
| |
| long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, unsigned long *map) |
| { |
| unsigned long i; |
| unsigned long *rmapp; |
| |
| preempt_disable(); |
| rmapp = memslot->arch.rmap; |
| for (i = 0; i < memslot->npages; ++i) { |
| int npages = kvm_test_clear_dirty_npages(kvm, rmapp); |
| /* |
| * Note that if npages > 0 then i must be a multiple of npages, |
| * since we always put huge-page HPTEs in the rmap chain |
| * corresponding to their page base address. |
| */ |
| if (npages) |
| set_dirty_bits(map, i, npages); |
| ++rmapp; |
| } |
| preempt_enable(); |
| return 0; |
| } |
| |
| void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, |
| unsigned long *nb_ret) |
| { |
| struct kvm_memory_slot *memslot; |
| unsigned long gfn = gpa >> PAGE_SHIFT; |
| struct page *page, *pages[1]; |
| int npages; |
| unsigned long hva, offset; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| memslot = gfn_to_memslot(kvm, gfn); |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) |
| goto err; |
| hva = gfn_to_hva_memslot(memslot, gfn); |
| npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); |
| if (npages < 1) |
| goto err; |
| page = pages[0]; |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| offset = gpa & (PAGE_SIZE - 1); |
| if (nb_ret) |
| *nb_ret = PAGE_SIZE - offset; |
| return page_address(page) + offset; |
| |
| err: |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| return NULL; |
| } |
| |
| void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, |
| bool dirty) |
| { |
| struct page *page = virt_to_page(va); |
| struct kvm_memory_slot *memslot; |
| unsigned long gfn; |
| int srcu_idx; |
| |
| put_page(page); |
| |
| if (!dirty) |
| return; |
| |
| /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ |
| gfn = gpa >> PAGE_SHIFT; |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| memslot = gfn_to_memslot(kvm, gfn); |
| if (memslot && memslot->dirty_bitmap) |
| set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } |
| |
| /* |
| * HPT resizing |
| */ |
| static int resize_hpt_allocate(struct kvm_resize_hpt *resize) |
| { |
| int rc; |
| |
| rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); |
| if (rc < 0) |
| return rc; |
| |
| resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", |
| resize->hpt.virt); |
| |
| return 0; |
| } |
| |
| static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, |
| unsigned long idx) |
| { |
| struct kvm *kvm = resize->kvm; |
| struct kvm_hpt_info *old = &kvm->arch.hpt; |
| struct kvm_hpt_info *new = &resize->hpt; |
| unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; |
| unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; |
| __be64 *hptep, *new_hptep; |
| unsigned long vpte, rpte, guest_rpte; |
| int ret; |
| struct revmap_entry *rev; |
| unsigned long apsize, avpn, pteg, hash; |
| unsigned long new_idx, new_pteg, replace_vpte; |
| int pshift; |
| |
| hptep = (__be64 *)(old->virt + (idx << 4)); |
| |
| /* Guest is stopped, so new HPTEs can't be added or faulted |
| * in, only unmapped or altered by host actions. So, it's |
| * safe to check this before we take the HPTE lock */ |
| vpte = be64_to_cpu(hptep[0]); |
| if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) |
| return 0; /* nothing to do */ |
| |
| while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| |
| vpte = be64_to_cpu(hptep[0]); |
| |
| ret = 0; |
| if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) |
| /* Nothing to do */ |
| goto out; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| rpte = be64_to_cpu(hptep[1]); |
| vpte = hpte_new_to_old_v(vpte, rpte); |
| } |
| |
| /* Unmap */ |
| rev = &old->rev[idx]; |
| guest_rpte = rev->guest_rpte; |
| |
| ret = -EIO; |
| apsize = kvmppc_actual_pgsz(vpte, guest_rpte); |
| if (!apsize) |
| goto out; |
| |
| if (vpte & HPTE_V_VALID) { |
| unsigned long gfn = hpte_rpn(guest_rpte, apsize); |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| struct kvm_memory_slot *memslot = |
| __gfn_to_memslot(kvm_memslots(kvm), gfn); |
| |
| if (memslot) { |
| unsigned long *rmapp; |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| |
| lock_rmap(rmapp); |
| kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); |
| unlock_rmap(rmapp); |
| } |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| } |
| |
| /* Reload PTE after unmap */ |
| vpte = be64_to_cpu(hptep[0]); |
| BUG_ON(vpte & HPTE_V_VALID); |
| BUG_ON(!(vpte & HPTE_V_ABSENT)); |
| |
| ret = 0; |
| if (!(vpte & HPTE_V_BOLTED)) |
| goto out; |
| |
| rpte = be64_to_cpu(hptep[1]); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| vpte = hpte_new_to_old_v(vpte, rpte); |
| rpte = hpte_new_to_old_r(rpte); |
| } |
| |
| pshift = kvmppc_hpte_base_page_shift(vpte, rpte); |
| avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); |
| pteg = idx / HPTES_PER_GROUP; |
| if (vpte & HPTE_V_SECONDARY) |
| pteg = ~pteg; |
| |
| if (!(vpte & HPTE_V_1TB_SEG)) { |
| unsigned long offset, vsid; |
| |
| /* We only have 28 - 23 bits of offset in avpn */ |
| offset = (avpn & 0x1f) << 23; |
| vsid = avpn >> 5; |
| /* We can find more bits from the pteg value */ |
| if (pshift < 23) |
| offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; |
| |
| hash = vsid ^ (offset >> pshift); |
| } else { |
| unsigned long offset, vsid; |
| |
| /* We only have 40 - 23 bits of seg_off in avpn */ |
| offset = (avpn & 0x1ffff) << 23; |
| vsid = avpn >> 17; |
| if (pshift < 23) |
| offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; |
| |
| hash = vsid ^ (vsid << 25) ^ (offset >> pshift); |
| } |
| |
| new_pteg = hash & new_hash_mask; |
| if (vpte & HPTE_V_SECONDARY) |
| new_pteg = ~hash & new_hash_mask; |
| |
| new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); |
| new_hptep = (__be64 *)(new->virt + (new_idx << 4)); |
| |
| replace_vpte = be64_to_cpu(new_hptep[0]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); |
| replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); |
| } |
| |
| if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { |
| BUG_ON(new->order >= old->order); |
| |
| if (replace_vpte & HPTE_V_BOLTED) { |
| if (vpte & HPTE_V_BOLTED) |
| /* Bolted collision, nothing we can do */ |
| ret = -ENOSPC; |
| /* Discard the new HPTE */ |
| goto out; |
| } |
| |
| /* Discard the previous HPTE */ |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| rpte = hpte_old_to_new_r(vpte, rpte); |
| vpte = hpte_old_to_new_v(vpte); |
| } |
| |
| new_hptep[1] = cpu_to_be64(rpte); |
| new->rev[new_idx].guest_rpte = guest_rpte; |
| /* No need for a barrier, since new HPT isn't active */ |
| new_hptep[0] = cpu_to_be64(vpte); |
| unlock_hpte(new_hptep, vpte); |
| |
| out: |
| unlock_hpte(hptep, vpte); |
| return ret; |
| } |
| |
| static int resize_hpt_rehash(struct kvm_resize_hpt *resize) |
| { |
| struct kvm *kvm = resize->kvm; |
| unsigned long i; |
| int rc; |
| |
| for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { |
| rc = resize_hpt_rehash_hpte(resize, i); |
| if (rc != 0) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static void resize_hpt_pivot(struct kvm_resize_hpt *resize) |
| { |
| struct kvm *kvm = resize->kvm; |
| struct kvm_hpt_info hpt_tmp; |
| |
| /* Exchange the pending tables in the resize structure with |
| * the active tables */ |
| |
| resize_hpt_debug(resize, "resize_hpt_pivot()\n"); |
| |
| spin_lock(&kvm->mmu_lock); |
| asm volatile("ptesync" : : : "memory"); |
| |
| hpt_tmp = kvm->arch.hpt; |
| kvmppc_set_hpt(kvm, &resize->hpt); |
| resize->hpt = hpt_tmp; |
| |
| spin_unlock(&kvm->mmu_lock); |
| |
| synchronize_srcu_expedited(&kvm->srcu); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| kvmppc_setup_partition_table(kvm); |
| |
| resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); |
| } |
| |
| static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) |
| { |
| if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) |
| return; |
| |
| if (!resize) |
| return; |
| |
| if (resize->error != -EBUSY) { |
| if (resize->hpt.virt) |
| kvmppc_free_hpt(&resize->hpt); |
| kfree(resize); |
| } |
| |
| if (kvm->arch.resize_hpt == resize) |
| kvm->arch.resize_hpt = NULL; |
| } |
| |
| static void resize_hpt_prepare_work(struct work_struct *work) |
| { |
| struct kvm_resize_hpt *resize = container_of(work, |
| struct kvm_resize_hpt, |
| work); |
| struct kvm *kvm = resize->kvm; |
| int err = 0; |
| |
| if (WARN_ON(resize->error != -EBUSY)) |
| return; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| |
| /* Request is still current? */ |
| if (kvm->arch.resize_hpt == resize) { |
| /* We may request large allocations here: |
| * do not sleep with kvm->arch.mmu_setup_lock held for a while. |
| */ |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| |
| resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", |
| resize->order); |
| |
| err = resize_hpt_allocate(resize); |
| |
| /* We have strict assumption about -EBUSY |
| * when preparing for HPT resize. |
| */ |
| if (WARN_ON(err == -EBUSY)) |
| err = -EINPROGRESS; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| /* It is possible that kvm->arch.resize_hpt != resize |
| * after we grab kvm->arch.mmu_setup_lock again. |
| */ |
| } |
| |
| resize->error = err; |
| |
| if (kvm->arch.resize_hpt != resize) |
| resize_hpt_release(kvm, resize); |
| |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| } |
| |
| long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, |
| struct kvm_ppc_resize_hpt *rhpt) |
| { |
| unsigned long flags = rhpt->flags; |
| unsigned long shift = rhpt->shift; |
| struct kvm_resize_hpt *resize; |
| int ret; |
| |
| if (flags != 0 || kvm_is_radix(kvm)) |
| return -EINVAL; |
| |
| if (shift && ((shift < 18) || (shift > 46))) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| |
| resize = kvm->arch.resize_hpt; |
| |
| if (resize) { |
| if (resize->order == shift) { |
| /* Suitable resize in progress? */ |
| ret = resize->error; |
| if (ret == -EBUSY) |
| ret = 100; /* estimated time in ms */ |
| else if (ret) |
| resize_hpt_release(kvm, resize); |
| |
| goto out; |
| } |
| |
| /* not suitable, cancel it */ |
| resize_hpt_release(kvm, resize); |
| } |
| |
| ret = 0; |
| if (!shift) |
| goto out; /* nothing to do */ |
| |
| /* start new resize */ |
| |
| resize = kzalloc(sizeof(*resize), GFP_KERNEL); |
| if (!resize) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| resize->error = -EBUSY; |
| resize->order = shift; |
| resize->kvm = kvm; |
| INIT_WORK(&resize->work, resize_hpt_prepare_work); |
| kvm->arch.resize_hpt = resize; |
| |
| schedule_work(&resize->work); |
| |
| ret = 100; /* estimated time in ms */ |
| |
| out: |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return ret; |
| } |
| |
| static void resize_hpt_boot_vcpu(void *opaque) |
| { |
| /* Nothing to do, just force a KVM exit */ |
| } |
| |
| long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, |
| struct kvm_ppc_resize_hpt *rhpt) |
| { |
| unsigned long flags = rhpt->flags; |
| unsigned long shift = rhpt->shift; |
| struct kvm_resize_hpt *resize; |
| long ret; |
| |
| if (flags != 0 || kvm_is_radix(kvm)) |
| return -EINVAL; |
| |
| if (shift && ((shift < 18) || (shift > 46))) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| |
| resize = kvm->arch.resize_hpt; |
| |
| /* This shouldn't be possible */ |
| ret = -EIO; |
| if (WARN_ON(!kvm->arch.mmu_ready)) |
| goto out_no_hpt; |
| |
| /* Stop VCPUs from running while we mess with the HPT */ |
| kvm->arch.mmu_ready = 0; |
| smp_mb(); |
| |
| /* Boot all CPUs out of the guest so they re-read |
| * mmu_ready */ |
| on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); |
| |
| ret = -ENXIO; |
| if (!resize || (resize->order != shift)) |
| goto out; |
| |
| ret = resize->error; |
| if (ret) |
| goto out; |
| |
| ret = resize_hpt_rehash(resize); |
| if (ret) |
| goto out; |
| |
| resize_hpt_pivot(resize); |
| |
| out: |
| /* Let VCPUs run again */ |
| kvm->arch.mmu_ready = 1; |
| smp_mb(); |
| out_no_hpt: |
| resize_hpt_release(kvm, resize); |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return ret; |
| } |
| |
| /* |
| * Functions for reading and writing the hash table via reads and |
| * writes on a file descriptor. |
| * |
| * Reads return the guest view of the hash table, which has to be |
| * pieced together from the real hash table and the guest_rpte |
| * values in the revmap array. |
| * |
| * On writes, each HPTE written is considered in turn, and if it |
| * is valid, it is written to the HPT as if an H_ENTER with the |
| * exact flag set was done. When the invalid count is non-zero |
| * in the header written to the stream, the kernel will make |
| * sure that that many HPTEs are invalid, and invalidate them |
| * if not. |
| */ |
| |
| struct kvm_htab_ctx { |
| unsigned long index; |
| unsigned long flags; |
| struct kvm *kvm; |
| int first_pass; |
| }; |
| |
| #define HPTE_SIZE (2 * sizeof(unsigned long)) |
| |
| /* |
| * Returns 1 if this HPT entry has been modified or has pending |
| * R/C bit changes. |
| */ |
| static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) |
| { |
| unsigned long rcbits_unset; |
| |
| if (revp->guest_rpte & HPTE_GR_MODIFIED) |
| return 1; |
| |
| /* Also need to consider changes in reference and changed bits */ |
| rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); |
| if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && |
| (be64_to_cpu(hptp[1]) & rcbits_unset)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static long record_hpte(unsigned long flags, __be64 *hptp, |
| unsigned long *hpte, struct revmap_entry *revp, |
| int want_valid, int first_pass) |
| { |
| unsigned long v, r, hr; |
| unsigned long rcbits_unset; |
| int ok = 1; |
| int valid, dirty; |
| |
| /* Unmodified entries are uninteresting except on the first pass */ |
| dirty = hpte_dirty(revp, hptp); |
| if (!first_pass && !dirty) |
| return 0; |
| |
| valid = 0; |
| if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { |
| valid = 1; |
| if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && |
| !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) |
| valid = 0; |
| } |
| if (valid != want_valid) |
| return 0; |
| |
| v = r = 0; |
| if (valid || dirty) { |
| /* lock the HPTE so it's stable and read it */ |
| preempt_disable(); |
| while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = be64_to_cpu(hptp[0]); |
| hr = be64_to_cpu(hptp[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| v = hpte_new_to_old_v(v, hr); |
| hr = hpte_new_to_old_r(hr); |
| } |
| |
| /* re-evaluate valid and dirty from synchronized HPTE value */ |
| valid = !!(v & HPTE_V_VALID); |
| dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); |
| |
| /* Harvest R and C into guest view if necessary */ |
| rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); |
| if (valid && (rcbits_unset & hr)) { |
| revp->guest_rpte |= (hr & |
| (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; |
| dirty = 1; |
| } |
| |
| if (v & HPTE_V_ABSENT) { |
| v &= ~HPTE_V_ABSENT; |
| v |= HPTE_V_VALID; |
| valid = 1; |
| } |
| if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) |
| valid = 0; |
| |
| r = revp->guest_rpte; |
| /* only clear modified if this is the right sort of entry */ |
| if (valid == want_valid && dirty) { |
| r &= ~HPTE_GR_MODIFIED; |
| revp->guest_rpte = r; |
| } |
| unlock_hpte(hptp, be64_to_cpu(hptp[0])); |
| preempt_enable(); |
| if (!(valid == want_valid && (first_pass || dirty))) |
| ok = 0; |
| } |
| hpte[0] = cpu_to_be64(v); |
| hpte[1] = cpu_to_be64(r); |
| return ok; |
| } |
| |
| static ssize_t kvm_htab_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct kvm_htab_ctx *ctx = file->private_data; |
| struct kvm *kvm = ctx->kvm; |
| struct kvm_get_htab_header hdr; |
| __be64 *hptp; |
| struct revmap_entry *revp; |
| unsigned long i, nb, nw; |
| unsigned long __user *lbuf; |
| struct kvm_get_htab_header __user *hptr; |
| unsigned long flags; |
| int first_pass; |
| unsigned long hpte[2]; |
| |
| if (!access_ok(buf, count)) |
| return -EFAULT; |
| if (kvm_is_radix(kvm)) |
| return 0; |
| |
| first_pass = ctx->first_pass; |
| flags = ctx->flags; |
| |
| i = ctx->index; |
| hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); |
| revp = kvm->arch.hpt.rev + i; |
| lbuf = (unsigned long __user *)buf; |
| |
| nb = 0; |
| while (nb + sizeof(hdr) + HPTE_SIZE < count) { |
| /* Initialize header */ |
| hptr = (struct kvm_get_htab_header __user *)buf; |
| hdr.n_valid = 0; |
| hdr.n_invalid = 0; |
| nw = nb; |
| nb += sizeof(hdr); |
| lbuf = (unsigned long __user *)(buf + sizeof(hdr)); |
| |
| /* Skip uninteresting entries, i.e. clean on not-first pass */ |
| if (!first_pass) { |
| while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && |
| !hpte_dirty(revp, hptp)) { |
| ++i; |
| hptp += 2; |
| ++revp; |
| } |
| } |
| hdr.index = i; |
| |
| /* Grab a series of valid entries */ |
| while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && |
| hdr.n_valid < 0xffff && |
| nb + HPTE_SIZE < count && |
| record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { |
| /* valid entry, write it out */ |
| ++hdr.n_valid; |
| if (__put_user(hpte[0], lbuf) || |
| __put_user(hpte[1], lbuf + 1)) |
| return -EFAULT; |
| nb += HPTE_SIZE; |
| lbuf += 2; |
| ++i; |
| hptp += 2; |
| ++revp; |
| } |
| /* Now skip invalid entries while we can */ |
| while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && |
| hdr.n_invalid < 0xffff && |
| record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { |
| /* found an invalid entry */ |
| ++hdr.n_invalid; |
| ++i; |
| hptp += 2; |
| ++revp; |
| } |
| |
| if (hdr.n_valid || hdr.n_invalid) { |
| /* write back the header */ |
| if (__copy_to_user(hptr, &hdr, sizeof(hdr))) |
| return -EFAULT; |
| nw = nb; |
| buf = (char __user *)lbuf; |
| } else { |
| nb = nw; |
| } |
| |
| /* Check if we've wrapped around the hash table */ |
| if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { |
| i = 0; |
| ctx->first_pass = 0; |
| break; |
| } |
| } |
| |
| ctx->index = i; |
| |
| return nb; |
| } |
| |
| static ssize_t kvm_htab_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct kvm_htab_ctx *ctx = file->private_data; |
| struct kvm *kvm = ctx->kvm; |
| struct kvm_get_htab_header hdr; |
| unsigned long i, j; |
| unsigned long v, r; |
| unsigned long __user *lbuf; |
| __be64 *hptp; |
| unsigned long tmp[2]; |
| ssize_t nb; |
| long int err, ret; |
| int mmu_ready; |
| int pshift; |
| |
| if (!access_ok(buf, count)) |
| return -EFAULT; |
| if (kvm_is_radix(kvm)) |
| return -EINVAL; |
| |
| /* lock out vcpus from running while we're doing this */ |
| mutex_lock(&kvm->arch.mmu_setup_lock); |
| mmu_ready = kvm->arch.mmu_ready; |
| if (mmu_ready) { |
| kvm->arch.mmu_ready = 0; /* temporarily */ |
| /* order mmu_ready vs. vcpus_running */ |
| smp_mb(); |
| if (atomic_read(&kvm->arch.vcpus_running)) { |
| kvm->arch.mmu_ready = 1; |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| return -EBUSY; |
| } |
| } |
| |
| err = 0; |
| for (nb = 0; nb + sizeof(hdr) <= count; ) { |
| err = -EFAULT; |
| if (__copy_from_user(&hdr, buf, sizeof(hdr))) |
| break; |
| |
| err = 0; |
| if (nb + hdr.n_valid * HPTE_SIZE > count) |
| break; |
| |
| nb += sizeof(hdr); |
| buf += sizeof(hdr); |
| |
| err = -EINVAL; |
| i = hdr.index; |
| if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || |
| i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) |
| break; |
| |
| hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); |
| lbuf = (unsigned long __user *)buf; |
| for (j = 0; j < hdr.n_valid; ++j) { |
| __be64 hpte_v; |
| __be64 hpte_r; |
| |
| err = -EFAULT; |
| if (__get_user(hpte_v, lbuf) || |
| __get_user(hpte_r, lbuf + 1)) |
| goto out; |
| v = be64_to_cpu(hpte_v); |
| r = be64_to_cpu(hpte_r); |
| err = -EINVAL; |
| if (!(v & HPTE_V_VALID)) |
| goto out; |
| pshift = kvmppc_hpte_base_page_shift(v, r); |
| if (pshift <= 0) |
| goto out; |
| lbuf += 2; |
| nb += HPTE_SIZE; |
| |
| if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) |
| kvmppc_do_h_remove(kvm, 0, i, 0, tmp); |
| err = -EIO; |
| ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, |
| tmp); |
| if (ret != H_SUCCESS) { |
| pr_err("kvm_htab_write ret %ld i=%ld v=%lx " |
| "r=%lx\n", ret, i, v, r); |
| goto out; |
| } |
| if (!mmu_ready && is_vrma_hpte(v)) { |
| unsigned long senc, lpcr; |
| |
| senc = slb_pgsize_encoding(1ul << pshift); |
| kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | |
| (VRMA_VSID << SLB_VSID_SHIFT_1T); |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) { |
| lpcr = senc << (LPCR_VRMASD_SH - 4); |
| kvmppc_update_lpcr(kvm, lpcr, |
| LPCR_VRMASD); |
| } else { |
| kvmppc_setup_partition_table(kvm); |
| } |
| mmu_ready = 1; |
| } |
| ++i; |
| hptp += 2; |
| } |
| |
| for (j = 0; j < hdr.n_invalid; ++j) { |
| if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) |
| kvmppc_do_h_remove(kvm, 0, i, 0, tmp); |
| ++i; |
| hptp += 2; |
| } |
| err = 0; |
| } |
| |
| out: |
| /* Order HPTE updates vs. mmu_ready */ |
| smp_wmb(); |
| kvm->arch.mmu_ready = mmu_ready; |
| mutex_unlock(&kvm->arch.mmu_setup_lock); |
| |
| if (err) |
| return err; |
| return nb; |
| } |
| |
| static int kvm_htab_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm_htab_ctx *ctx = filp->private_data; |
| |
| filp->private_data = NULL; |
| if (!(ctx->flags & KVM_GET_HTAB_WRITE)) |
| atomic_dec(&ctx->kvm->arch.hpte_mod_interest); |
| kvm_put_kvm(ctx->kvm); |
| kfree(ctx); |
| return 0; |
| } |
| |
| static const struct file_operations kvm_htab_fops = { |
| .read = kvm_htab_read, |
| .write = kvm_htab_write, |
| .llseek = default_llseek, |
| .release = kvm_htab_release, |
| }; |
| |
| int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) |
| { |
| int ret; |
| struct kvm_htab_ctx *ctx; |
| int rwflag; |
| |
| /* reject flags we don't recognize */ |
| if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) |
| return -EINVAL; |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| kvm_get_kvm(kvm); |
| ctx->kvm = kvm; |
| ctx->index = ghf->start_index; |
| ctx->flags = ghf->flags; |
| ctx->first_pass = 1; |
| |
| rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; |
| ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); |
| if (ret < 0) { |
| kfree(ctx); |
| kvm_put_kvm_no_destroy(kvm); |
| return ret; |
| } |
| |
| if (rwflag == O_RDONLY) { |
| mutex_lock(&kvm->slots_lock); |
| atomic_inc(&kvm->arch.hpte_mod_interest); |
| /* make sure kvmppc_do_h_enter etc. see the increment */ |
| synchronize_srcu_expedited(&kvm->srcu); |
| mutex_unlock(&kvm->slots_lock); |
| } |
| |
| return ret; |
| } |
| |
| struct debugfs_htab_state { |
| struct kvm *kvm; |
| struct mutex mutex; |
| unsigned long hpt_index; |
| int chars_left; |
| int buf_index; |
| char buf[64]; |
| }; |
| |
| static int debugfs_htab_open(struct inode *inode, struct file *file) |
| { |
| struct kvm *kvm = inode->i_private; |
| struct debugfs_htab_state *p; |
| |
| p = kzalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return -ENOMEM; |
| |
| kvm_get_kvm(kvm); |
| p->kvm = kvm; |
| mutex_init(&p->mutex); |
| file->private_data = p; |
| |
| return nonseekable_open(inode, file); |
| } |
| |
| static int debugfs_htab_release(struct inode *inode, struct file *file) |
| { |
| struct debugfs_htab_state *p = file->private_data; |
| |
| kvm_put_kvm(p->kvm); |
| kfree(p); |
| return 0; |
| } |
| |
| static ssize_t debugfs_htab_read(struct file *file, char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| struct debugfs_htab_state *p = file->private_data; |
| ssize_t ret, r; |
| unsigned long i, n; |
| unsigned long v, hr, gr; |
| struct kvm *kvm; |
| __be64 *hptp; |
| |
| kvm = p->kvm; |
| if (kvm_is_radix(kvm)) |
| return 0; |
| |
| ret = mutex_lock_interruptible(&p->mutex); |
| if (ret) |
| return ret; |
| |
| if (p->chars_left) { |
| n = p->chars_left; |
| if (n > len) |
| n = len; |
| r = copy_to_user(buf, p->buf + p->buf_index, n); |
| n -= r; |
| p->chars_left -= n; |
| p->buf_index += n; |
| buf += n; |
| len -= n; |
| ret = n; |
| if (r) { |
| if (!n) |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| |
| i = p->hpt_index; |
| hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); |
| for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); |
| ++i, hptp += 2) { |
| if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| continue; |
| |
| /* lock the HPTE so it's stable and read it */ |
| preempt_disable(); |
| while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; |
| hr = be64_to_cpu(hptp[1]); |
| gr = kvm->arch.hpt.rev[i].guest_rpte; |
| unlock_hpte(hptp, v); |
| preempt_enable(); |
| |
| if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| continue; |
| |
| n = scnprintf(p->buf, sizeof(p->buf), |
| "%6lx %.16lx %.16lx %.16lx\n", |
| i, v, hr, gr); |
| p->chars_left = n; |
| if (n > len) |
| n = len; |
| r = copy_to_user(buf, p->buf, n); |
| n -= r; |
| p->chars_left -= n; |
| p->buf_index = n; |
| buf += n; |
| len -= n; |
| ret += n; |
| if (r) { |
| if (!ret) |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| p->hpt_index = i; |
| |
| out: |
| mutex_unlock(&p->mutex); |
| return ret; |
| } |
| |
| static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| return -EACCES; |
| } |
| |
| static const struct file_operations debugfs_htab_fops = { |
| .owner = THIS_MODULE, |
| .open = debugfs_htab_open, |
| .release = debugfs_htab_release, |
| .read = debugfs_htab_read, |
| .write = debugfs_htab_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| void kvmppc_mmu_debugfs_init(struct kvm *kvm) |
| { |
| debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm, |
| &debugfs_htab_fops); |
| } |
| |
| void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_mmu *mmu = &vcpu->arch.mmu; |
| |
| vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ |
| |
| mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; |
| |
| vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; |
| } |