| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. |
| * |
| * Author: Yu Liu, <yu.liu@freescale.com> |
| * |
| * Description: |
| * This file is derived from arch/powerpc/kvm/44x.c, |
| * by Hollis Blanchard <hollisb@us.ibm.com>. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/module.h> |
| #include <linux/miscdevice.h> |
| |
| #include <asm/reg.h> |
| #include <asm/cputable.h> |
| #include <asm/kvm_ppc.h> |
| |
| #include "../mm/mmu_decl.h" |
| #include "booke.h" |
| #include "e500.h" |
| |
| struct id { |
| unsigned long val; |
| struct id **pentry; |
| }; |
| |
| #define NUM_TIDS 256 |
| |
| /* |
| * This table provide mappings from: |
| * (guestAS,guestTID,guestPR) --> ID of physical cpu |
| * guestAS [0..1] |
| * guestTID [0..255] |
| * guestPR [0..1] |
| * ID [1..255] |
| * Each vcpu keeps one vcpu_id_table. |
| */ |
| struct vcpu_id_table { |
| struct id id[2][NUM_TIDS][2]; |
| }; |
| |
| /* |
| * This table provide reversed mappings of vcpu_id_table: |
| * ID --> address of vcpu_id_table item. |
| * Each physical core has one pcpu_id_table. |
| */ |
| struct pcpu_id_table { |
| struct id *entry[NUM_TIDS]; |
| }; |
| |
| static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); |
| |
| /* This variable keeps last used shadow ID on local core. |
| * The valid range of shadow ID is [1..255] */ |
| static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); |
| |
| /* |
| * Allocate a free shadow id and setup a valid sid mapping in given entry. |
| * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| static inline int local_sid_setup_one(struct id *entry) |
| { |
| unsigned long sid; |
| int ret = -1; |
| |
| sid = __this_cpu_inc_return(pcpu_last_used_sid); |
| if (sid < NUM_TIDS) { |
| __this_cpu_write(pcpu_sids.entry[sid], entry); |
| entry->val = sid; |
| entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]); |
| ret = sid; |
| } |
| |
| /* |
| * If sid == NUM_TIDS, we've run out of sids. We return -1, and |
| * the caller will invalidate everything and start over. |
| * |
| * sid > NUM_TIDS indicates a race, which we disable preemption to |
| * avoid. |
| */ |
| WARN_ON(sid > NUM_TIDS); |
| |
| return ret; |
| } |
| |
| /* |
| * Check if given entry contain a valid shadow id mapping. |
| * An ID mapping is considered valid only if |
| * both vcpu and pcpu know this mapping. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| static inline int local_sid_lookup(struct id *entry) |
| { |
| if (entry && entry->val != 0 && |
| __this_cpu_read(pcpu_sids.entry[entry->val]) == entry && |
| entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val])) |
| return entry->val; |
| return -1; |
| } |
| |
| /* Invalidate all id mappings on local core -- call with preempt disabled */ |
| static inline void local_sid_destroy_all(void) |
| { |
| __this_cpu_write(pcpu_last_used_sid, 0); |
| memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids)); |
| } |
| |
| static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); |
| return vcpu_e500->idt; |
| } |
| |
| static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| kfree(vcpu_e500->idt); |
| vcpu_e500->idt = NULL; |
| } |
| |
| /* Map guest pid to shadow. |
| * We use PID to keep shadow of current guest non-zero PID, |
| * and use PID1 to keep shadow of guest zero PID. |
| * So that guest tlbe with TID=0 can be accessed at any time */ |
| static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| preempt_disable(); |
| vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, |
| get_cur_as(&vcpu_e500->vcpu), |
| get_cur_pid(&vcpu_e500->vcpu), |
| get_cur_pr(&vcpu_e500->vcpu), 1); |
| vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, |
| get_cur_as(&vcpu_e500->vcpu), 0, |
| get_cur_pr(&vcpu_e500->vcpu), 1); |
| preempt_enable(); |
| } |
| |
| /* Invalidate all mappings on vcpu */ |
| static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); |
| |
| /* Update shadow pid when mappings are changed */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| /* Invalidate one ID mapping on vcpu */ |
| static inline void kvmppc_e500_id_table_reset_one( |
| struct kvmppc_vcpu_e500 *vcpu_e500, |
| int as, int pid, int pr) |
| { |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| |
| BUG_ON(as >= 2); |
| BUG_ON(pid >= NUM_TIDS); |
| BUG_ON(pr >= 2); |
| |
| idt->id[as][pid][pr].val = 0; |
| idt->id[as][pid][pr].pentry = NULL; |
| |
| /* Update shadow pid when mappings are changed */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| /* |
| * Map guest (vcpu,AS,ID,PR) to physical core shadow id. |
| * This function first lookup if a valid mapping exists, |
| * if not, then creates a new one. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, |
| unsigned int as, unsigned int gid, |
| unsigned int pr, int avoid_recursion) |
| { |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| int sid; |
| |
| BUG_ON(as >= 2); |
| BUG_ON(gid >= NUM_TIDS); |
| BUG_ON(pr >= 2); |
| |
| sid = local_sid_lookup(&idt->id[as][gid][pr]); |
| |
| while (sid <= 0) { |
| /* No mapping yet */ |
| sid = local_sid_setup_one(&idt->id[as][gid][pr]); |
| if (sid <= 0) { |
| _tlbil_all(); |
| local_sid_destroy_all(); |
| } |
| |
| /* Update shadow pid when mappings are changed */ |
| if (!avoid_recursion) |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| return sid; |
| } |
| |
| unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu, |
| struct kvm_book3e_206_tlb_entry *gtlbe) |
| { |
| return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe), |
| get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0); |
| } |
| |
| void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| if (vcpu->arch.pid != pid) { |
| vcpu_e500->pid[0] = vcpu->arch.pid = pid; |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| } |
| |
| /* gtlbe must not be mapped by more than one host tlbe */ |
| void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500, |
| struct kvm_book3e_206_tlb_entry *gtlbe) |
| { |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| unsigned int pr, tid, ts; |
| int pid; |
| u32 val, eaddr; |
| unsigned long flags; |
| |
| ts = get_tlb_ts(gtlbe); |
| tid = get_tlb_tid(gtlbe); |
| |
| preempt_disable(); |
| |
| /* One guest ID may be mapped to two shadow IDs */ |
| for (pr = 0; pr < 2; pr++) { |
| /* |
| * The shadow PID can have a valid mapping on at most one |
| * host CPU. In the common case, it will be valid on this |
| * CPU, in which case we do a local invalidation of the |
| * specific address. |
| * |
| * If the shadow PID is not valid on the current host CPU, |
| * we invalidate the entire shadow PID. |
| */ |
| pid = local_sid_lookup(&idt->id[ts][tid][pr]); |
| if (pid <= 0) { |
| kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); |
| continue; |
| } |
| |
| /* |
| * The guest is invalidating a 4K entry which is in a PID |
| * that has a valid shadow mapping on this host CPU. We |
| * search host TLB to invalidate it's shadow TLB entry, |
| * similar to __tlbil_va except that we need to look in AS1. |
| */ |
| val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; |
| eaddr = get_tlb_eaddr(gtlbe); |
| |
| local_irq_save(flags); |
| |
| mtspr(SPRN_MAS6, val); |
| asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); |
| val = mfspr(SPRN_MAS1); |
| if (val & MAS1_VALID) { |
| mtspr(SPRN_MAS1, val & ~MAS1_VALID); |
| asm volatile("tlbwe"); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| preempt_enable(); |
| } |
| |
| void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| kvmppc_e500_id_table_reset_all(vcpu_e500); |
| } |
| |
| void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) |
| { |
| /* Recalc shadow pid since MSR changes */ |
| kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); |
| } |
| |
| static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu) |
| { |
| kvmppc_booke_vcpu_load(vcpu, cpu); |
| |
| /* Shadow PID may be expired on local core */ |
| kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); |
| } |
| |
| static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_SPE |
| if (vcpu->arch.shadow_msr & MSR_SPE) |
| kvmppc_vcpu_disable_spe(vcpu); |
| #endif |
| |
| kvmppc_booke_vcpu_put(vcpu); |
| } |
| |
| int kvmppc_core_check_processor_compat(void) |
| { |
| int r; |
| |
| if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0) |
| r = 0; |
| else |
| r = -ENOTSUPP; |
| |
| return r; |
| } |
| |
| static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| struct kvm_book3e_206_tlb_entry *tlbe; |
| |
| /* Insert large initial mapping for guest. */ |
| tlbe = get_entry(vcpu_e500, 1, 0); |
| tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); |
| tlbe->mas2 = 0; |
| tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK; |
| |
| /* 4K map for serial output. Used by kernel wrapper. */ |
| tlbe = get_entry(vcpu_e500, 1, 1); |
| tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; |
| tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; |
| } |
| |
| int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| kvmppc_e500_tlb_setup(vcpu_e500); |
| |
| /* Registers init */ |
| vcpu->arch.pvr = mfspr(SPRN_PVR); |
| vcpu_e500->svr = mfspr(SPRN_SVR); |
| |
| vcpu->arch.cpu_type = KVM_CPU_E500V2; |
| |
| return 0; |
| } |
| |
| static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE | |
| KVM_SREGS_E_PM; |
| sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL; |
| |
| sregs->u.e.impl.fsl.features = 0; |
| sregs->u.e.impl.fsl.svr = vcpu_e500->svr; |
| sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; |
| sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; |
| |
| sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL]; |
| sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA]; |
| sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND]; |
| sregs->u.e.ivor_high[3] = |
| vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; |
| |
| kvmppc_get_sregs_ivor(vcpu, sregs); |
| kvmppc_get_sregs_e500_tlb(vcpu, sregs); |
| return 0; |
| } |
| |
| static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| int ret; |
| |
| if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { |
| vcpu_e500->svr = sregs->u.e.impl.fsl.svr; |
| vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0; |
| vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; |
| } |
| |
| ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs); |
| if (ret < 0) |
| return ret; |
| |
| if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) |
| return 0; |
| |
| if (sregs->u.e.features & KVM_SREGS_E_SPE) { |
| vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] = |
| sregs->u.e.ivor_high[0]; |
| vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] = |
| sregs->u.e.ivor_high[1]; |
| vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] = |
| sregs->u.e.ivor_high[2]; |
| } |
| |
| if (sregs->u.e.features & KVM_SREGS_E_PM) { |
| vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = |
| sregs->u.e.ivor_high[3]; |
| } |
| |
| return kvmppc_set_sregs_ivor(vcpu, sregs); |
| } |
| |
| static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); |
| return r; |
| } |
| |
| static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); |
| return r; |
| } |
| |
| static int kvmppc_core_vcpu_create_e500(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500; |
| int err; |
| |
| BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0); |
| vcpu_e500 = to_e500(vcpu); |
| |
| if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) |
| return -ENOMEM; |
| |
| err = kvmppc_e500_tlb_init(vcpu_e500); |
| if (err) |
| goto uninit_id; |
| |
| vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); |
| if (!vcpu->arch.shared) { |
| err = -ENOMEM; |
| goto uninit_tlb; |
| } |
| |
| return 0; |
| |
| uninit_tlb: |
| kvmppc_e500_tlb_uninit(vcpu_e500); |
| uninit_id: |
| kvmppc_e500_id_table_free(vcpu_e500); |
| return err; |
| } |
| |
| static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| free_page((unsigned long)vcpu->arch.shared); |
| kvmppc_e500_tlb_uninit(vcpu_e500); |
| kvmppc_e500_id_table_free(vcpu_e500); |
| } |
| |
| static int kvmppc_core_init_vm_e500(struct kvm *kvm) |
| { |
| return 0; |
| } |
| |
| static void kvmppc_core_destroy_vm_e500(struct kvm *kvm) |
| { |
| } |
| |
| static struct kvmppc_ops kvm_ops_e500 = { |
| .get_sregs = kvmppc_core_get_sregs_e500, |
| .set_sregs = kvmppc_core_set_sregs_e500, |
| .get_one_reg = kvmppc_get_one_reg_e500, |
| .set_one_reg = kvmppc_set_one_reg_e500, |
| .vcpu_load = kvmppc_core_vcpu_load_e500, |
| .vcpu_put = kvmppc_core_vcpu_put_e500, |
| .vcpu_create = kvmppc_core_vcpu_create_e500, |
| .vcpu_free = kvmppc_core_vcpu_free_e500, |
| .init_vm = kvmppc_core_init_vm_e500, |
| .destroy_vm = kvmppc_core_destroy_vm_e500, |
| .emulate_op = kvmppc_core_emulate_op_e500, |
| .emulate_mtspr = kvmppc_core_emulate_mtspr_e500, |
| .emulate_mfspr = kvmppc_core_emulate_mfspr_e500, |
| }; |
| |
| static int __init kvmppc_e500_init(void) |
| { |
| int r, i; |
| unsigned long ivor[3]; |
| /* Process remaining handlers above the generic first 16 */ |
| unsigned long *handler = &kvmppc_booke_handler_addr[16]; |
| unsigned long handler_len; |
| unsigned long max_ivor = 0; |
| |
| r = kvmppc_core_check_processor_compat(); |
| if (r) |
| goto err_out; |
| |
| r = kvmppc_booke_init(); |
| if (r) |
| goto err_out; |
| |
| /* copy extra E500 exception handlers */ |
| ivor[0] = mfspr(SPRN_IVOR32); |
| ivor[1] = mfspr(SPRN_IVOR33); |
| ivor[2] = mfspr(SPRN_IVOR34); |
| for (i = 0; i < 3; i++) { |
| if (ivor[i] > ivor[max_ivor]) |
| max_ivor = i; |
| |
| handler_len = handler[i + 1] - handler[i]; |
| memcpy((void *)kvmppc_booke_handlers + ivor[i], |
| (void *)handler[i], handler_len); |
| } |
| handler_len = handler[max_ivor + 1] - handler[max_ivor]; |
| flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers + |
| ivor[max_ivor] + handler_len); |
| |
| r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE); |
| if (r) |
| goto err_out; |
| kvm_ops_e500.owner = THIS_MODULE; |
| kvmppc_pr_ops = &kvm_ops_e500; |
| |
| err_out: |
| return r; |
| } |
| |
| static void __exit kvmppc_e500_exit(void) |
| { |
| kvmppc_pr_ops = NULL; |
| kvmppc_booke_exit(); |
| } |
| |
| module_init(kvmppc_e500_init); |
| module_exit(kvmppc_e500_exit); |
| MODULE_ALIAS_MISCDEV(KVM_MINOR); |
| MODULE_ALIAS("devname:kvm"); |