| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright IBM Corp. 2019 |
| */ |
| #include <linux/pgtable.h> |
| #include <asm/mem_detect.h> |
| #include <asm/cpacf.h> |
| #include <asm/timex.h> |
| #include <asm/sclp.h> |
| #include "compressed/decompressor.h" |
| #include "boot.h" |
| |
| #define PRNG_MODE_TDES 1 |
| #define PRNG_MODE_SHA512 2 |
| #define PRNG_MODE_TRNG 3 |
| |
| struct prno_parm { |
| u32 res; |
| u32 reseed_counter; |
| u64 stream_bytes; |
| u8 V[112]; |
| u8 C[112]; |
| }; |
| |
| struct prng_parm { |
| u8 parm_block[32]; |
| u32 reseed_counter; |
| u64 byte_counter; |
| }; |
| |
| static int check_prng(void) |
| { |
| if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG)) { |
| sclp_early_printk("KASLR disabled: CPU has no PRNG\n"); |
| return 0; |
| } |
| if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG)) |
| return PRNG_MODE_TRNG; |
| if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN)) |
| return PRNG_MODE_SHA512; |
| else |
| return PRNG_MODE_TDES; |
| } |
| |
| static int get_random(unsigned long limit, unsigned long *value) |
| { |
| struct prng_parm prng = { |
| /* initial parameter block for tdes mode, copied from libica */ |
| .parm_block = { |
| 0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52, |
| 0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4, |
| 0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF, |
| 0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0 |
| }, |
| }; |
| unsigned long seed, random; |
| struct prno_parm prno; |
| __u64 entropy[4]; |
| int mode, i; |
| |
| mode = check_prng(); |
| seed = get_tod_clock_fast(); |
| switch (mode) { |
| case PRNG_MODE_TRNG: |
| cpacf_trng(NULL, 0, (u8 *) &random, sizeof(random)); |
| break; |
| case PRNG_MODE_SHA512: |
| cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED, &prno, NULL, 0, |
| (u8 *) &seed, sizeof(seed)); |
| cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prno, (u8 *) &random, |
| sizeof(random), NULL, 0); |
| break; |
| case PRNG_MODE_TDES: |
| /* add entropy */ |
| *(unsigned long *) prng.parm_block ^= seed; |
| for (i = 0; i < 16; i++) { |
| cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, |
| (u8 *) entropy, (u8 *) entropy, |
| sizeof(entropy)); |
| memcpy(prng.parm_block, entropy, sizeof(entropy)); |
| } |
| random = seed; |
| cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, (u8 *) &random, |
| (u8 *) &random, sizeof(random)); |
| break; |
| default: |
| return -1; |
| } |
| *value = random % limit; |
| return 0; |
| } |
| |
| /* |
| * To randomize kernel base address we have to consider several facts: |
| * 1. physical online memory might not be continuous and have holes. mem_detect |
| * info contains list of online memory ranges we should consider. |
| * 2. we have several memory regions which are occupied and we should not |
| * overlap and destroy them. Currently safe_addr tells us the border below |
| * which all those occupied regions are. We are safe to use anything above |
| * safe_addr. |
| * 3. the upper limit might apply as well, even if memory above that limit is |
| * online. Currently those limitations are: |
| * 3.1. Limit set by "mem=" kernel command line option |
| * 3.2. memory reserved at the end for kasan initialization. |
| * 4. kernel base address must be aligned to THREAD_SIZE (kernel stack size). |
| * Which is required for CONFIG_CHECK_STACK. Currently THREAD_SIZE is 4 pages |
| * (16 pages when the kernel is built with kasan enabled) |
| * Assumptions: |
| * 1. kernel size (including .bss size) and upper memory limit are page aligned. |
| * 2. mem_detect memory region start is THREAD_SIZE aligned / end is PAGE_SIZE |
| * aligned (in practice memory configurations granularity on z/VM and LPAR |
| * is 1mb). |
| * |
| * To guarantee uniform distribution of kernel base address among all suitable |
| * addresses we generate random value just once. For that we need to build a |
| * continuous range in which every value would be suitable. We can build this |
| * range by simply counting all suitable addresses (let's call them positions) |
| * which would be valid as kernel base address. To count positions we iterate |
| * over online memory ranges. For each range which is big enough for the |
| * kernel image we count all suitable addresses we can put the kernel image at |
| * that is |
| * (end - start - kernel_size) / THREAD_SIZE + 1 |
| * Two functions count_valid_kernel_positions and position_to_address help |
| * to count positions in memory range given and then convert position back |
| * to address. |
| */ |
| static unsigned long count_valid_kernel_positions(unsigned long kernel_size, |
| unsigned long _min, |
| unsigned long _max) |
| { |
| unsigned long start, end, pos = 0; |
| int i; |
| |
| for_each_mem_detect_block(i, &start, &end) { |
| if (_min >= end) |
| continue; |
| if (start >= _max) |
| break; |
| start = max(_min, start); |
| end = min(_max, end); |
| if (end - start < kernel_size) |
| continue; |
| pos += (end - start - kernel_size) / THREAD_SIZE + 1; |
| } |
| |
| return pos; |
| } |
| |
| static unsigned long position_to_address(unsigned long pos, unsigned long kernel_size, |
| unsigned long _min, unsigned long _max) |
| { |
| unsigned long start, end; |
| int i; |
| |
| for_each_mem_detect_block(i, &start, &end) { |
| if (_min >= end) |
| continue; |
| if (start >= _max) |
| break; |
| start = max(_min, start); |
| end = min(_max, end); |
| if (end - start < kernel_size) |
| continue; |
| if ((end - start - kernel_size) / THREAD_SIZE + 1 >= pos) |
| return start + (pos - 1) * THREAD_SIZE; |
| pos -= (end - start - kernel_size) / THREAD_SIZE + 1; |
| } |
| |
| return 0; |
| } |
| |
| unsigned long get_random_base(unsigned long safe_addr) |
| { |
| unsigned long memory_limit = get_mem_detect_end(); |
| unsigned long base_pos, max_pos, kernel_size; |
| unsigned long kasan_needs; |
| int i; |
| |
| if (memory_end_set) |
| memory_limit = min(memory_limit, memory_end); |
| |
| if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && INITRD_START && INITRD_SIZE) { |
| if (safe_addr < INITRD_START + INITRD_SIZE) |
| safe_addr = INITRD_START + INITRD_SIZE; |
| } |
| safe_addr = ALIGN(safe_addr, THREAD_SIZE); |
| |
| if ((IS_ENABLED(CONFIG_KASAN))) { |
| /* |
| * Estimate kasan memory requirements, which it will reserve |
| * at the very end of available physical memory. To estimate |
| * that, we take into account that kasan would require |
| * 1/8 of available physical memory (for shadow memory) + |
| * creating page tables for the whole memory + shadow memory |
| * region (1 + 1/8). To keep page tables estimates simple take |
| * the double of combined ptes size. |
| */ |
| memory_limit = get_mem_detect_end(); |
| if (memory_end_set && memory_limit > memory_end) |
| memory_limit = memory_end; |
| |
| /* for shadow memory */ |
| kasan_needs = memory_limit / 8; |
| /* for paging structures */ |
| kasan_needs += (memory_limit + kasan_needs) / PAGE_SIZE / |
| _PAGE_ENTRIES * _PAGE_TABLE_SIZE * 2; |
| memory_limit -= kasan_needs; |
| } |
| |
| kernel_size = vmlinux.image_size + vmlinux.bss_size; |
| if (safe_addr + kernel_size > memory_limit) |
| return 0; |
| |
| max_pos = count_valid_kernel_positions(kernel_size, safe_addr, memory_limit); |
| if (!max_pos) { |
| sclp_early_printk("KASLR disabled: not enough memory\n"); |
| return 0; |
| } |
| |
| /* we need a value in the range [1, base_pos] inclusive */ |
| if (get_random(max_pos, &base_pos)) |
| return 0; |
| return position_to_address(base_pos + 1, kernel_size, safe_addr, memory_limit); |
| } |