| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Driver for Broadcom BCM2835 SPI Controllers |
| * |
| * Copyright (C) 2012 Chris Boot |
| * Copyright (C) 2013 Stephen Warren |
| * Copyright (C) 2015 Martin Sperl |
| * |
| * This driver is inspired by: |
| * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> |
| * spi-atmel.c, Copyright (C) 2006 Atmel Corporation |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/gpio/machine.h> /* FIXME: using chip internals */ |
| #include <linux/gpio/driver.h> /* FIXME: using chip internals */ |
| #include <linux/of_irq.h> |
| #include <linux/spi/spi.h> |
| |
| /* SPI register offsets */ |
| #define BCM2835_SPI_CS 0x00 |
| #define BCM2835_SPI_FIFO 0x04 |
| #define BCM2835_SPI_CLK 0x08 |
| #define BCM2835_SPI_DLEN 0x0c |
| #define BCM2835_SPI_LTOH 0x10 |
| #define BCM2835_SPI_DC 0x14 |
| |
| /* Bitfields in CS */ |
| #define BCM2835_SPI_CS_LEN_LONG 0x02000000 |
| #define BCM2835_SPI_CS_DMA_LEN 0x01000000 |
| #define BCM2835_SPI_CS_CSPOL2 0x00800000 |
| #define BCM2835_SPI_CS_CSPOL1 0x00400000 |
| #define BCM2835_SPI_CS_CSPOL0 0x00200000 |
| #define BCM2835_SPI_CS_RXF 0x00100000 |
| #define BCM2835_SPI_CS_RXR 0x00080000 |
| #define BCM2835_SPI_CS_TXD 0x00040000 |
| #define BCM2835_SPI_CS_RXD 0x00020000 |
| #define BCM2835_SPI_CS_DONE 0x00010000 |
| #define BCM2835_SPI_CS_LEN 0x00002000 |
| #define BCM2835_SPI_CS_REN 0x00001000 |
| #define BCM2835_SPI_CS_ADCS 0x00000800 |
| #define BCM2835_SPI_CS_INTR 0x00000400 |
| #define BCM2835_SPI_CS_INTD 0x00000200 |
| #define BCM2835_SPI_CS_DMAEN 0x00000100 |
| #define BCM2835_SPI_CS_TA 0x00000080 |
| #define BCM2835_SPI_CS_CSPOL 0x00000040 |
| #define BCM2835_SPI_CS_CLEAR_RX 0x00000020 |
| #define BCM2835_SPI_CS_CLEAR_TX 0x00000010 |
| #define BCM2835_SPI_CS_CPOL 0x00000008 |
| #define BCM2835_SPI_CS_CPHA 0x00000004 |
| #define BCM2835_SPI_CS_CS_10 0x00000002 |
| #define BCM2835_SPI_CS_CS_01 0x00000001 |
| |
| #define BCM2835_SPI_FIFO_SIZE 64 |
| #define BCM2835_SPI_FIFO_SIZE_3_4 48 |
| #define BCM2835_SPI_DMA_MIN_LENGTH 96 |
| #define BCM2835_SPI_NUM_CS 4 /* raise as necessary */ |
| #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ |
| | SPI_NO_CS | SPI_3WIRE) |
| |
| #define DRV_NAME "spi-bcm2835" |
| |
| /* define polling limits */ |
| static unsigned int polling_limit_us = 30; |
| module_param(polling_limit_us, uint, 0664); |
| MODULE_PARM_DESC(polling_limit_us, |
| "time in us to run a transfer in polling mode\n"); |
| |
| /** |
| * struct bcm2835_spi - BCM2835 SPI controller |
| * @regs: base address of register map |
| * @clk: core clock, divided to calculate serial clock |
| * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full |
| * @tfr: SPI transfer currently processed |
| * @ctlr: SPI controller reverse lookup |
| * @tx_buf: pointer whence next transmitted byte is read |
| * @rx_buf: pointer where next received byte is written |
| * @tx_len: remaining bytes to transmit |
| * @rx_len: remaining bytes to receive |
| * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's |
| * length is not a multiple of 4 (to overcome hardware limitation) |
| * @rx_prologue: bytes received without DMA if first RX sglist entry's |
| * length is not a multiple of 4 (to overcome hardware limitation) |
| * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry |
| * @prepare_cs: precalculated CS register value for ->prepare_message() |
| * (uses slave-specific clock polarity and phase settings) |
| * @debugfs_dir: the debugfs directory - neede to remove debugfs when |
| * unloading the module |
| * @count_transfer_polling: count of how often polling mode is used |
| * @count_transfer_irq: count of how often interrupt mode is used |
| * @count_transfer_irq_after_polling: count of how often we fall back to |
| * interrupt mode after starting in polling mode. |
| * These are counted as well in @count_transfer_polling and |
| * @count_transfer_irq |
| * @count_transfer_dma: count how often dma mode is used |
| * @chip_select: SPI slave currently selected |
| * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs) |
| * @tx_dma_active: whether a TX DMA descriptor is in progress |
| * @rx_dma_active: whether a RX DMA descriptor is in progress |
| * (used by bcm2835_spi_dma_tx_done() to handle a race) |
| * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers |
| * (cyclically copies from zero page to TX FIFO) |
| * @fill_tx_addr: bus address of zero page |
| * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers |
| * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register) |
| * @clear_rx_addr: bus address of @clear_rx_cs |
| * @clear_rx_cs: precalculated CS register value to clear RX FIFO |
| * (uses slave-specific clock polarity and phase settings) |
| */ |
| struct bcm2835_spi { |
| void __iomem *regs; |
| struct clk *clk; |
| int irq; |
| struct spi_transfer *tfr; |
| struct spi_controller *ctlr; |
| const u8 *tx_buf; |
| u8 *rx_buf; |
| int tx_len; |
| int rx_len; |
| int tx_prologue; |
| int rx_prologue; |
| unsigned int tx_spillover; |
| u32 prepare_cs[BCM2835_SPI_NUM_CS]; |
| |
| struct dentry *debugfs_dir; |
| u64 count_transfer_polling; |
| u64 count_transfer_irq; |
| u64 count_transfer_irq_after_polling; |
| u64 count_transfer_dma; |
| |
| u8 chip_select; |
| unsigned int tx_dma_active; |
| unsigned int rx_dma_active; |
| struct dma_async_tx_descriptor *fill_tx_desc; |
| dma_addr_t fill_tx_addr; |
| struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS]; |
| dma_addr_t clear_rx_addr; |
| u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned; |
| }; |
| |
| #if defined(CONFIG_DEBUG_FS) |
| static void bcm2835_debugfs_create(struct bcm2835_spi *bs, |
| const char *dname) |
| { |
| char name[64]; |
| struct dentry *dir; |
| |
| /* get full name */ |
| snprintf(name, sizeof(name), "spi-bcm2835-%s", dname); |
| |
| /* the base directory */ |
| dir = debugfs_create_dir(name, NULL); |
| bs->debugfs_dir = dir; |
| |
| /* the counters */ |
| debugfs_create_u64("count_transfer_polling", 0444, dir, |
| &bs->count_transfer_polling); |
| debugfs_create_u64("count_transfer_irq", 0444, dir, |
| &bs->count_transfer_irq); |
| debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir, |
| &bs->count_transfer_irq_after_polling); |
| debugfs_create_u64("count_transfer_dma", 0444, dir, |
| &bs->count_transfer_dma); |
| } |
| |
| static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) |
| { |
| debugfs_remove_recursive(bs->debugfs_dir); |
| bs->debugfs_dir = NULL; |
| } |
| #else |
| static void bcm2835_debugfs_create(struct bcm2835_spi *bs, |
| const char *dname) |
| { |
| } |
| |
| static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) |
| { |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg) |
| { |
| return readl(bs->regs + reg); |
| } |
| |
| static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val) |
| { |
| writel(val, bs->regs + reg); |
| } |
| |
| static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) |
| { |
| u8 byte; |
| |
| while ((bs->rx_len) && |
| (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { |
| byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); |
| if (bs->rx_buf) |
| *bs->rx_buf++ = byte; |
| bs->rx_len--; |
| } |
| } |
| |
| static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) |
| { |
| u8 byte; |
| |
| while ((bs->tx_len) && |
| (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { |
| byte = bs->tx_buf ? *bs->tx_buf++ : 0; |
| bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); |
| bs->tx_len--; |
| } |
| } |
| |
| /** |
| * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO |
| * @bs: BCM2835 SPI controller |
| * @count: bytes to read from RX FIFO |
| * |
| * The caller must ensure that @bs->rx_len is greater than or equal to @count, |
| * that the RX FIFO contains at least @count bytes and that the DMA Enable flag |
| * in the CS register is set (such that a read from the FIFO register receives |
| * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. |
| */ |
| static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) |
| { |
| u32 val; |
| int len; |
| |
| bs->rx_len -= count; |
| |
| do { |
| val = bcm2835_rd(bs, BCM2835_SPI_FIFO); |
| len = min(count, 4); |
| memcpy(bs->rx_buf, &val, len); |
| bs->rx_buf += len; |
| count -= 4; |
| } while (count > 0); |
| } |
| |
| /** |
| * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO |
| * @bs: BCM2835 SPI controller |
| * @count: bytes to write to TX FIFO |
| * |
| * The caller must ensure that @bs->tx_len is greater than or equal to @count, |
| * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag |
| * in the CS register is set (such that a write to the FIFO register transmits |
| * 32-bit instead of just 8-bit). |
| */ |
| static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) |
| { |
| u32 val; |
| int len; |
| |
| bs->tx_len -= count; |
| |
| do { |
| if (bs->tx_buf) { |
| len = min(count, 4); |
| memcpy(&val, bs->tx_buf, len); |
| bs->tx_buf += len; |
| } else { |
| val = 0; |
| } |
| bcm2835_wr(bs, BCM2835_SPI_FIFO, val); |
| count -= 4; |
| } while (count > 0); |
| } |
| |
| /** |
| * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty |
| * @bs: BCM2835 SPI controller |
| * |
| * The caller must ensure that the RX FIFO can accommodate as many bytes |
| * as have been written to the TX FIFO: Transmission is halted once the |
| * RX FIFO is full, causing this function to spin forever. |
| */ |
| static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) |
| { |
| while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) |
| cpu_relax(); |
| } |
| |
| /** |
| * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO |
| * @bs: BCM2835 SPI controller |
| * @count: bytes available for reading in RX FIFO |
| */ |
| static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) |
| { |
| u8 val; |
| |
| count = min(count, bs->rx_len); |
| bs->rx_len -= count; |
| |
| do { |
| val = bcm2835_rd(bs, BCM2835_SPI_FIFO); |
| if (bs->rx_buf) |
| *bs->rx_buf++ = val; |
| } while (--count); |
| } |
| |
| /** |
| * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO |
| * @bs: BCM2835 SPI controller |
| * @count: bytes available for writing in TX FIFO |
| */ |
| static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) |
| { |
| u8 val; |
| |
| count = min(count, bs->tx_len); |
| bs->tx_len -= count; |
| |
| do { |
| val = bs->tx_buf ? *bs->tx_buf++ : 0; |
| bcm2835_wr(bs, BCM2835_SPI_FIFO, val); |
| } while (--count); |
| } |
| |
| static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs) |
| { |
| u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); |
| |
| /* Disable SPI interrupts and transfer */ |
| cs &= ~(BCM2835_SPI_CS_INTR | |
| BCM2835_SPI_CS_INTD | |
| BCM2835_SPI_CS_DMAEN | |
| BCM2835_SPI_CS_TA); |
| /* |
| * Transmission sometimes breaks unless the DONE bit is written at the |
| * end of every transfer. The spec says it's a RO bit. Either the |
| * spec is wrong and the bit is actually of type RW1C, or it's a |
| * hardware erratum. |
| */ |
| cs |= BCM2835_SPI_CS_DONE; |
| /* and reset RX/TX FIFOS */ |
| cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; |
| |
| /* and reset the SPI_HW */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs); |
| /* as well as DLEN */ |
| bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); |
| } |
| |
| static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) |
| { |
| struct bcm2835_spi *bs = dev_id; |
| u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); |
| |
| /* |
| * An interrupt is signaled either if DONE is set (TX FIFO empty) |
| * or if RXR is set (RX FIFO >= ¾ full). |
| */ |
| if (cs & BCM2835_SPI_CS_RXF) |
| bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); |
| else if (cs & BCM2835_SPI_CS_RXR) |
| bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); |
| |
| if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) |
| bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); |
| |
| /* Read as many bytes as possible from FIFO */ |
| bcm2835_rd_fifo(bs); |
| /* Write as many bytes as possible to FIFO */ |
| bcm2835_wr_fifo(bs); |
| |
| if (!bs->rx_len) { |
| /* Transfer complete - reset SPI HW */ |
| bcm2835_spi_reset_hw(bs); |
| /* wake up the framework */ |
| complete(&bs->ctlr->xfer_completion); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr, |
| u32 cs, bool fifo_empty) |
| { |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| |
| /* update usage statistics */ |
| bs->count_transfer_irq++; |
| |
| /* |
| * Enable HW block, but with interrupts still disabled. |
| * Otherwise the empty TX FIFO would immediately trigger an interrupt. |
| */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); |
| |
| /* fill TX FIFO as much as possible */ |
| if (fifo_empty) |
| bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); |
| bcm2835_wr_fifo(bs); |
| |
| /* enable interrupts */ |
| cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs); |
| |
| /* signal that we need to wait for completion */ |
| return 1; |
| } |
| |
| /** |
| * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA |
| * @ctlr: SPI master controller |
| * @tfr: SPI transfer |
| * @bs: BCM2835 SPI controller |
| * @cs: CS register |
| * |
| * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. |
| * Only the final write access is permitted to transmit less than 4 bytes, the |
| * SPI controller deduces its intended size from the DLEN register. |
| * |
| * If a TX or RX sglist contains multiple entries, one per page, and the first |
| * entry starts in the middle of a page, that first entry's length may not be |
| * a multiple of 4. Subsequent entries are fine because they span an entire |
| * page, hence do have a length that's a multiple of 4. |
| * |
| * This cannot happen with kmalloc'ed buffers (which is what most clients use) |
| * because they are contiguous in physical memory and therefore not split on |
| * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed |
| * buffers. |
| * |
| * The DMA engine is incapable of combining sglist entries into a continuous |
| * stream of 4 byte chunks, it treats every entry separately: A TX entry is |
| * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX |
| * entry is rounded up by throwing away received bytes. |
| * |
| * Overcome this limitation by transferring the first few bytes without DMA: |
| * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, |
| * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. |
| * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with |
| * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. |
| * |
| * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, |
| * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. |
| * Caution, the additional 4 bytes spill over to the second TX sglist entry |
| * if the length of the first is *exactly* 1. |
| * |
| * At most 6 bytes are written and at most 3 bytes read. Do we know the |
| * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. |
| * |
| * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width |
| * by the DMA engine. Toggling the DMA Enable flag in the CS register switches |
| * the width but also garbles the FIFO's contents. The prologue must therefore |
| * be transmitted in 32-bit width to ensure that the following DMA transfer can |
| * pick up the residue in the RX FIFO in ungarbled form. |
| */ |
| static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr, |
| struct spi_transfer *tfr, |
| struct bcm2835_spi *bs, |
| u32 cs) |
| { |
| int tx_remaining; |
| |
| bs->tfr = tfr; |
| bs->tx_prologue = 0; |
| bs->rx_prologue = 0; |
| bs->tx_spillover = false; |
| |
| if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0])) |
| bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; |
| |
| if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) { |
| bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; |
| |
| if (bs->rx_prologue > bs->tx_prologue) { |
| if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) { |
| bs->tx_prologue = bs->rx_prologue; |
| } else { |
| bs->tx_prologue += 4; |
| bs->tx_spillover = |
| !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); |
| } |
| } |
| } |
| |
| /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ |
| if (!bs->tx_prologue) |
| return; |
| |
| /* Write and read RX prologue. Adjust first entry in RX sglist. */ |
| if (bs->rx_prologue) { |
| bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA |
| | BCM2835_SPI_CS_DMAEN); |
| bcm2835_wr_fifo_count(bs, bs->rx_prologue); |
| bcm2835_wait_tx_fifo_empty(bs); |
| bcm2835_rd_fifo_count(bs, bs->rx_prologue); |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX |
| | BCM2835_SPI_CS_CLEAR_TX |
| | BCM2835_SPI_CS_DONE); |
| |
| dma_sync_single_for_device(ctlr->dma_rx->device->dev, |
| sg_dma_address(&tfr->rx_sg.sgl[0]), |
| bs->rx_prologue, DMA_FROM_DEVICE); |
| |
| sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; |
| sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; |
| } |
| |
| if (!bs->tx_buf) |
| return; |
| |
| /* |
| * Write remaining TX prologue. Adjust first entry in TX sglist. |
| * Also adjust second entry if prologue spills over to it. |
| */ |
| tx_remaining = bs->tx_prologue - bs->rx_prologue; |
| if (tx_remaining) { |
| bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA |
| | BCM2835_SPI_CS_DMAEN); |
| bcm2835_wr_fifo_count(bs, tx_remaining); |
| bcm2835_wait_tx_fifo_empty(bs); |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX |
| | BCM2835_SPI_CS_DONE); |
| } |
| |
| if (likely(!bs->tx_spillover)) { |
| sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; |
| sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; |
| } else { |
| sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; |
| sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; |
| sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; |
| } |
| } |
| |
| /** |
| * bcm2835_spi_undo_prologue() - reconstruct original sglist state |
| * @bs: BCM2835 SPI controller |
| * |
| * Undo changes which were made to an SPI transfer's sglist when transmitting |
| * the prologue. This is necessary to ensure the same memory ranges are |
| * unmapped that were originally mapped. |
| */ |
| static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) |
| { |
| struct spi_transfer *tfr = bs->tfr; |
| |
| if (!bs->tx_prologue) |
| return; |
| |
| if (bs->rx_prologue) { |
| sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; |
| sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; |
| } |
| |
| if (!bs->tx_buf) |
| goto out; |
| |
| if (likely(!bs->tx_spillover)) { |
| sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; |
| sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; |
| } else { |
| sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; |
| sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; |
| sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; |
| } |
| out: |
| bs->tx_prologue = 0; |
| } |
| |
| /** |
| * bcm2835_spi_dma_rx_done() - callback for DMA RX channel |
| * @data: SPI master controller |
| * |
| * Used for bidirectional and RX-only transfers. |
| */ |
| static void bcm2835_spi_dma_rx_done(void *data) |
| { |
| struct spi_controller *ctlr = data; |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| |
| /* terminate tx-dma as we do not have an irq for it |
| * because when the rx dma will terminate and this callback |
| * is called the tx-dma must have finished - can't get to this |
| * situation otherwise... |
| */ |
| dmaengine_terminate_async(ctlr->dma_tx); |
| bs->tx_dma_active = false; |
| bs->rx_dma_active = false; |
| bcm2835_spi_undo_prologue(bs); |
| |
| /* reset fifo and HW */ |
| bcm2835_spi_reset_hw(bs); |
| |
| /* and mark as completed */; |
| complete(&ctlr->xfer_completion); |
| } |
| |
| /** |
| * bcm2835_spi_dma_tx_done() - callback for DMA TX channel |
| * @data: SPI master controller |
| * |
| * Used for TX-only transfers. |
| */ |
| static void bcm2835_spi_dma_tx_done(void *data) |
| { |
| struct spi_controller *ctlr = data; |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| |
| /* busy-wait for TX FIFO to empty */ |
| while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) |
| bcm2835_wr(bs, BCM2835_SPI_CS, |
| bs->clear_rx_cs[bs->chip_select]); |
| |
| bs->tx_dma_active = false; |
| smp_wmb(); |
| |
| /* |
| * In case of a very short transfer, RX DMA may not have been |
| * issued yet. The onus is then on bcm2835_spi_transfer_one_dma() |
| * to terminate it immediately after issuing. |
| */ |
| if (cmpxchg(&bs->rx_dma_active, true, false)) |
| dmaengine_terminate_async(ctlr->dma_rx); |
| |
| bcm2835_spi_undo_prologue(bs); |
| bcm2835_spi_reset_hw(bs); |
| complete(&ctlr->xfer_completion); |
| } |
| |
| /** |
| * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist |
| * @ctlr: SPI master controller |
| * @spi: SPI slave |
| * @tfr: SPI transfer |
| * @bs: BCM2835 SPI controller |
| * @is_tx: whether to submit DMA descriptor for TX or RX sglist |
| * |
| * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr. |
| * Return 0 on success or a negative error number. |
| */ |
| static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr, |
| struct bcm2835_spi *bs, |
| bool is_tx) |
| { |
| struct dma_chan *chan; |
| struct scatterlist *sgl; |
| unsigned int nents; |
| enum dma_transfer_direction dir; |
| unsigned long flags; |
| |
| struct dma_async_tx_descriptor *desc; |
| dma_cookie_t cookie; |
| |
| if (is_tx) { |
| dir = DMA_MEM_TO_DEV; |
| chan = ctlr->dma_tx; |
| nents = tfr->tx_sg.nents; |
| sgl = tfr->tx_sg.sgl; |
| flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT; |
| } else { |
| dir = DMA_DEV_TO_MEM; |
| chan = ctlr->dma_rx; |
| nents = tfr->rx_sg.nents; |
| sgl = tfr->rx_sg.sgl; |
| flags = DMA_PREP_INTERRUPT; |
| } |
| /* prepare the channel */ |
| desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); |
| if (!desc) |
| return -EINVAL; |
| |
| /* |
| * Completion is signaled by the RX channel for bidirectional and |
| * RX-only transfers; else by the TX channel for TX-only transfers. |
| */ |
| if (!is_tx) { |
| desc->callback = bcm2835_spi_dma_rx_done; |
| desc->callback_param = ctlr; |
| } else if (!tfr->rx_buf) { |
| desc->callback = bcm2835_spi_dma_tx_done; |
| desc->callback_param = ctlr; |
| bs->chip_select = spi->chip_select; |
| } |
| |
| /* submit it to DMA-engine */ |
| cookie = dmaengine_submit(desc); |
| |
| return dma_submit_error(cookie); |
| } |
| |
| /** |
| * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine |
| * @ctlr: SPI master controller |
| * @spi: SPI slave |
| * @tfr: SPI transfer |
| * @cs: CS register |
| * |
| * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up |
| * the TX and RX DMA channel to copy between memory and FIFO register. |
| * |
| * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to |
| * memory is pointless. However not reading the RX FIFO isn't an option either |
| * because transmission is halted once it's full. As a workaround, cyclically |
| * clear the RX FIFO by setting the CLEAR_RX bit in the CS register. |
| * |
| * The CS register value is precalculated in bcm2835_spi_setup(). Normally |
| * this is called only once, on slave registration. A DMA descriptor to write |
| * this value is preallocated in bcm2835_dma_init(). All that's left to do |
| * when performing a TX-only transfer is to submit this descriptor to the RX |
| * DMA channel. Latency is thereby minimized. The descriptor does not |
| * generate any interrupts while running. It must be terminated once the |
| * TX DMA channel is done. |
| * |
| * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted |
| * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC |
| * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus |
| * accesses, whereas clearing it requires only 1 bus access. So an 8-fold |
| * reduction in bus traffic and thus energy consumption is achieved. |
| * |
| * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically |
| * copying from the zero page. The DMA descriptor to do this is preallocated |
| * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is |
| * done and can then be reused. |
| * |
| * The BCM2835 DMA driver autodetects when a transaction copies from the zero |
| * page and utilizes the DMA controller's ability to synthesize zeroes instead |
| * of copying them from memory. This reduces traffic on the memory bus. The |
| * feature is not available on so-called "lite" channels, but normally TX DMA |
| * is backed by a full-featured channel. |
| * |
| * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the |
| * BCM2835 SPI controller continues to assert DREQ even after the DLEN register |
| * has been counted down to zero (hardware erratum). Thus, when the transfer |
| * has finished, the DMA engine zero-fills the TX FIFO until it is half full. |
| * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are |
| * performed at the end of an RX-only transfer. |
| */ |
| static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr, |
| u32 cs) |
| { |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| dma_cookie_t cookie; |
| int ret; |
| |
| /* update usage statistics */ |
| bs->count_transfer_dma++; |
| |
| /* |
| * Transfer first few bytes without DMA if length of first TX or RX |
| * sglist entry is not a multiple of 4 bytes (hardware limitation). |
| */ |
| bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs); |
| |
| /* setup tx-DMA */ |
| if (bs->tx_buf) { |
| ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true); |
| } else { |
| cookie = dmaengine_submit(bs->fill_tx_desc); |
| ret = dma_submit_error(cookie); |
| } |
| if (ret) |
| goto err_reset_hw; |
| |
| /* set the DMA length */ |
| bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); |
| |
| /* start the HW */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, |
| cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); |
| |
| bs->tx_dma_active = true; |
| smp_wmb(); |
| |
| /* start TX early */ |
| dma_async_issue_pending(ctlr->dma_tx); |
| |
| /* setup rx-DMA late - to run transfers while |
| * mapping of the rx buffers still takes place |
| * this saves 10us or more. |
| */ |
| if (bs->rx_buf) { |
| ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false); |
| } else { |
| cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]); |
| ret = dma_submit_error(cookie); |
| } |
| if (ret) { |
| /* need to reset on errors */ |
| dmaengine_terminate_sync(ctlr->dma_tx); |
| bs->tx_dma_active = false; |
| goto err_reset_hw; |
| } |
| |
| /* start rx dma late */ |
| dma_async_issue_pending(ctlr->dma_rx); |
| bs->rx_dma_active = true; |
| smp_mb(); |
| |
| /* |
| * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done() |
| * may run before RX DMA is issued. Terminate RX DMA if so. |
| */ |
| if (!bs->rx_buf && !bs->tx_dma_active && |
| cmpxchg(&bs->rx_dma_active, true, false)) { |
| dmaengine_terminate_async(ctlr->dma_rx); |
| bcm2835_spi_reset_hw(bs); |
| } |
| |
| /* wait for wakeup in framework */ |
| return 1; |
| |
| err_reset_hw: |
| bcm2835_spi_reset_hw(bs); |
| bcm2835_spi_undo_prologue(bs); |
| return ret; |
| } |
| |
| static bool bcm2835_spi_can_dma(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr) |
| { |
| /* we start DMA efforts only on bigger transfers */ |
| if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) |
| return false; |
| |
| /* return OK */ |
| return true; |
| } |
| |
| static void bcm2835_dma_release(struct spi_controller *ctlr, |
| struct bcm2835_spi *bs) |
| { |
| int i; |
| |
| if (ctlr->dma_tx) { |
| dmaengine_terminate_sync(ctlr->dma_tx); |
| |
| if (bs->fill_tx_desc) |
| dmaengine_desc_free(bs->fill_tx_desc); |
| |
| if (bs->fill_tx_addr) |
| dma_unmap_page_attrs(ctlr->dma_tx->device->dev, |
| bs->fill_tx_addr, sizeof(u32), |
| DMA_TO_DEVICE, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| |
| dma_release_channel(ctlr->dma_tx); |
| ctlr->dma_tx = NULL; |
| } |
| |
| if (ctlr->dma_rx) { |
| dmaengine_terminate_sync(ctlr->dma_rx); |
| |
| for (i = 0; i < BCM2835_SPI_NUM_CS; i++) |
| if (bs->clear_rx_desc[i]) |
| dmaengine_desc_free(bs->clear_rx_desc[i]); |
| |
| if (bs->clear_rx_addr) |
| dma_unmap_single(ctlr->dma_rx->device->dev, |
| bs->clear_rx_addr, |
| sizeof(bs->clear_rx_cs), |
| DMA_TO_DEVICE); |
| |
| dma_release_channel(ctlr->dma_rx); |
| ctlr->dma_rx = NULL; |
| } |
| } |
| |
| static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev, |
| struct bcm2835_spi *bs) |
| { |
| struct dma_slave_config slave_config; |
| const __be32 *addr; |
| dma_addr_t dma_reg_base; |
| int ret, i; |
| |
| /* base address in dma-space */ |
| addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL); |
| if (!addr) { |
| dev_err(dev, "could not get DMA-register address - not using dma mode\n"); |
| /* Fall back to interrupt mode */ |
| return 0; |
| } |
| dma_reg_base = be32_to_cpup(addr); |
| |
| /* get tx/rx dma */ |
| ctlr->dma_tx = dma_request_chan(dev, "tx"); |
| if (IS_ERR(ctlr->dma_tx)) { |
| dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); |
| ret = PTR_ERR(ctlr->dma_tx); |
| ctlr->dma_tx = NULL; |
| goto err; |
| } |
| ctlr->dma_rx = dma_request_chan(dev, "rx"); |
| if (IS_ERR(ctlr->dma_rx)) { |
| dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); |
| ret = PTR_ERR(ctlr->dma_rx); |
| ctlr->dma_rx = NULL; |
| goto err_release; |
| } |
| |
| /* |
| * The TX DMA channel either copies a transfer's TX buffer to the FIFO |
| * or, in case of an RX-only transfer, cyclically copies from the zero |
| * page to the FIFO using a preallocated, reusable descriptor. |
| */ |
| slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); |
| slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config); |
| if (ret) |
| goto err_config; |
| |
| bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev, |
| ZERO_PAGE(0), 0, sizeof(u32), |
| DMA_TO_DEVICE, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) { |
| dev_err(dev, "cannot map zero page - not using DMA mode\n"); |
| bs->fill_tx_addr = 0; |
| ret = -ENOMEM; |
| goto err_release; |
| } |
| |
| bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx, |
| bs->fill_tx_addr, |
| sizeof(u32), 0, |
| DMA_MEM_TO_DEV, 0); |
| if (!bs->fill_tx_desc) { |
| dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n"); |
| ret = -ENOMEM; |
| goto err_release; |
| } |
| |
| ret = dmaengine_desc_set_reuse(bs->fill_tx_desc); |
| if (ret) { |
| dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n"); |
| goto err_release; |
| } |
| |
| /* |
| * The RX DMA channel is used bidirectionally: It either reads the |
| * RX FIFO or, in case of a TX-only transfer, cyclically writes a |
| * precalculated value to the CS register to clear the RX FIFO. |
| */ |
| slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); |
| slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS); |
| slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config); |
| if (ret) |
| goto err_config; |
| |
| bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev, |
| bs->clear_rx_cs, |
| sizeof(bs->clear_rx_cs), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) { |
| dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n"); |
| bs->clear_rx_addr = 0; |
| ret = -ENOMEM; |
| goto err_release; |
| } |
| |
| for (i = 0; i < BCM2835_SPI_NUM_CS; i++) { |
| bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx, |
| bs->clear_rx_addr + i * sizeof(u32), |
| sizeof(u32), 0, |
| DMA_MEM_TO_DEV, 0); |
| if (!bs->clear_rx_desc[i]) { |
| dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n"); |
| ret = -ENOMEM; |
| goto err_release; |
| } |
| |
| ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]); |
| if (ret) { |
| dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n"); |
| goto err_release; |
| } |
| } |
| |
| /* all went well, so set can_dma */ |
| ctlr->can_dma = bcm2835_spi_can_dma; |
| |
| return 0; |
| |
| err_config: |
| dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", |
| ret); |
| err_release: |
| bcm2835_dma_release(ctlr, bs); |
| err: |
| /* |
| * Only report error for deferred probing, otherwise fall back to |
| * interrupt mode |
| */ |
| if (ret != -EPROBE_DEFER) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr, |
| u32 cs) |
| { |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| unsigned long timeout; |
| |
| /* update usage statistics */ |
| bs->count_transfer_polling++; |
| |
| /* enable HW block without interrupts */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); |
| |
| /* fill in the fifo before timeout calculations |
| * if we are interrupted here, then the data is |
| * getting transferred by the HW while we are interrupted |
| */ |
| bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); |
| |
| /* set the timeout to at least 2 jiffies */ |
| timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; |
| |
| /* loop until finished the transfer */ |
| while (bs->rx_len) { |
| /* fill in tx fifo with remaining data */ |
| bcm2835_wr_fifo(bs); |
| |
| /* read from fifo as much as possible */ |
| bcm2835_rd_fifo(bs); |
| |
| /* if there is still data pending to read |
| * then check the timeout |
| */ |
| if (bs->rx_len && time_after(jiffies, timeout)) { |
| dev_dbg_ratelimited(&spi->dev, |
| "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", |
| jiffies - timeout, |
| bs->tx_len, bs->rx_len); |
| /* fall back to interrupt mode */ |
| |
| /* update usage statistics */ |
| bs->count_transfer_irq_after_polling++; |
| |
| return bcm2835_spi_transfer_one_irq(ctlr, spi, |
| tfr, cs, false); |
| } |
| } |
| |
| /* Transfer complete - reset SPI HW */ |
| bcm2835_spi_reset_hw(bs); |
| /* and return without waiting for completion */ |
| return 0; |
| } |
| |
| static int bcm2835_spi_transfer_one(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *tfr) |
| { |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| unsigned long spi_hz, clk_hz, cdiv; |
| unsigned long hz_per_byte, byte_limit; |
| u32 cs = bs->prepare_cs[spi->chip_select]; |
| |
| /* set clock */ |
| spi_hz = tfr->speed_hz; |
| clk_hz = clk_get_rate(bs->clk); |
| |
| if (spi_hz >= clk_hz / 2) { |
| cdiv = 2; /* clk_hz/2 is the fastest we can go */ |
| } else if (spi_hz) { |
| /* CDIV must be a multiple of two */ |
| cdiv = DIV_ROUND_UP(clk_hz, spi_hz); |
| cdiv += (cdiv % 2); |
| |
| if (cdiv >= 65536) |
| cdiv = 0; /* 0 is the slowest we can go */ |
| } else { |
| cdiv = 0; /* 0 is the slowest we can go */ |
| } |
| tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536); |
| bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); |
| |
| /* handle all the 3-wire mode */ |
| if (spi->mode & SPI_3WIRE && tfr->rx_buf) |
| cs |= BCM2835_SPI_CS_REN; |
| |
| /* set transmit buffers and length */ |
| bs->tx_buf = tfr->tx_buf; |
| bs->rx_buf = tfr->rx_buf; |
| bs->tx_len = tfr->len; |
| bs->rx_len = tfr->len; |
| |
| /* Calculate the estimated time in us the transfer runs. Note that |
| * there is 1 idle clocks cycles after each byte getting transferred |
| * so we have 9 cycles/byte. This is used to find the number of Hz |
| * per byte per polling limit. E.g., we can transfer 1 byte in 30 us |
| * per 300,000 Hz of bus clock. |
| */ |
| hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; |
| byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1; |
| |
| /* run in polling mode for short transfers */ |
| if (tfr->len < byte_limit) |
| return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs); |
| |
| /* run in dma mode if conditions are right |
| * Note that unlike poll or interrupt mode DMA mode does not have |
| * this 1 idle clock cycle pattern but runs the spi clock without gaps |
| */ |
| if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr)) |
| return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs); |
| |
| /* run in interrupt-mode */ |
| return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true); |
| } |
| |
| static int bcm2835_spi_prepare_message(struct spi_controller *ctlr, |
| struct spi_message *msg) |
| { |
| struct spi_device *spi = msg->spi; |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| int ret; |
| |
| if (ctlr->can_dma) { |
| /* |
| * DMA transfers are limited to 16 bit (0 to 65535 bytes) by |
| * the SPI HW due to DLEN. Split up transfers (32-bit FIFO |
| * aligned) if the limit is exceeded. |
| */ |
| ret = spi_split_transfers_maxsize(ctlr, msg, 65532, |
| GFP_KERNEL | GFP_DMA); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Set up clock polarity before spi_transfer_one_message() asserts |
| * chip select to avoid a gratuitous clock signal edge. |
| */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]); |
| |
| return 0; |
| } |
| |
| static void bcm2835_spi_handle_err(struct spi_controller *ctlr, |
| struct spi_message *msg) |
| { |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| |
| /* if an error occurred and we have an active dma, then terminate */ |
| dmaengine_terminate_sync(ctlr->dma_tx); |
| bs->tx_dma_active = false; |
| dmaengine_terminate_sync(ctlr->dma_rx); |
| bs->rx_dma_active = false; |
| bcm2835_spi_undo_prologue(bs); |
| |
| /* and reset */ |
| bcm2835_spi_reset_hw(bs); |
| } |
| |
| static int chip_match_name(struct gpio_chip *chip, void *data) |
| { |
| return !strcmp(chip->label, data); |
| } |
| |
| static int bcm2835_spi_setup(struct spi_device *spi) |
| { |
| struct spi_controller *ctlr = spi->controller; |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| struct gpio_chip *chip; |
| enum gpio_lookup_flags lflags; |
| u32 cs; |
| |
| /* |
| * Precalculate SPI slave's CS register value for ->prepare_message(): |
| * The driver always uses software-controlled GPIO chip select, hence |
| * set the hardware-controlled native chip select to an invalid value |
| * to prevent it from interfering. |
| */ |
| cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; |
| if (spi->mode & SPI_CPOL) |
| cs |= BCM2835_SPI_CS_CPOL; |
| if (spi->mode & SPI_CPHA) |
| cs |= BCM2835_SPI_CS_CPHA; |
| bs->prepare_cs[spi->chip_select] = cs; |
| |
| /* |
| * Precalculate SPI slave's CS register value to clear RX FIFO |
| * in case of a TX-only DMA transfer. |
| */ |
| if (ctlr->dma_rx) { |
| bs->clear_rx_cs[spi->chip_select] = cs | |
| BCM2835_SPI_CS_TA | |
| BCM2835_SPI_CS_DMAEN | |
| BCM2835_SPI_CS_CLEAR_RX; |
| dma_sync_single_for_device(ctlr->dma_rx->device->dev, |
| bs->clear_rx_addr, |
| sizeof(bs->clear_rx_cs), |
| DMA_TO_DEVICE); |
| } |
| |
| /* |
| * sanity checking the native-chipselects |
| */ |
| if (spi->mode & SPI_NO_CS) |
| return 0; |
| /* |
| * The SPI core has successfully requested the CS GPIO line from the |
| * device tree, so we are done. |
| */ |
| if (spi->cs_gpiod) |
| return 0; |
| if (spi->chip_select > 1) { |
| /* error in the case of native CS requested with CS > 1 |
| * officially there is a CS2, but it is not documented |
| * which GPIO is connected with that... |
| */ |
| dev_err(&spi->dev, |
| "setup: only two native chip-selects are supported\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Translate native CS to GPIO |
| * |
| * FIXME: poking around in the gpiolib internals like this is |
| * not very good practice. Find a way to locate the real problem |
| * and fix it. Why is the GPIO descriptor in spi->cs_gpiod |
| * sometimes not assigned correctly? Erroneous device trees? |
| */ |
| |
| /* get the gpio chip for the base */ |
| chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); |
| if (!chip) |
| return 0; |
| |
| /* |
| * Retrieve the corresponding GPIO line used for CS. |
| * The inversion semantics will be handled by the GPIO core |
| * code, so we pass GPIOD_OUT_LOW for "unasserted" and |
| * the correct flag for inversion semantics. The SPI_CS_HIGH |
| * on spi->mode cannot be checked for polarity in this case |
| * as the flag use_gpio_descriptors enforces SPI_CS_HIGH. |
| */ |
| if (of_property_read_bool(spi->dev.of_node, "spi-cs-high")) |
| lflags = GPIO_ACTIVE_HIGH; |
| else |
| lflags = GPIO_ACTIVE_LOW; |
| spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select, |
| DRV_NAME, |
| lflags, |
| GPIOD_OUT_LOW); |
| if (IS_ERR(spi->cs_gpiod)) |
| return PTR_ERR(spi->cs_gpiod); |
| |
| /* and set up the "mode" and level */ |
| dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n", |
| spi->chip_select); |
| |
| return 0; |
| } |
| |
| static int bcm2835_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr; |
| struct bcm2835_spi *bs; |
| int err; |
| |
| ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs), |
| dma_get_cache_alignment())); |
| if (!ctlr) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, ctlr); |
| |
| ctlr->use_gpio_descriptors = true; |
| ctlr->mode_bits = BCM2835_SPI_MODE_BITS; |
| ctlr->bits_per_word_mask = SPI_BPW_MASK(8); |
| ctlr->num_chipselect = BCM2835_SPI_NUM_CS; |
| ctlr->setup = bcm2835_spi_setup; |
| ctlr->transfer_one = bcm2835_spi_transfer_one; |
| ctlr->handle_err = bcm2835_spi_handle_err; |
| ctlr->prepare_message = bcm2835_spi_prepare_message; |
| ctlr->dev.of_node = pdev->dev.of_node; |
| |
| bs = spi_controller_get_devdata(ctlr); |
| bs->ctlr = ctlr; |
| |
| bs->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(bs->regs)) { |
| err = PTR_ERR(bs->regs); |
| goto out_controller_put; |
| } |
| |
| bs->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(bs->clk)) { |
| err = dev_err_probe(&pdev->dev, PTR_ERR(bs->clk), |
| "could not get clk\n"); |
| goto out_controller_put; |
| } |
| |
| bs->irq = platform_get_irq(pdev, 0); |
| if (bs->irq <= 0) { |
| err = bs->irq ? bs->irq : -ENODEV; |
| goto out_controller_put; |
| } |
| |
| clk_prepare_enable(bs->clk); |
| |
| err = bcm2835_dma_init(ctlr, &pdev->dev, bs); |
| if (err) |
| goto out_clk_disable; |
| |
| /* initialise the hardware with the default polarities */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, |
| BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); |
| |
| err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, |
| dev_name(&pdev->dev), bs); |
| if (err) { |
| dev_err(&pdev->dev, "could not request IRQ: %d\n", err); |
| goto out_dma_release; |
| } |
| |
| err = spi_register_controller(ctlr); |
| if (err) { |
| dev_err(&pdev->dev, "could not register SPI controller: %d\n", |
| err); |
| goto out_dma_release; |
| } |
| |
| bcm2835_debugfs_create(bs, dev_name(&pdev->dev)); |
| |
| return 0; |
| |
| out_dma_release: |
| bcm2835_dma_release(ctlr, bs); |
| out_clk_disable: |
| clk_disable_unprepare(bs->clk); |
| out_controller_put: |
| spi_controller_put(ctlr); |
| return err; |
| } |
| |
| static int bcm2835_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr = platform_get_drvdata(pdev); |
| struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); |
| |
| bcm2835_debugfs_remove(bs); |
| |
| spi_unregister_controller(ctlr); |
| |
| bcm2835_dma_release(ctlr, bs); |
| |
| /* Clear FIFOs, and disable the HW block */ |
| bcm2835_wr(bs, BCM2835_SPI_CS, |
| BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); |
| |
| clk_disable_unprepare(bs->clk); |
| |
| return 0; |
| } |
| |
| static void bcm2835_spi_shutdown(struct platform_device *pdev) |
| { |
| int ret; |
| |
| ret = bcm2835_spi_remove(pdev); |
| if (ret) |
| dev_err(&pdev->dev, "failed to shutdown\n"); |
| } |
| |
| static const struct of_device_id bcm2835_spi_match[] = { |
| { .compatible = "brcm,bcm2835-spi", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, bcm2835_spi_match); |
| |
| static struct platform_driver bcm2835_spi_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = bcm2835_spi_match, |
| }, |
| .probe = bcm2835_spi_probe, |
| .remove = bcm2835_spi_remove, |
| .shutdown = bcm2835_spi_shutdown, |
| }; |
| module_platform_driver(bcm2835_spi_driver); |
| |
| MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); |
| MODULE_AUTHOR("Chris Boot <bootc@bootc.net>"); |
| MODULE_LICENSE("GPL"); |