| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Dynamic DMA mapping support. |
| * |
| * This implementation is a fallback for platforms that do not support |
| * I/O TLBs (aka DMA address translation hardware). |
| * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> |
| * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> |
| * Copyright (C) 2000, 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. |
| * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid |
| * unnecessary i-cache flushing. |
| * 04/07/.. ak Better overflow handling. Assorted fixes. |
| * 05/09/10 linville Add support for syncing ranges, support syncing for |
| * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. |
| * 08/12/11 beckyb Add highmem support |
| */ |
| |
| #define pr_fmt(fmt) "software IO TLB: " fmt |
| |
| #include <linux/cache.h> |
| #include <linux/cc_platform.h> |
| #include <linux/ctype.h> |
| #include <linux/debugfs.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/export.h> |
| #include <linux/gfp.h> |
| #include <linux/highmem.h> |
| #include <linux/io.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/mm.h> |
| #include <linux/pfn.h> |
| #include <linux/rculist.h> |
| #include <linux/scatterlist.h> |
| #include <linux/set_memory.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/swiotlb.h> |
| #include <linux/types.h> |
| #ifdef CONFIG_DMA_RESTRICTED_POOL |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/slab.h> |
| #endif |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/swiotlb.h> |
| |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
| |
| /* |
| * Minimum IO TLB size to bother booting with. Systems with mainly |
| * 64bit capable cards will only lightly use the swiotlb. If we can't |
| * allocate a contiguous 1MB, we're probably in trouble anyway. |
| */ |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) |
| |
| #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
| |
| /** |
| * struct io_tlb_slot - IO TLB slot descriptor |
| * @orig_addr: The original address corresponding to a mapped entry. |
| * @alloc_size: Size of the allocated buffer. |
| * @list: The free list describing the number of free entries available |
| * from each index. |
| * @pad_slots: Number of preceding padding slots. Valid only in the first |
| * allocated non-padding slot. |
| */ |
| struct io_tlb_slot { |
| phys_addr_t orig_addr; |
| size_t alloc_size; |
| unsigned short list; |
| unsigned short pad_slots; |
| }; |
| |
| static bool swiotlb_force_bounce; |
| static bool swiotlb_force_disable; |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| |
| static void swiotlb_dyn_alloc(struct work_struct *work); |
| |
| static struct io_tlb_mem io_tlb_default_mem = { |
| .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock), |
| .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools), |
| .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc, |
| swiotlb_dyn_alloc), |
| }; |
| |
| #else /* !CONFIG_SWIOTLB_DYNAMIC */ |
| |
| static struct io_tlb_mem io_tlb_default_mem; |
| |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; |
| static unsigned long default_nareas; |
| |
| /** |
| * struct io_tlb_area - IO TLB memory area descriptor |
| * |
| * This is a single area with a single lock. |
| * |
| * @used: The number of used IO TLB block. |
| * @index: The slot index to start searching in this area for next round. |
| * @lock: The lock to protect the above data structures in the map and |
| * unmap calls. |
| */ |
| struct io_tlb_area { |
| unsigned long used; |
| unsigned int index; |
| spinlock_t lock; |
| }; |
| |
| /* |
| * Round up number of slabs to the next power of 2. The last area is going |
| * be smaller than the rest if default_nslabs is not power of two. |
| * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, |
| * otherwise a segment may span two or more areas. It conflicts with free |
| * contiguous slots tracking: free slots are treated contiguous no matter |
| * whether they cross an area boundary. |
| * |
| * Return true if default_nslabs is rounded up. |
| */ |
| static bool round_up_default_nslabs(void) |
| { |
| if (!default_nareas) |
| return false; |
| |
| if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) |
| default_nslabs = IO_TLB_SEGSIZE * default_nareas; |
| else if (is_power_of_2(default_nslabs)) |
| return false; |
| default_nslabs = roundup_pow_of_two(default_nslabs); |
| return true; |
| } |
| |
| /** |
| * swiotlb_adjust_nareas() - adjust the number of areas and slots |
| * @nareas: Desired number of areas. Zero is treated as 1. |
| * |
| * Adjust the default number of areas in a memory pool. |
| * The default size of the memory pool may also change to meet minimum area |
| * size requirements. |
| */ |
| static void swiotlb_adjust_nareas(unsigned int nareas) |
| { |
| if (!nareas) |
| nareas = 1; |
| else if (!is_power_of_2(nareas)) |
| nareas = roundup_pow_of_two(nareas); |
| |
| default_nareas = nareas; |
| |
| pr_info("area num %d.\n", nareas); |
| if (round_up_default_nslabs()) |
| pr_info("SWIOTLB bounce buffer size roundup to %luMB", |
| (default_nslabs << IO_TLB_SHIFT) >> 20); |
| } |
| |
| /** |
| * limit_nareas() - get the maximum number of areas for a given memory pool size |
| * @nareas: Desired number of areas. |
| * @nslots: Total number of slots in the memory pool. |
| * |
| * Limit the number of areas to the maximum possible number of areas in |
| * a memory pool of the given size. |
| * |
| * Return: Maximum possible number of areas. |
| */ |
| static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots) |
| { |
| if (nslots < nareas * IO_TLB_SEGSIZE) |
| return nslots / IO_TLB_SEGSIZE; |
| return nareas; |
| } |
| |
| static int __init |
| setup_io_tlb_npages(char *str) |
| { |
| if (isdigit(*str)) { |
| /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
| default_nslabs = |
| ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); |
| } |
| if (*str == ',') |
| ++str; |
| if (isdigit(*str)) |
| swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); |
| if (*str == ',') |
| ++str; |
| if (!strcmp(str, "force")) |
| swiotlb_force_bounce = true; |
| else if (!strcmp(str, "noforce")) |
| swiotlb_force_disable = true; |
| |
| return 0; |
| } |
| early_param("swiotlb", setup_io_tlb_npages); |
| |
| unsigned long swiotlb_size_or_default(void) |
| { |
| return default_nslabs << IO_TLB_SHIFT; |
| } |
| |
| void __init swiotlb_adjust_size(unsigned long size) |
| { |
| /* |
| * If swiotlb parameter has not been specified, give a chance to |
| * architectures such as those supporting memory encryption to |
| * adjust/expand SWIOTLB size for their use. |
| */ |
| if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) |
| return; |
| |
| size = ALIGN(size, IO_TLB_SIZE); |
| default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); |
| if (round_up_default_nslabs()) |
| size = default_nslabs << IO_TLB_SHIFT; |
| pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); |
| } |
| |
| void swiotlb_print_info(void) |
| { |
| struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; |
| |
| if (!mem->nslabs) { |
| pr_warn("No low mem\n"); |
| return; |
| } |
| |
| pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, |
| (mem->nslabs << IO_TLB_SHIFT) >> 20); |
| } |
| |
| static inline unsigned long io_tlb_offset(unsigned long val) |
| { |
| return val & (IO_TLB_SEGSIZE - 1); |
| } |
| |
| static inline unsigned long nr_slots(u64 val) |
| { |
| return DIV_ROUND_UP(val, IO_TLB_SIZE); |
| } |
| |
| /* |
| * Early SWIOTLB allocation may be too early to allow an architecture to |
| * perform the desired operations. This function allows the architecture to |
| * call SWIOTLB when the operations are possible. It needs to be called |
| * before the SWIOTLB memory is used. |
| */ |
| void __init swiotlb_update_mem_attributes(void) |
| { |
| struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; |
| unsigned long bytes; |
| |
| if (!mem->nslabs || mem->late_alloc) |
| return; |
| bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); |
| set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT); |
| } |
| |
| static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start, |
| unsigned long nslabs, bool late_alloc, unsigned int nareas) |
| { |
| void *vaddr = phys_to_virt(start); |
| unsigned long bytes = nslabs << IO_TLB_SHIFT, i; |
| |
| mem->nslabs = nslabs; |
| mem->start = start; |
| mem->end = mem->start + bytes; |
| mem->late_alloc = late_alloc; |
| mem->nareas = nareas; |
| mem->area_nslabs = nslabs / mem->nareas; |
| |
| for (i = 0; i < mem->nareas; i++) { |
| spin_lock_init(&mem->areas[i].lock); |
| mem->areas[i].index = 0; |
| mem->areas[i].used = 0; |
| } |
| |
| for (i = 0; i < mem->nslabs; i++) { |
| mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i), |
| mem->nslabs - i); |
| mem->slots[i].orig_addr = INVALID_PHYS_ADDR; |
| mem->slots[i].alloc_size = 0; |
| mem->slots[i].pad_slots = 0; |
| } |
| |
| memset(vaddr, 0, bytes); |
| mem->vaddr = vaddr; |
| return; |
| } |
| |
| /** |
| * add_mem_pool() - add a memory pool to the allocator |
| * @mem: Software IO TLB allocator. |
| * @pool: Memory pool to be added. |
| */ |
| static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool) |
| { |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| spin_lock(&mem->lock); |
| list_add_rcu(&pool->node, &mem->pools); |
| mem->nslabs += pool->nslabs; |
| spin_unlock(&mem->lock); |
| #else |
| mem->nslabs = pool->nslabs; |
| #endif |
| } |
| |
| static void __init *swiotlb_memblock_alloc(unsigned long nslabs, |
| unsigned int flags, |
| int (*remap)(void *tlb, unsigned long nslabs)) |
| { |
| size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); |
| void *tlb; |
| |
| /* |
| * By default allocate the bounce buffer memory from low memory, but |
| * allow to pick a location everywhere for hypervisors with guest |
| * memory encryption. |
| */ |
| if (flags & SWIOTLB_ANY) |
| tlb = memblock_alloc(bytes, PAGE_SIZE); |
| else |
| tlb = memblock_alloc_low(bytes, PAGE_SIZE); |
| |
| if (!tlb) { |
| pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", |
| __func__, bytes); |
| return NULL; |
| } |
| |
| if (remap && remap(tlb, nslabs) < 0) { |
| memblock_free(tlb, PAGE_ALIGN(bytes)); |
| pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); |
| return NULL; |
| } |
| |
| return tlb; |
| } |
| |
| /* |
| * Statically reserve bounce buffer space and initialize bounce buffer data |
| * structures for the software IO TLB used to implement the DMA API. |
| */ |
| void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, |
| int (*remap)(void *tlb, unsigned long nslabs)) |
| { |
| struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; |
| unsigned long nslabs; |
| unsigned int nareas; |
| size_t alloc_size; |
| void *tlb; |
| |
| if (!addressing_limit && !swiotlb_force_bounce) |
| return; |
| if (swiotlb_force_disable) |
| return; |
| |
| io_tlb_default_mem.force_bounce = |
| swiotlb_force_bounce || (flags & SWIOTLB_FORCE); |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| if (!remap) |
| io_tlb_default_mem.can_grow = true; |
| if (flags & SWIOTLB_ANY) |
| io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); |
| else |
| io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT; |
| #endif |
| |
| if (!default_nareas) |
| swiotlb_adjust_nareas(num_possible_cpus()); |
| |
| nslabs = default_nslabs; |
| nareas = limit_nareas(default_nareas, nslabs); |
| while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) { |
| if (nslabs <= IO_TLB_MIN_SLABS) |
| return; |
| nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); |
| nareas = limit_nareas(nareas, nslabs); |
| } |
| |
| if (default_nslabs != nslabs) { |
| pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs", |
| default_nslabs, nslabs); |
| default_nslabs = nslabs; |
| } |
| |
| alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); |
| mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); |
| if (!mem->slots) { |
| pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", |
| __func__, alloc_size, PAGE_SIZE); |
| return; |
| } |
| |
| mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), |
| nareas), SMP_CACHE_BYTES); |
| if (!mem->areas) { |
| pr_warn("%s: Failed to allocate mem->areas.\n", __func__); |
| return; |
| } |
| |
| swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas); |
| add_mem_pool(&io_tlb_default_mem, mem); |
| |
| if (flags & SWIOTLB_VERBOSE) |
| swiotlb_print_info(); |
| } |
| |
| void __init swiotlb_init(bool addressing_limit, unsigned int flags) |
| { |
| swiotlb_init_remap(addressing_limit, flags, NULL); |
| } |
| |
| /* |
| * Systems with larger DMA zones (those that don't support ISA) can |
| * initialize the swiotlb later using the slab allocator if needed. |
| * This should be just like above, but with some error catching. |
| */ |
| int swiotlb_init_late(size_t size, gfp_t gfp_mask, |
| int (*remap)(void *tlb, unsigned long nslabs)) |
| { |
| struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; |
| unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); |
| unsigned int nareas; |
| unsigned char *vstart = NULL; |
| unsigned int order, area_order; |
| bool retried = false; |
| int rc = 0; |
| |
| if (io_tlb_default_mem.nslabs) |
| return 0; |
| |
| if (swiotlb_force_disable) |
| return 0; |
| |
| io_tlb_default_mem.force_bounce = swiotlb_force_bounce; |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| if (!remap) |
| io_tlb_default_mem.can_grow = true; |
| if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA)) |
| io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits); |
| else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32)) |
| io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32); |
| else |
| io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); |
| #endif |
| |
| if (!default_nareas) |
| swiotlb_adjust_nareas(num_possible_cpus()); |
| |
| retry: |
| order = get_order(nslabs << IO_TLB_SHIFT); |
| nslabs = SLABS_PER_PAGE << order; |
| |
| while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { |
| vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, |
| order); |
| if (vstart) |
| break; |
| order--; |
| nslabs = SLABS_PER_PAGE << order; |
| retried = true; |
| } |
| |
| if (!vstart) |
| return -ENOMEM; |
| |
| if (remap) |
| rc = remap(vstart, nslabs); |
| if (rc) { |
| free_pages((unsigned long)vstart, order); |
| |
| nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); |
| if (nslabs < IO_TLB_MIN_SLABS) |
| return rc; |
| retried = true; |
| goto retry; |
| } |
| |
| if (retried) { |
| pr_warn("only able to allocate %ld MB\n", |
| (PAGE_SIZE << order) >> 20); |
| } |
| |
| nareas = limit_nareas(default_nareas, nslabs); |
| area_order = get_order(array_size(sizeof(*mem->areas), nareas)); |
| mem->areas = (struct io_tlb_area *) |
| __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); |
| if (!mem->areas) |
| goto error_area; |
| |
| mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(array_size(sizeof(*mem->slots), nslabs))); |
| if (!mem->slots) |
| goto error_slots; |
| |
| set_memory_decrypted((unsigned long)vstart, |
| (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); |
| swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true, |
| nareas); |
| add_mem_pool(&io_tlb_default_mem, mem); |
| |
| swiotlb_print_info(); |
| return 0; |
| |
| error_slots: |
| free_pages((unsigned long)mem->areas, area_order); |
| error_area: |
| free_pages((unsigned long)vstart, order); |
| return -ENOMEM; |
| } |
| |
| void __init swiotlb_exit(void) |
| { |
| struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; |
| unsigned long tbl_vaddr; |
| size_t tbl_size, slots_size; |
| unsigned int area_order; |
| |
| if (swiotlb_force_bounce) |
| return; |
| |
| if (!mem->nslabs) |
| return; |
| |
| pr_info("tearing down default memory pool\n"); |
| tbl_vaddr = (unsigned long)phys_to_virt(mem->start); |
| tbl_size = PAGE_ALIGN(mem->end - mem->start); |
| slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); |
| |
| set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); |
| if (mem->late_alloc) { |
| area_order = get_order(array_size(sizeof(*mem->areas), |
| mem->nareas)); |
| free_pages((unsigned long)mem->areas, area_order); |
| free_pages(tbl_vaddr, get_order(tbl_size)); |
| free_pages((unsigned long)mem->slots, get_order(slots_size)); |
| } else { |
| memblock_free_late(__pa(mem->areas), |
| array_size(sizeof(*mem->areas), mem->nareas)); |
| memblock_free_late(mem->start, tbl_size); |
| memblock_free_late(__pa(mem->slots), slots_size); |
| } |
| |
| memset(mem, 0, sizeof(*mem)); |
| } |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| |
| /** |
| * alloc_dma_pages() - allocate pages to be used for DMA |
| * @gfp: GFP flags for the allocation. |
| * @bytes: Size of the buffer. |
| * @phys_limit: Maximum allowed physical address of the buffer. |
| * |
| * Allocate pages from the buddy allocator. If successful, make the allocated |
| * pages decrypted that they can be used for DMA. |
| * |
| * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN) |
| * if the allocated physical address was above @phys_limit. |
| */ |
| static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit) |
| { |
| unsigned int order = get_order(bytes); |
| struct page *page; |
| phys_addr_t paddr; |
| void *vaddr; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| return NULL; |
| |
| paddr = page_to_phys(page); |
| if (paddr + bytes - 1 > phys_limit) { |
| __free_pages(page, order); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| vaddr = phys_to_virt(paddr); |
| if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes))) |
| goto error; |
| return page; |
| |
| error: |
| /* Intentional leak if pages cannot be encrypted again. */ |
| if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) |
| __free_pages(page, order); |
| return NULL; |
| } |
| |
| /** |
| * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer |
| * @dev: Device for which a memory pool is allocated. |
| * @bytes: Size of the buffer. |
| * @phys_limit: Maximum allowed physical address of the buffer. |
| * @gfp: GFP flags for the allocation. |
| * |
| * Return: Allocated pages, or %NULL on allocation failure. |
| */ |
| static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes, |
| u64 phys_limit, gfp_t gfp) |
| { |
| struct page *page; |
| |
| /* |
| * Allocate from the atomic pools if memory is encrypted and |
| * the allocation is atomic, because decrypting may block. |
| */ |
| if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) { |
| void *vaddr; |
| |
| if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) |
| return NULL; |
| |
| return dma_alloc_from_pool(dev, bytes, &vaddr, gfp, |
| dma_coherent_ok); |
| } |
| |
| gfp &= ~GFP_ZONEMASK; |
| if (phys_limit <= DMA_BIT_MASK(zone_dma_bits)) |
| gfp |= __GFP_DMA; |
| else if (phys_limit <= DMA_BIT_MASK(32)) |
| gfp |= __GFP_DMA32; |
| |
| while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) { |
| if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
| phys_limit < DMA_BIT_MASK(64) && |
| !(gfp & (__GFP_DMA32 | __GFP_DMA))) |
| gfp |= __GFP_DMA32; |
| else if (IS_ENABLED(CONFIG_ZONE_DMA) && |
| !(gfp & __GFP_DMA)) |
| gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA; |
| else |
| return NULL; |
| } |
| |
| return page; |
| } |
| |
| /** |
| * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer |
| * @vaddr: Virtual address of the buffer. |
| * @bytes: Size of the buffer. |
| */ |
| static void swiotlb_free_tlb(void *vaddr, size_t bytes) |
| { |
| if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
| dma_free_from_pool(NULL, vaddr, bytes)) |
| return; |
| |
| /* Intentional leak if pages cannot be encrypted again. */ |
| if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) |
| __free_pages(virt_to_page(vaddr), get_order(bytes)); |
| } |
| |
| /** |
| * swiotlb_alloc_pool() - allocate a new IO TLB memory pool |
| * @dev: Device for which a memory pool is allocated. |
| * @minslabs: Minimum number of slabs. |
| * @nslabs: Desired (maximum) number of slabs. |
| * @nareas: Number of areas. |
| * @phys_limit: Maximum DMA buffer physical address. |
| * @gfp: GFP flags for the allocations. |
| * |
| * Allocate and initialize a new IO TLB memory pool. The actual number of |
| * slabs may be reduced if allocation of @nslabs fails. If even |
| * @minslabs cannot be allocated, this function fails. |
| * |
| * Return: New memory pool, or %NULL on allocation failure. |
| */ |
| static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev, |
| unsigned long minslabs, unsigned long nslabs, |
| unsigned int nareas, u64 phys_limit, gfp_t gfp) |
| { |
| struct io_tlb_pool *pool; |
| unsigned int slot_order; |
| struct page *tlb; |
| size_t pool_size; |
| size_t tlb_size; |
| |
| if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) { |
| nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER; |
| nareas = limit_nareas(nareas, nslabs); |
| } |
| |
| pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas); |
| pool = kzalloc(pool_size, gfp); |
| if (!pool) |
| goto error; |
| pool->areas = (void *)pool + sizeof(*pool); |
| |
| tlb_size = nslabs << IO_TLB_SHIFT; |
| while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) { |
| if (nslabs <= minslabs) |
| goto error_tlb; |
| nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); |
| nareas = limit_nareas(nareas, nslabs); |
| tlb_size = nslabs << IO_TLB_SHIFT; |
| } |
| |
| slot_order = get_order(array_size(sizeof(*pool->slots), nslabs)); |
| pool->slots = (struct io_tlb_slot *) |
| __get_free_pages(gfp, slot_order); |
| if (!pool->slots) |
| goto error_slots; |
| |
| swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas); |
| return pool; |
| |
| error_slots: |
| swiotlb_free_tlb(page_address(tlb), tlb_size); |
| error_tlb: |
| kfree(pool); |
| error: |
| return NULL; |
| } |
| |
| /** |
| * swiotlb_dyn_alloc() - dynamic memory pool allocation worker |
| * @work: Pointer to dyn_alloc in struct io_tlb_mem. |
| */ |
| static void swiotlb_dyn_alloc(struct work_struct *work) |
| { |
| struct io_tlb_mem *mem = |
| container_of(work, struct io_tlb_mem, dyn_alloc); |
| struct io_tlb_pool *pool; |
| |
| pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs, |
| default_nareas, mem->phys_limit, GFP_KERNEL); |
| if (!pool) { |
| pr_warn_ratelimited("Failed to allocate new pool"); |
| return; |
| } |
| |
| add_mem_pool(mem, pool); |
| } |
| |
| /** |
| * swiotlb_dyn_free() - RCU callback to free a memory pool |
| * @rcu: RCU head in the corresponding struct io_tlb_pool. |
| */ |
| static void swiotlb_dyn_free(struct rcu_head *rcu) |
| { |
| struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu); |
| size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs); |
| size_t tlb_size = pool->end - pool->start; |
| |
| free_pages((unsigned long)pool->slots, get_order(slots_size)); |
| swiotlb_free_tlb(pool->vaddr, tlb_size); |
| kfree(pool); |
| } |
| |
| /** |
| * swiotlb_find_pool() - find the IO TLB pool for a physical address |
| * @dev: Device which has mapped the DMA buffer. |
| * @paddr: Physical address within the DMA buffer. |
| * |
| * Find the IO TLB memory pool descriptor which contains the given physical |
| * address, if any. |
| * |
| * Return: Memory pool which contains @paddr, or %NULL if none. |
| */ |
| struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| struct io_tlb_pool *pool; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pool, &mem->pools, node) { |
| if (paddr >= pool->start && paddr < pool->end) |
| goto out; |
| } |
| |
| list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) { |
| if (paddr >= pool->start && paddr < pool->end) |
| goto out; |
| } |
| pool = NULL; |
| out: |
| rcu_read_unlock(); |
| return pool; |
| } |
| |
| /** |
| * swiotlb_del_pool() - remove an IO TLB pool from a device |
| * @dev: Owning device. |
| * @pool: Memory pool to be removed. |
| */ |
| static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); |
| list_del_rcu(&pool->node); |
| spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); |
| |
| call_rcu(&pool->rcu, swiotlb_dyn_free); |
| } |
| |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| /** |
| * swiotlb_dev_init() - initialize swiotlb fields in &struct device |
| * @dev: Device to be initialized. |
| */ |
| void swiotlb_dev_init(struct device *dev) |
| { |
| dev->dma_io_tlb_mem = &io_tlb_default_mem; |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| INIT_LIST_HEAD(&dev->dma_io_tlb_pools); |
| spin_lock_init(&dev->dma_io_tlb_lock); |
| dev->dma_uses_io_tlb = false; |
| #endif |
| } |
| |
| /** |
| * swiotlb_align_offset() - Get required offset into an IO TLB allocation. |
| * @dev: Owning device. |
| * @align_mask: Allocation alignment mask. |
| * @addr: DMA address. |
| * |
| * Return the minimum offset from the start of an IO TLB allocation which is |
| * required for a given buffer address and allocation alignment to keep the |
| * device happy. |
| * |
| * First, the address bits covered by min_align_mask must be identical in the |
| * original address and the bounce buffer address. High bits are preserved by |
| * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra |
| * padding bytes before the bounce buffer. |
| * |
| * Second, @align_mask specifies which bits of the first allocated slot must |
| * be zero. This may require allocating additional padding slots, and then the |
| * offset (in bytes) from the first such padding slot is returned. |
| */ |
| static unsigned int swiotlb_align_offset(struct device *dev, |
| unsigned int align_mask, u64 addr) |
| { |
| return addr & dma_get_min_align_mask(dev) & |
| (align_mask | (IO_TLB_SIZE - 1)); |
| } |
| |
| /* |
| * Bounce: copy the swiotlb buffer from or back to the original dma location |
| */ |
| static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); |
| int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; |
| phys_addr_t orig_addr = mem->slots[index].orig_addr; |
| size_t alloc_size = mem->slots[index].alloc_size; |
| unsigned long pfn = PFN_DOWN(orig_addr); |
| unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; |
| int tlb_offset; |
| |
| if (orig_addr == INVALID_PHYS_ADDR) |
| return; |
| |
| /* |
| * It's valid for tlb_offset to be negative. This can happen when the |
| * "offset" returned by swiotlb_align_offset() is non-zero, and the |
| * tlb_addr is pointing within the first "offset" bytes of the second |
| * or subsequent slots of the allocated swiotlb area. While it's not |
| * valid for tlb_addr to be pointing within the first "offset" bytes |
| * of the first slot, there's no way to check for such an error since |
| * this function can't distinguish the first slot from the second and |
| * subsequent slots. |
| */ |
| tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) - |
| swiotlb_align_offset(dev, 0, orig_addr); |
| |
| orig_addr += tlb_offset; |
| alloc_size -= tlb_offset; |
| |
| if (size > alloc_size) { |
| dev_WARN_ONCE(dev, 1, |
| "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", |
| alloc_size, size); |
| size = alloc_size; |
| } |
| |
| if (PageHighMem(pfn_to_page(pfn))) { |
| unsigned int offset = orig_addr & ~PAGE_MASK; |
| struct page *page; |
| unsigned int sz = 0; |
| unsigned long flags; |
| |
| while (size) { |
| sz = min_t(size_t, PAGE_SIZE - offset, size); |
| |
| local_irq_save(flags); |
| page = pfn_to_page(pfn); |
| if (dir == DMA_TO_DEVICE) |
| memcpy_from_page(vaddr, page, offset, sz); |
| else |
| memcpy_to_page(page, offset, vaddr, sz); |
| local_irq_restore(flags); |
| |
| size -= sz; |
| pfn++; |
| vaddr += sz; |
| offset = 0; |
| } |
| } else if (dir == DMA_TO_DEVICE) { |
| memcpy(vaddr, phys_to_virt(orig_addr), size); |
| } else { |
| memcpy(phys_to_virt(orig_addr), vaddr, size); |
| } |
| } |
| |
| static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) |
| { |
| return start + (idx << IO_TLB_SHIFT); |
| } |
| |
| /* |
| * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. |
| */ |
| static inline unsigned long get_max_slots(unsigned long boundary_mask) |
| { |
| return (boundary_mask >> IO_TLB_SHIFT) + 1; |
| } |
| |
| static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index) |
| { |
| if (index >= mem->area_nslabs) |
| return 0; |
| return index; |
| } |
| |
| /* |
| * Track the total used slots with a global atomic value in order to have |
| * correct information to determine the high water mark. The mem_used() |
| * function gives imprecise results because there's no locking across |
| * multiple areas. |
| */ |
| #ifdef CONFIG_DEBUG_FS |
| static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| unsigned long old_hiwater, new_used; |
| |
| new_used = atomic_long_add_return(nslots, &mem->total_used); |
| old_hiwater = atomic_long_read(&mem->used_hiwater); |
| do { |
| if (new_used <= old_hiwater) |
| break; |
| } while (!atomic_long_try_cmpxchg(&mem->used_hiwater, |
| &old_hiwater, new_used)); |
| } |
| |
| static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| atomic_long_sub(nslots, &mem->total_used); |
| } |
| |
| #else /* !CONFIG_DEBUG_FS */ |
| static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| } |
| static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| #ifdef CONFIG_DEBUG_FS |
| static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| atomic_long_add(nslots, &mem->transient_nslabs); |
| } |
| |
| static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| atomic_long_sub(nslots, &mem->transient_nslabs); |
| } |
| |
| #else /* !CONFIG_DEBUG_FS */ |
| static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| } |
| static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots) |
| { |
| } |
| #endif /* CONFIG_DEBUG_FS */ |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| /** |
| * swiotlb_search_pool_area() - search one memory area in one pool |
| * @dev: Device which maps the buffer. |
| * @pool: Memory pool to be searched. |
| * @area_index: Index of the IO TLB memory area to be searched. |
| * @orig_addr: Original (non-bounced) IO buffer address. |
| * @alloc_size: Total requested size of the bounce buffer, |
| * including initial alignment padding. |
| * @alloc_align_mask: Required alignment of the allocated buffer. |
| * |
| * Find a suitable sequence of IO TLB entries for the request and allocate |
| * a buffer from the given IO TLB memory area. |
| * This function takes care of locking. |
| * |
| * Return: Index of the first allocated slot, or -1 on error. |
| */ |
| static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool, |
| int area_index, phys_addr_t orig_addr, size_t alloc_size, |
| unsigned int alloc_align_mask) |
| { |
| struct io_tlb_area *area = pool->areas + area_index; |
| unsigned long boundary_mask = dma_get_seg_boundary(dev); |
| dma_addr_t tbl_dma_addr = |
| phys_to_dma_unencrypted(dev, pool->start) & boundary_mask; |
| unsigned long max_slots = get_max_slots(boundary_mask); |
| unsigned int iotlb_align_mask = dma_get_min_align_mask(dev); |
| unsigned int nslots = nr_slots(alloc_size), stride; |
| unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr); |
| unsigned int index, slots_checked, count = 0, i; |
| unsigned long flags; |
| unsigned int slot_base; |
| unsigned int slot_index; |
| |
| BUG_ON(!nslots); |
| BUG_ON(area_index >= pool->nareas); |
| |
| /* |
| * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be |
| * page-aligned in the absence of any other alignment requirements. |
| * 'alloc_align_mask' was later introduced to specify the alignment |
| * explicitly, however this is passed as zero for streaming mappings |
| * and so we preserve the old behaviour there in case any drivers are |
| * relying on it. |
| */ |
| if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE) |
| alloc_align_mask = PAGE_SIZE - 1; |
| |
| /* |
| * Ensure that the allocation is at least slot-aligned and update |
| * 'iotlb_align_mask' to ignore bits that will be preserved when |
| * offsetting into the allocation. |
| */ |
| alloc_align_mask |= (IO_TLB_SIZE - 1); |
| iotlb_align_mask &= ~alloc_align_mask; |
| |
| /* |
| * For mappings with an alignment requirement don't bother looping to |
| * unaligned slots once we found an aligned one. |
| */ |
| stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask)); |
| |
| spin_lock_irqsave(&area->lock, flags); |
| if (unlikely(nslots > pool->area_nslabs - area->used)) |
| goto not_found; |
| |
| slot_base = area_index * pool->area_nslabs; |
| index = area->index; |
| |
| for (slots_checked = 0; slots_checked < pool->area_nslabs; ) { |
| phys_addr_t tlb_addr; |
| |
| slot_index = slot_base + index; |
| tlb_addr = slot_addr(tbl_dma_addr, slot_index); |
| |
| if ((tlb_addr & alloc_align_mask) || |
| (orig_addr && (tlb_addr & iotlb_align_mask) != |
| (orig_addr & iotlb_align_mask))) { |
| index = wrap_area_index(pool, index + 1); |
| slots_checked++; |
| continue; |
| } |
| |
| if (!iommu_is_span_boundary(slot_index, nslots, |
| nr_slots(tbl_dma_addr), |
| max_slots)) { |
| if (pool->slots[slot_index].list >= nslots) |
| goto found; |
| } |
| index = wrap_area_index(pool, index + stride); |
| slots_checked += stride; |
| } |
| |
| not_found: |
| spin_unlock_irqrestore(&area->lock, flags); |
| return -1; |
| |
| found: |
| /* |
| * If we find a slot that indicates we have 'nslots' number of |
| * contiguous buffers, we allocate the buffers from that slot onwards |
| * and set the list of free entries to '0' indicating unavailable. |
| */ |
| for (i = slot_index; i < slot_index + nslots; i++) { |
| pool->slots[i].list = 0; |
| pool->slots[i].alloc_size = alloc_size - (offset + |
| ((i - slot_index) << IO_TLB_SHIFT)); |
| } |
| for (i = slot_index - 1; |
| io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && |
| pool->slots[i].list; i--) |
| pool->slots[i].list = ++count; |
| |
| /* |
| * Update the indices to avoid searching in the next round. |
| */ |
| area->index = wrap_area_index(pool, index + nslots); |
| area->used += nslots; |
| spin_unlock_irqrestore(&area->lock, flags); |
| |
| inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots); |
| return slot_index; |
| } |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| |
| /** |
| * swiotlb_search_area() - search one memory area in all pools |
| * @dev: Device which maps the buffer. |
| * @start_cpu: Start CPU number. |
| * @cpu_offset: Offset from @start_cpu. |
| * @orig_addr: Original (non-bounced) IO buffer address. |
| * @alloc_size: Total requested size of the bounce buffer, |
| * including initial alignment padding. |
| * @alloc_align_mask: Required alignment of the allocated buffer. |
| * @retpool: Used memory pool, updated on return. |
| * |
| * Search one memory area in all pools for a sequence of slots that match the |
| * allocation constraints. |
| * |
| * Return: Index of the first allocated slot, or -1 on error. |
| */ |
| static int swiotlb_search_area(struct device *dev, int start_cpu, |
| int cpu_offset, phys_addr_t orig_addr, size_t alloc_size, |
| unsigned int alloc_align_mask, struct io_tlb_pool **retpool) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| struct io_tlb_pool *pool; |
| int area_index; |
| int index = -1; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pool, &mem->pools, node) { |
| if (cpu_offset >= pool->nareas) |
| continue; |
| area_index = (start_cpu + cpu_offset) & (pool->nareas - 1); |
| index = swiotlb_search_pool_area(dev, pool, area_index, |
| orig_addr, alloc_size, |
| alloc_align_mask); |
| if (index >= 0) { |
| *retpool = pool; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| return index; |
| } |
| |
| /** |
| * swiotlb_find_slots() - search for slots in the whole swiotlb |
| * @dev: Device which maps the buffer. |
| * @orig_addr: Original (non-bounced) IO buffer address. |
| * @alloc_size: Total requested size of the bounce buffer, |
| * including initial alignment padding. |
| * @alloc_align_mask: Required alignment of the allocated buffer. |
| * @retpool: Used memory pool, updated on return. |
| * |
| * Search through the whole software IO TLB to find a sequence of slots that |
| * match the allocation constraints. |
| * |
| * Return: Index of the first allocated slot, or -1 on error. |
| */ |
| static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, |
| size_t alloc_size, unsigned int alloc_align_mask, |
| struct io_tlb_pool **retpool) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| struct io_tlb_pool *pool; |
| unsigned long nslabs; |
| unsigned long flags; |
| u64 phys_limit; |
| int cpu, i; |
| int index; |
| |
| if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE) |
| return -1; |
| |
| cpu = raw_smp_processor_id(); |
| for (i = 0; i < default_nareas; ++i) { |
| index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size, |
| alloc_align_mask, &pool); |
| if (index >= 0) |
| goto found; |
| } |
| |
| if (!mem->can_grow) |
| return -1; |
| |
| schedule_work(&mem->dyn_alloc); |
| |
| nslabs = nr_slots(alloc_size); |
| phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit); |
| pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit, |
| GFP_NOWAIT | __GFP_NOWARN); |
| if (!pool) |
| return -1; |
| |
| index = swiotlb_search_pool_area(dev, pool, 0, orig_addr, |
| alloc_size, alloc_align_mask); |
| if (index < 0) { |
| swiotlb_dyn_free(&pool->rcu); |
| return -1; |
| } |
| |
| pool->transient = true; |
| spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); |
| list_add_rcu(&pool->node, &dev->dma_io_tlb_pools); |
| spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); |
| inc_transient_used(mem, pool->nslabs); |
| |
| found: |
| WRITE_ONCE(dev->dma_uses_io_tlb, true); |
| |
| /* |
| * The general barrier orders reads and writes against a presumed store |
| * of the SWIOTLB buffer address by a device driver (to a driver private |
| * data structure). It serves two purposes. |
| * |
| * First, the store to dev->dma_uses_io_tlb must be ordered before the |
| * presumed store. This guarantees that the returned buffer address |
| * cannot be passed to another CPU before updating dev->dma_uses_io_tlb. |
| * |
| * Second, the load from mem->pools must be ordered before the same |
| * presumed store. This guarantees that the returned buffer address |
| * cannot be observed by another CPU before an update of the RCU list |
| * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy |
| * atomicity). |
| * |
| * See also the comment in is_swiotlb_buffer(). |
| */ |
| smp_mb(); |
| |
| *retpool = pool; |
| return index; |
| } |
| |
| #else /* !CONFIG_SWIOTLB_DYNAMIC */ |
| |
| static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, |
| size_t alloc_size, unsigned int alloc_align_mask, |
| struct io_tlb_pool **retpool) |
| { |
| struct io_tlb_pool *pool; |
| int start, i; |
| int index; |
| |
| *retpool = pool = &dev->dma_io_tlb_mem->defpool; |
| i = start = raw_smp_processor_id() & (pool->nareas - 1); |
| do { |
| index = swiotlb_search_pool_area(dev, pool, i, orig_addr, |
| alloc_size, alloc_align_mask); |
| if (index >= 0) |
| return index; |
| if (++i >= pool->nareas) |
| i = 0; |
| } while (i != start); |
| return -1; |
| } |
| |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| /** |
| * mem_used() - get number of used slots in an allocator |
| * @mem: Software IO TLB allocator. |
| * |
| * The result is accurate in this version of the function, because an atomic |
| * counter is available if CONFIG_DEBUG_FS is set. |
| * |
| * Return: Number of used slots. |
| */ |
| static unsigned long mem_used(struct io_tlb_mem *mem) |
| { |
| return atomic_long_read(&mem->total_used); |
| } |
| |
| #else /* !CONFIG_DEBUG_FS */ |
| |
| /** |
| * mem_pool_used() - get number of used slots in a memory pool |
| * @pool: Software IO TLB memory pool. |
| * |
| * The result is not accurate, see mem_used(). |
| * |
| * Return: Approximate number of used slots. |
| */ |
| static unsigned long mem_pool_used(struct io_tlb_pool *pool) |
| { |
| int i; |
| unsigned long used = 0; |
| |
| for (i = 0; i < pool->nareas; i++) |
| used += pool->areas[i].used; |
| return used; |
| } |
| |
| /** |
| * mem_used() - get number of used slots in an allocator |
| * @mem: Software IO TLB allocator. |
| * |
| * The result is not accurate, because there is no locking of individual |
| * areas. |
| * |
| * Return: Approximate number of used slots. |
| */ |
| static unsigned long mem_used(struct io_tlb_mem *mem) |
| { |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| struct io_tlb_pool *pool; |
| unsigned long used = 0; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pool, &mem->pools, node) |
| used += mem_pool_used(pool); |
| rcu_read_unlock(); |
| |
| return used; |
| #else |
| return mem_pool_used(&mem->defpool); |
| #endif |
| } |
| |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| /** |
| * swiotlb_tbl_map_single() - bounce buffer map a single contiguous physical area |
| * @dev: Device which maps the buffer. |
| * @orig_addr: Original (non-bounced) physical IO buffer address |
| * @mapping_size: Requested size of the actual bounce buffer, excluding |
| * any pre- or post-padding for alignment |
| * @alloc_align_mask: Required start and end alignment of the allocated buffer |
| * @dir: DMA direction |
| * @attrs: Optional DMA attributes for the map operation |
| * |
| * Find and allocate a suitable sequence of IO TLB slots for the request. |
| * The allocated space starts at an alignment specified by alloc_align_mask, |
| * and the size of the allocated space is rounded up so that the total amount |
| * of allocated space is a multiple of (alloc_align_mask + 1). If |
| * alloc_align_mask is zero, the allocated space may be at any alignment and |
| * the size is not rounded up. |
| * |
| * The returned address is within the allocated space and matches the bits |
| * of orig_addr that are specified in the DMA min_align_mask for the device. As |
| * such, this returned address may be offset from the beginning of the allocated |
| * space. The bounce buffer space starting at the returned address for |
| * mapping_size bytes is initialized to the contents of the original IO buffer |
| * area. Any pre-padding (due to an offset) and any post-padding (due to |
| * rounding-up the size) is not initialized. |
| */ |
| phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, |
| size_t mapping_size, unsigned int alloc_align_mask, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| unsigned int offset; |
| struct io_tlb_pool *pool; |
| unsigned int i; |
| size_t size; |
| int index; |
| phys_addr_t tlb_addr; |
| unsigned short pad_slots; |
| |
| if (!mem || !mem->nslabs) { |
| dev_warn_ratelimited(dev, |
| "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| } |
| |
| if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) |
| pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); |
| |
| /* |
| * The default swiotlb memory pool is allocated with PAGE_SIZE |
| * alignment. If a mapping is requested with larger alignment, |
| * the mapping may be unable to use the initial slot(s) in all |
| * sets of IO_TLB_SEGSIZE slots. In such case, a mapping request |
| * of or near the maximum mapping size would always fail. |
| */ |
| dev_WARN_ONCE(dev, alloc_align_mask > ~PAGE_MASK, |
| "Alloc alignment may prevent fulfilling requests with max mapping_size\n"); |
| |
| offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr); |
| size = ALIGN(mapping_size + offset, alloc_align_mask + 1); |
| index = swiotlb_find_slots(dev, orig_addr, size, alloc_align_mask, &pool); |
| if (index == -1) { |
| if (!(attrs & DMA_ATTR_NO_WARN)) |
| dev_warn_ratelimited(dev, |
| "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", |
| size, mem->nslabs, mem_used(mem)); |
| return (phys_addr_t)DMA_MAPPING_ERROR; |
| } |
| |
| /* |
| * If dma_skip_sync was set, reset it on first SWIOTLB buffer |
| * mapping to always sync SWIOTLB buffers. |
| */ |
| dma_reset_need_sync(dev); |
| |
| /* |
| * Save away the mapping from the original address to the DMA address. |
| * This is needed when we sync the memory. Then we sync the buffer if |
| * needed. |
| */ |
| pad_slots = offset >> IO_TLB_SHIFT; |
| offset &= (IO_TLB_SIZE - 1); |
| index += pad_slots; |
| pool->slots[index].pad_slots = pad_slots; |
| for (i = 0; i < (nr_slots(size) - pad_slots); i++) |
| pool->slots[index + i].orig_addr = slot_addr(orig_addr, i); |
| tlb_addr = slot_addr(pool->start, index) + offset; |
| /* |
| * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy |
| * the original buffer to the TLB buffer before initiating DMA in order |
| * to preserve the original's data if the device does a partial write, |
| * i.e. if the device doesn't overwrite the entire buffer. Preserving |
| * the original data, even if it's garbage, is necessary to match |
| * hardware behavior. Use of swiotlb is supposed to be transparent, |
| * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes. |
| */ |
| swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); |
| return tlb_addr; |
| } |
| |
| static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) |
| { |
| struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); |
| unsigned long flags; |
| unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr); |
| int index, nslots, aindex; |
| struct io_tlb_area *area; |
| int count, i; |
| |
| index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; |
| index -= mem->slots[index].pad_slots; |
| nslots = nr_slots(mem->slots[index].alloc_size + offset); |
| aindex = index / mem->area_nslabs; |
| area = &mem->areas[aindex]; |
| |
| /* |
| * Return the buffer to the free list by setting the corresponding |
| * entries to indicate the number of contiguous entries available. |
| * While returning the entries to the free list, we merge the entries |
| * with slots below and above the pool being returned. |
| */ |
| BUG_ON(aindex >= mem->nareas); |
| |
| spin_lock_irqsave(&area->lock, flags); |
| if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) |
| count = mem->slots[index + nslots].list; |
| else |
| count = 0; |
| |
| /* |
| * Step 1: return the slots to the free list, merging the slots with |
| * superceeding slots |
| */ |
| for (i = index + nslots - 1; i >= index; i--) { |
| mem->slots[i].list = ++count; |
| mem->slots[i].orig_addr = INVALID_PHYS_ADDR; |
| mem->slots[i].alloc_size = 0; |
| mem->slots[i].pad_slots = 0; |
| } |
| |
| /* |
| * Step 2: merge the returned slots with the preceding slots, if |
| * available (non zero) |
| */ |
| for (i = index - 1; |
| io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; |
| i--) |
| mem->slots[i].list = ++count; |
| area->used -= nslots; |
| spin_unlock_irqrestore(&area->lock, flags); |
| |
| dec_used(dev->dma_io_tlb_mem, nslots); |
| } |
| |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| |
| /** |
| * swiotlb_del_transient() - delete a transient memory pool |
| * @dev: Device which mapped the buffer. |
| * @tlb_addr: Physical address within a bounce buffer. |
| * |
| * Check whether the address belongs to a transient SWIOTLB memory pool. |
| * If yes, then delete the pool. |
| * |
| * Return: %true if @tlb_addr belonged to a transient pool that was released. |
| */ |
| static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr) |
| { |
| struct io_tlb_pool *pool; |
| |
| pool = swiotlb_find_pool(dev, tlb_addr); |
| if (!pool->transient) |
| return false; |
| |
| dec_used(dev->dma_io_tlb_mem, pool->nslabs); |
| swiotlb_del_pool(dev, pool); |
| dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs); |
| return true; |
| } |
| |
| #else /* !CONFIG_SWIOTLB_DYNAMIC */ |
| |
| static inline bool swiotlb_del_transient(struct device *dev, |
| phys_addr_t tlb_addr) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| /* |
| * tlb_addr is the physical address of the bounce buffer to unmap. |
| */ |
| void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, |
| size_t mapping_size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| /* |
| * First, sync the memory before unmapping the entry |
| */ |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) |
| swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); |
| |
| if (swiotlb_del_transient(dev, tlb_addr)) |
| return; |
| swiotlb_release_slots(dev, tlb_addr); |
| } |
| |
| void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) |
| swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); |
| else |
| BUG_ON(dir != DMA_FROM_DEVICE); |
| } |
| |
| void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); |
| else |
| BUG_ON(dir != DMA_TO_DEVICE); |
| } |
| |
| /* |
| * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing |
| * to the device copy the data into it as well. |
| */ |
| dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| phys_addr_t swiotlb_addr; |
| dma_addr_t dma_addr; |
| |
| trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); |
| |
| swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, 0, dir, attrs); |
| if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) |
| return DMA_MAPPING_ERROR; |
| |
| /* Ensure that the address returned is DMA'ble */ |
| dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); |
| if (unlikely(!dma_capable(dev, dma_addr, size, true))) { |
| swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, |
| attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| dev_WARN_ONCE(dev, 1, |
| "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
| &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| arch_sync_dma_for_device(swiotlb_addr, size, dir); |
| return dma_addr; |
| } |
| |
| size_t swiotlb_max_mapping_size(struct device *dev) |
| { |
| int min_align_mask = dma_get_min_align_mask(dev); |
| int min_align = 0; |
| |
| /* |
| * swiotlb_find_slots() skips slots according to |
| * min align mask. This affects max mapping size. |
| * Take it into acount here. |
| */ |
| if (min_align_mask) |
| min_align = roundup(min_align_mask, IO_TLB_SIZE); |
| |
| return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; |
| } |
| |
| /** |
| * is_swiotlb_allocated() - check if the default software IO TLB is initialized |
| */ |
| bool is_swiotlb_allocated(void) |
| { |
| return io_tlb_default_mem.nslabs; |
| } |
| |
| bool is_swiotlb_active(struct device *dev) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| |
| return mem && mem->nslabs; |
| } |
| |
| /** |
| * default_swiotlb_base() - get the base address of the default SWIOTLB |
| * |
| * Get the lowest physical address used by the default software IO TLB pool. |
| */ |
| phys_addr_t default_swiotlb_base(void) |
| { |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| io_tlb_default_mem.can_grow = false; |
| #endif |
| return io_tlb_default_mem.defpool.start; |
| } |
| |
| /** |
| * default_swiotlb_limit() - get the address limit of the default SWIOTLB |
| * |
| * Get the highest physical address used by the default software IO TLB pool. |
| */ |
| phys_addr_t default_swiotlb_limit(void) |
| { |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| return io_tlb_default_mem.phys_limit; |
| #else |
| return io_tlb_default_mem.defpool.end - 1; |
| #endif |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| static unsigned long mem_transient_used(struct io_tlb_mem *mem) |
| { |
| return atomic_long_read(&mem->transient_nslabs); |
| } |
| |
| static int io_tlb_transient_used_get(void *data, u64 *val) |
| { |
| struct io_tlb_mem *mem = data; |
| |
| *val = mem_transient_used(mem); |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get, |
| NULL, "%llu\n"); |
| #endif /* CONFIG_SWIOTLB_DYNAMIC */ |
| |
| static int io_tlb_used_get(void *data, u64 *val) |
| { |
| struct io_tlb_mem *mem = data; |
| |
| *val = mem_used(mem); |
| return 0; |
| } |
| |
| static int io_tlb_hiwater_get(void *data, u64 *val) |
| { |
| struct io_tlb_mem *mem = data; |
| |
| *val = atomic_long_read(&mem->used_hiwater); |
| return 0; |
| } |
| |
| static int io_tlb_hiwater_set(void *data, u64 val) |
| { |
| struct io_tlb_mem *mem = data; |
| |
| /* Only allow setting to zero */ |
| if (val != 0) |
| return -EINVAL; |
| |
| atomic_long_set(&mem->used_hiwater, val); |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get, |
| io_tlb_hiwater_set, "%llu\n"); |
| |
| static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, |
| const char *dirname) |
| { |
| mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); |
| if (!mem->nslabs) |
| return; |
| |
| debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); |
| debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem, |
| &fops_io_tlb_used); |
| debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem, |
| &fops_io_tlb_hiwater); |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs, |
| mem, &fops_io_tlb_transient_used); |
| #endif |
| } |
| |
| static int __init swiotlb_create_default_debugfs(void) |
| { |
| swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); |
| return 0; |
| } |
| |
| late_initcall(swiotlb_create_default_debugfs); |
| |
| #else /* !CONFIG_DEBUG_FS */ |
| |
| static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, |
| const char *dirname) |
| { |
| } |
| |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| #ifdef CONFIG_DMA_RESTRICTED_POOL |
| |
| struct page *swiotlb_alloc(struct device *dev, size_t size) |
| { |
| struct io_tlb_mem *mem = dev->dma_io_tlb_mem; |
| struct io_tlb_pool *pool; |
| phys_addr_t tlb_addr; |
| unsigned int align; |
| int index; |
| |
| if (!mem) |
| return NULL; |
| |
| align = (1 << (get_order(size) + PAGE_SHIFT)) - 1; |
| index = swiotlb_find_slots(dev, 0, size, align, &pool); |
| if (index == -1) |
| return NULL; |
| |
| tlb_addr = slot_addr(pool->start, index); |
| if (unlikely(!PAGE_ALIGNED(tlb_addr))) { |
| dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n", |
| &tlb_addr); |
| swiotlb_release_slots(dev, tlb_addr); |
| return NULL; |
| } |
| |
| return pfn_to_page(PFN_DOWN(tlb_addr)); |
| } |
| |
| bool swiotlb_free(struct device *dev, struct page *page, size_t size) |
| { |
| phys_addr_t tlb_addr = page_to_phys(page); |
| |
| if (!is_swiotlb_buffer(dev, tlb_addr)) |
| return false; |
| |
| swiotlb_release_slots(dev, tlb_addr); |
| |
| return true; |
| } |
| |
| static int rmem_swiotlb_device_init(struct reserved_mem *rmem, |
| struct device *dev) |
| { |
| struct io_tlb_mem *mem = rmem->priv; |
| unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; |
| |
| /* Set Per-device io tlb area to one */ |
| unsigned int nareas = 1; |
| |
| if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { |
| dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping."); |
| return -EINVAL; |
| } |
| |
| /* |
| * Since multiple devices can share the same pool, the private data, |
| * io_tlb_mem struct, will be initialized by the first device attached |
| * to it. |
| */ |
| if (!mem) { |
| struct io_tlb_pool *pool; |
| |
| mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| pool = &mem->defpool; |
| |
| pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL); |
| if (!pool->slots) { |
| kfree(mem); |
| return -ENOMEM; |
| } |
| |
| pool->areas = kcalloc(nareas, sizeof(*pool->areas), |
| GFP_KERNEL); |
| if (!pool->areas) { |
| kfree(pool->slots); |
| kfree(mem); |
| return -ENOMEM; |
| } |
| |
| set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), |
| rmem->size >> PAGE_SHIFT); |
| swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs, |
| false, nareas); |
| mem->force_bounce = true; |
| mem->for_alloc = true; |
| #ifdef CONFIG_SWIOTLB_DYNAMIC |
| spin_lock_init(&mem->lock); |
| INIT_LIST_HEAD_RCU(&mem->pools); |
| #endif |
| add_mem_pool(mem, pool); |
| |
| rmem->priv = mem; |
| |
| swiotlb_create_debugfs_files(mem, rmem->name); |
| } |
| |
| dev->dma_io_tlb_mem = mem; |
| |
| return 0; |
| } |
| |
| static void rmem_swiotlb_device_release(struct reserved_mem *rmem, |
| struct device *dev) |
| { |
| dev->dma_io_tlb_mem = &io_tlb_default_mem; |
| } |
| |
| static const struct reserved_mem_ops rmem_swiotlb_ops = { |
| .device_init = rmem_swiotlb_device_init, |
| .device_release = rmem_swiotlb_device_release, |
| }; |
| |
| static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) |
| { |
| unsigned long node = rmem->fdt_node; |
| |
| if (of_get_flat_dt_prop(node, "reusable", NULL) || |
| of_get_flat_dt_prop(node, "linux,cma-default", NULL) || |
| of_get_flat_dt_prop(node, "linux,dma-default", NULL) || |
| of_get_flat_dt_prop(node, "no-map", NULL)) |
| return -EINVAL; |
| |
| rmem->ops = &rmem_swiotlb_ops; |
| pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", |
| &rmem->base, (unsigned long)rmem->size / SZ_1M); |
| return 0; |
| } |
| |
| RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); |
| #endif /* CONFIG_DMA_RESTRICTED_POOL */ |