blob: 7f67f9f5a550120e405337be5f5bc50bd7a419dd [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#define gf100_clk(p) container_of((p), struct gf100_clk, base)
#include "priv.h"
#include "pll.h"
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
#include <subdev/timer.h>
struct gf100_clk_info {
u32 freq;
u32 ssel;
u32 mdiv;
u32 dsrc;
u32 ddiv;
u32 coef;
};
struct gf100_clk {
struct nvkm_clk base;
struct gf100_clk_info eng[16];
};
static u32 read_div(struct gf100_clk *, int, u32, u32);
static u32
read_vco(struct gf100_clk *clk, u32 dsrc)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 ssrc = nvkm_rd32(device, dsrc);
if (!(ssrc & 0x00000100))
return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
}
static u32
read_pll(struct gf100_clk *clk, u32 pll)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 ctrl = nvkm_rd32(device, pll + 0x00);
u32 coef = nvkm_rd32(device, pll + 0x04);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
u32 sclk;
if (!(ctrl & 0x00000001))
return 0;
switch (pll) {
case 0x00e800:
case 0x00e820:
sclk = device->crystal;
P = 1;
break;
case 0x132000:
sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
break;
case 0x132020:
sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
break;
case 0x137000:
case 0x137020:
case 0x137040:
case 0x1370e0:
sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
break;
default:
return 0;
}
return sclk * N / M / P;
}
static u32
read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
u32 sclk, sctl, sdiv = 2;
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return device->crystal;
return 108000;
case 2:
return 100000;
case 3:
sclk = read_vco(clk, dsrc + (doff * 4));
/* Memclk has doff of 0 despite its alt. location */
if (doff <= 2) {
sctl = nvkm_rd32(device, dctl + (doff * 4));
if (sctl & 0x80000000) {
if (ssrc & 0x100)
sctl >>= 8;
sdiv = (sctl & 0x3f) + 2;
}
}
return (sclk * 2) / sdiv;
default:
return 0;
}
}
static u32
read_clk(struct gf100_clk *clk, int idx)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
u32 ssel = nvkm_rd32(device, 0x137100);
u32 sclk, sdiv;
if (ssel & (1 << idx)) {
if (idx < 7)
sclk = read_pll(clk, 0x137000 + (idx * 0x20));
else
sclk = read_pll(clk, 0x1370e0);
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
} else {
sclk = read_div(clk, idx, 0x137160, 0x1371d0);
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
}
if (sctl & 0x80000000)
return (sclk * 2) / sdiv;
return sclk;
}
static int
gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
struct gf100_clk *clk = gf100_clk(base);
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
switch (src) {
case nv_clk_src_crystal:
return device->crystal;
case nv_clk_src_href:
return 100000;
case nv_clk_src_sppll0:
return read_pll(clk, 0x00e800);
case nv_clk_src_sppll1:
return read_pll(clk, 0x00e820);
case nv_clk_src_mpllsrcref:
return read_div(clk, 0, 0x137320, 0x137330);
case nv_clk_src_mpllsrc:
return read_pll(clk, 0x132020);
case nv_clk_src_mpll:
return read_pll(clk, 0x132000);
case nv_clk_src_mdiv:
return read_div(clk, 0, 0x137300, 0x137310);
case nv_clk_src_mem:
if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
case nv_clk_src_gpc:
return read_clk(clk, 0x00);
case nv_clk_src_rop:
return read_clk(clk, 0x01);
case nv_clk_src_hubk07:
return read_clk(clk, 0x02);
case nv_clk_src_hubk06:
return read_clk(clk, 0x07);
case nv_clk_src_hubk01:
return read_clk(clk, 0x08);
case nv_clk_src_copy:
return read_clk(clk, 0x09);
case nv_clk_src_pmu:
return read_clk(clk, 0x0c);
case nv_clk_src_vdec:
return read_clk(clk, 0x0e);
default:
nvkm_error(subdev, "invalid clock source %d\n", src);
return -EINVAL;
}
}
static u32
calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
div = 2;
*ddiv = div - 2;
return (ref * 2) / div;
}
static u32
calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
/* use one of the fixed frequencies if possible */
*ddiv = 0x00000000;
switch (freq) {
case 27000:
case 108000:
*dsrc = 0x00000000;
if (freq == 108000)
*dsrc |= 0x00030000;
return freq;
case 100000:
*dsrc = 0x00000002;
return freq;
default:
*dsrc = 0x00000003;
break;
}
/* otherwise, calculate the closest divider */
sclk = read_vco(clk, 0x137160 + (idx * 4));
if (idx < 7)
sclk = calc_div(clk, idx, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
{
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_bios *bios = subdev->device->bios;
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
*coef = (P << 16) | (N << 8) | M;
return ret;
}
static int
calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
{
struct gf100_clk_info *info = &clk->eng[idx];
u32 freq = cstate->domain[dom];
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
/* invalid clock domain */
if (!freq)
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(clk, idx, freq, &src0, &div0);
clk0 = calc_div(clk, idx, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x00004387 & (1 << idx))) {
if (idx <= 7)
clk1 = calc_pll(clk, idx, freq, &info->coef);
else
clk1 = cstate->domain[nv_clk_src_hubk06];
clk1 = calc_div(clk, idx, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
info->dsrc = src0;
if (div0) {
info->ddiv |= 0x80000000;
info->ddiv |= div0 << 8;
info->ddiv |= div0;
}
if (div1D) {
info->mdiv |= 0x80000000;
info->mdiv |= div1D;
}
info->ssel = info->coef = 0;
info->freq = clk0;
} else {
if (div1P) {
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << idx);
info->freq = clk1;
}
return 0;
}
static int
gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
struct gf100_clk *clk = gf100_clk(base);
int ret;
if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
(ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
(ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
return ret;
return 0;
}
static void
gf100_clk_prog_0(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &clk->eng[idx];
struct nvkm_device *device = clk->base.subdev.device;
if (idx < 7 && !info->ssel) {
nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
}
}
static void
gf100_clk_prog_1(struct gf100_clk *clk, int idx)
{
struct nvkm_device *device = clk->base.subdev.device;
nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
break;
);
}
static void
gf100_clk_prog_2(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &clk->eng[idx];
struct nvkm_device *device = clk->base.subdev.device;
const u32 addr = 0x137000 + (idx * 0x20);
if (idx <= 7) {
nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
if (info->coef) {
nvkm_wr32(device, addr + 0x04, info->coef);
nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
/* Test PLL lock */
nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
nvkm_msec(device, 2000,
if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
break;
);
nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
/* Enable sync mode */
nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
}
}
}
static void
gf100_clk_prog_3(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &clk->eng[idx];
struct nvkm_device *device = clk->base.subdev.device;
if (info->ssel) {
nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
nvkm_msec(device, 2000,
u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
if (tmp == info->ssel)
break;
);
}
}
static void
gf100_clk_prog_4(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &clk->eng[idx];
struct nvkm_device *device = clk->base.subdev.device;
nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
}
static int
gf100_clk_prog(struct nvkm_clk *base)
{
struct gf100_clk *clk = gf100_clk(base);
struct {
void (*exec)(struct gf100_clk *, int);
} stage[] = {
{ gf100_clk_prog_0 }, /* div programming */
{ gf100_clk_prog_1 }, /* select div mode */
{ gf100_clk_prog_2 }, /* (maybe) program pll */
{ gf100_clk_prog_3 }, /* (maybe) select pll mode */
{ gf100_clk_prog_4 }, /* final divider */
};
int i, j;
for (i = 0; i < ARRAY_SIZE(stage); i++) {
for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
if (!clk->eng[j].freq)
continue;
stage[i].exec(clk, j);
}
}
return 0;
}
static void
gf100_clk_tidy(struct nvkm_clk *base)
{
struct gf100_clk *clk = gf100_clk(base);
memset(clk->eng, 0x00, sizeof(clk->eng));
}
static const struct nvkm_clk_func
gf100_clk = {
.read = gf100_clk_read,
.calc = gf100_clk_calc,
.prog = gf100_clk_prog,
.tidy = gf100_clk_tidy,
.domains = {
{ nv_clk_src_crystal, 0xff },
{ nv_clk_src_href , 0xff },
{ nv_clk_src_hubk06 , 0x00 },
{ nv_clk_src_hubk01 , 0x01 },
{ nv_clk_src_copy , 0x02 },
{ nv_clk_src_gpc , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
{ nv_clk_src_rop , 0x04 },
{ nv_clk_src_mem , 0x05, 0, "memory", 1000 },
{ nv_clk_src_vdec , 0x06 },
{ nv_clk_src_pmu , 0x0a },
{ nv_clk_src_hubk07 , 0x0b },
{ nv_clk_src_max }
}
};
int
gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
struct gf100_clk *clk;
if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
return -ENOMEM;
*pclk = &clk->base;
return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
}