| /* |
| * Common EFI (Extensible Firmware Interface) support functions |
| * Based on Extensible Firmware Interface Specification version 1.0 |
| * |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 1999-2002 Hewlett-Packard Co. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 2005-2008 Intel Co. |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Bibo Mao <bibo.mao@intel.com> |
| * Chandramouli Narayanan <mouli@linux.intel.com> |
| * Huang Ying <ying.huang@intel.com> |
| * |
| * Copied from efi_32.c to eliminate the duplicated code between EFI |
| * 32/64 support code. --ying 2007-10-26 |
| * |
| * All EFI Runtime Services are not implemented yet as EFI only |
| * supports physical mode addressing on SoftSDV. This is to be fixed |
| * in a future version. --drummond 1999-07-20 |
| * |
| * Implemented EFI runtime services and virtual mode calls. --davidm |
| * |
| * Goutham Rao: <goutham.rao@intel.com> |
| * Skip non-WB memory and ignore empty memory ranges. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/efi.h> |
| #include <linux/bootmem.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| #include <linux/time.h> |
| #include <linux/io.h> |
| #include <linux/reboot.h> |
| #include <linux/bcd.h> |
| |
| #include <asm/setup.h> |
| #include <asm/efi.h> |
| #include <asm/time.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| |
| #define EFI_DEBUG 1 |
| #define PFX "EFI: " |
| |
| int efi_enabled; |
| EXPORT_SYMBOL(efi_enabled); |
| |
| struct efi efi; |
| EXPORT_SYMBOL(efi); |
| |
| struct efi_memory_map memmap; |
| |
| static struct efi efi_phys __initdata; |
| static efi_system_table_t efi_systab __initdata; |
| |
| static int __init setup_noefi(char *arg) |
| { |
| efi_enabled = 0; |
| return 0; |
| } |
| early_param("noefi", setup_noefi); |
| |
| int add_efi_memmap; |
| EXPORT_SYMBOL(add_efi_memmap); |
| |
| static int __init setup_add_efi_memmap(char *arg) |
| { |
| add_efi_memmap = 1; |
| return 0; |
| } |
| early_param("add_efi_memmap", setup_add_efi_memmap); |
| |
| |
| static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| { |
| return efi_call_virt2(get_time, tm, tc); |
| } |
| |
| static efi_status_t virt_efi_set_time(efi_time_t *tm) |
| { |
| return efi_call_virt1(set_time, tm); |
| } |
| |
| static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, |
| efi_bool_t *pending, |
| efi_time_t *tm) |
| { |
| return efi_call_virt3(get_wakeup_time, |
| enabled, pending, tm); |
| } |
| |
| static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) |
| { |
| return efi_call_virt2(set_wakeup_time, |
| enabled, tm); |
| } |
| |
| static efi_status_t virt_efi_get_variable(efi_char16_t *name, |
| efi_guid_t *vendor, |
| u32 *attr, |
| unsigned long *data_size, |
| void *data) |
| { |
| return efi_call_virt5(get_variable, |
| name, vendor, attr, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, |
| efi_char16_t *name, |
| efi_guid_t *vendor) |
| { |
| return efi_call_virt3(get_next_variable, |
| name_size, name, vendor); |
| } |
| |
| static efi_status_t virt_efi_set_variable(efi_char16_t *name, |
| efi_guid_t *vendor, |
| unsigned long attr, |
| unsigned long data_size, |
| void *data) |
| { |
| return efi_call_virt5(set_variable, |
| name, vendor, attr, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) |
| { |
| return efi_call_virt1(get_next_high_mono_count, count); |
| } |
| |
| static void virt_efi_reset_system(int reset_type, |
| efi_status_t status, |
| unsigned long data_size, |
| efi_char16_t *data) |
| { |
| efi_call_virt4(reset_system, reset_type, status, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_set_virtual_address_map( |
| unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| return efi_call_virt4(set_virtual_address_map, |
| memory_map_size, descriptor_size, |
| descriptor_version, virtual_map); |
| } |
| |
| static efi_status_t __init phys_efi_set_virtual_address_map( |
| unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| efi_status_t status; |
| |
| efi_call_phys_prelog(); |
| status = efi_call_phys4(efi_phys.set_virtual_address_map, |
| memory_map_size, descriptor_size, |
| descriptor_version, virtual_map); |
| efi_call_phys_epilog(); |
| return status; |
| } |
| |
| static efi_status_t __init phys_efi_get_time(efi_time_t *tm, |
| efi_time_cap_t *tc) |
| { |
| efi_status_t status; |
| |
| efi_call_phys_prelog(); |
| status = efi_call_phys2(efi_phys.get_time, tm, tc); |
| efi_call_phys_epilog(); |
| return status; |
| } |
| |
| int efi_set_rtc_mmss(unsigned long nowtime) |
| { |
| int real_seconds, real_minutes; |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| |
| status = efi.get_time(&eft, &cap); |
| if (status != EFI_SUCCESS) { |
| printk(KERN_ERR "Oops: efitime: can't read time!\n"); |
| return -1; |
| } |
| |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - eft.minute) + 15)/30) & 1) |
| real_minutes += 30; |
| real_minutes %= 60; |
| eft.minute = real_minutes; |
| eft.second = real_seconds; |
| |
| status = efi.set_time(&eft); |
| if (status != EFI_SUCCESS) { |
| printk(KERN_ERR "Oops: efitime: can't write time!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| unsigned long efi_get_time(void) |
| { |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| |
| status = efi.get_time(&eft, &cap); |
| if (status != EFI_SUCCESS) |
| printk(KERN_ERR "Oops: efitime: can't read time!\n"); |
| |
| return mktime(eft.year, eft.month, eft.day, eft.hour, |
| eft.minute, eft.second); |
| } |
| |
| /* |
| * Tell the kernel about the EFI memory map. This might include |
| * more than the max 128 entries that can fit in the e820 legacy |
| * (zeropage) memory map. |
| */ |
| |
| static void __init do_add_efi_memmap(void) |
| { |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| efi_memory_desc_t *md = p; |
| unsigned long long start = md->phys_addr; |
| unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; |
| int e820_type; |
| |
| if (md->attribute & EFI_MEMORY_WB) |
| e820_type = E820_RAM; |
| else |
| e820_type = E820_RESERVED; |
| e820_add_region(start, size, e820_type); |
| } |
| sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); |
| } |
| |
| void __init efi_reserve_early(void) |
| { |
| unsigned long pmap; |
| |
| #ifdef CONFIG_X86_32 |
| pmap = boot_params.efi_info.efi_memmap; |
| #else |
| pmap = (boot_params.efi_info.efi_memmap | |
| ((__u64)boot_params.efi_info.efi_memmap_hi<<32)); |
| #endif |
| memmap.phys_map = (void *)pmap; |
| memmap.nr_map = boot_params.efi_info.efi_memmap_size / |
| boot_params.efi_info.efi_memdesc_size; |
| memmap.desc_version = boot_params.efi_info.efi_memdesc_version; |
| memmap.desc_size = boot_params.efi_info.efi_memdesc_size; |
| reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size, |
| "EFI memmap"); |
| } |
| |
| #if EFI_DEBUG |
| static void __init print_efi_memmap(void) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| int i; |
| |
| for (p = memmap.map, i = 0; |
| p < memmap.map_end; |
| p += memmap.desc_size, i++) { |
| md = p; |
| printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, " |
| "range=[0x%016llx-0x%016llx) (%lluMB)\n", |
| i, md->type, md->attribute, md->phys_addr, |
| md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), |
| (md->num_pages >> (20 - EFI_PAGE_SHIFT))); |
| } |
| } |
| #endif /* EFI_DEBUG */ |
| |
| void __init efi_init(void) |
| { |
| efi_config_table_t *config_tables; |
| efi_runtime_services_t *runtime; |
| efi_char16_t *c16; |
| char vendor[100] = "unknown"; |
| int i = 0; |
| void *tmp; |
| |
| #ifdef CONFIG_X86_32 |
| efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; |
| #else |
| efi_phys.systab = (efi_system_table_t *) |
| (boot_params.efi_info.efi_systab | |
| ((__u64)boot_params.efi_info.efi_systab_hi<<32)); |
| #endif |
| |
| efi.systab = early_ioremap((unsigned long)efi_phys.systab, |
| sizeof(efi_system_table_t)); |
| if (efi.systab == NULL) |
| printk(KERN_ERR "Couldn't map the EFI system table!\n"); |
| memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t)); |
| early_iounmap(efi.systab, sizeof(efi_system_table_t)); |
| efi.systab = &efi_systab; |
| |
| /* |
| * Verify the EFI Table |
| */ |
| if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| printk(KERN_ERR "EFI system table signature incorrect!\n"); |
| if ((efi.systab->hdr.revision >> 16) == 0) |
| printk(KERN_ERR "Warning: EFI system table version " |
| "%d.%02d, expected 1.00 or greater!\n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff); |
| |
| /* |
| * Show what we know for posterity |
| */ |
| c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); |
| if (c16) { |
| for (i = 0; i < sizeof(vendor) && *c16; ++i) |
| vendor[i] = *c16++; |
| vendor[i] = '\0'; |
| } else |
| printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); |
| early_iounmap(tmp, 2); |
| |
| printk(KERN_INFO "EFI v%u.%.02u by %s \n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff, vendor); |
| |
| /* |
| * Let's see what config tables the firmware passed to us. |
| */ |
| config_tables = early_ioremap( |
| efi.systab->tables, |
| efi.systab->nr_tables * sizeof(efi_config_table_t)); |
| if (config_tables == NULL) |
| printk(KERN_ERR "Could not map EFI Configuration Table!\n"); |
| |
| printk(KERN_INFO); |
| for (i = 0; i < efi.systab->nr_tables; i++) { |
| if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) { |
| efi.mps = config_tables[i].table; |
| printk(" MPS=0x%lx ", config_tables[i].table); |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| ACPI_20_TABLE_GUID)) { |
| efi.acpi20 = config_tables[i].table; |
| printk(" ACPI 2.0=0x%lx ", config_tables[i].table); |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| ACPI_TABLE_GUID)) { |
| efi.acpi = config_tables[i].table; |
| printk(" ACPI=0x%lx ", config_tables[i].table); |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| SMBIOS_TABLE_GUID)) { |
| efi.smbios = config_tables[i].table; |
| printk(" SMBIOS=0x%lx ", config_tables[i].table); |
| #ifdef CONFIG_X86_UV |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| UV_SYSTEM_TABLE_GUID)) { |
| efi.uv_systab = config_tables[i].table; |
| printk(" UVsystab=0x%lx ", config_tables[i].table); |
| #endif |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| HCDP_TABLE_GUID)) { |
| efi.hcdp = config_tables[i].table; |
| printk(" HCDP=0x%lx ", config_tables[i].table); |
| } else if (!efi_guidcmp(config_tables[i].guid, |
| UGA_IO_PROTOCOL_GUID)) { |
| efi.uga = config_tables[i].table; |
| printk(" UGA=0x%lx ", config_tables[i].table); |
| } |
| } |
| printk("\n"); |
| early_iounmap(config_tables, |
| efi.systab->nr_tables * sizeof(efi_config_table_t)); |
| |
| /* |
| * Check out the runtime services table. We need to map |
| * the runtime services table so that we can grab the physical |
| * address of several of the EFI runtime functions, needed to |
| * set the firmware into virtual mode. |
| */ |
| runtime = early_ioremap((unsigned long)efi.systab->runtime, |
| sizeof(efi_runtime_services_t)); |
| if (runtime != NULL) { |
| /* |
| * We will only need *early* access to the following |
| * two EFI runtime services before set_virtual_address_map |
| * is invoked. |
| */ |
| efi_phys.get_time = (efi_get_time_t *)runtime->get_time; |
| efi_phys.set_virtual_address_map = |
| (efi_set_virtual_address_map_t *) |
| runtime->set_virtual_address_map; |
| /* |
| * Make efi_get_time can be called before entering |
| * virtual mode. |
| */ |
| efi.get_time = phys_efi_get_time; |
| } else |
| printk(KERN_ERR "Could not map the EFI runtime service " |
| "table!\n"); |
| early_iounmap(runtime, sizeof(efi_runtime_services_t)); |
| |
| /* Map the EFI memory map */ |
| memmap.map = early_ioremap((unsigned long)memmap.phys_map, |
| memmap.nr_map * memmap.desc_size); |
| if (memmap.map == NULL) |
| printk(KERN_ERR "Could not map the EFI memory map!\n"); |
| memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); |
| |
| if (memmap.desc_size != sizeof(efi_memory_desc_t)) |
| printk(KERN_WARNING |
| "Kernel-defined memdesc doesn't match the one from EFI!\n"); |
| |
| if (add_efi_memmap) |
| do_add_efi_memmap(); |
| |
| /* Setup for EFI runtime service */ |
| reboot_type = BOOT_EFI; |
| |
| #if EFI_DEBUG |
| print_efi_memmap(); |
| #endif |
| } |
| |
| static void __init runtime_code_page_mkexec(void) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| u64 addr, npages; |
| |
| /* Make EFI runtime service code area executable */ |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if (md->type != EFI_RUNTIME_SERVICES_CODE) |
| continue; |
| |
| addr = md->virt_addr; |
| npages = md->num_pages; |
| memrange_efi_to_native(&addr, &npages); |
| set_memory_x(addr, npages); |
| } |
| } |
| |
| /* |
| * This function will switch the EFI runtime services to virtual mode. |
| * Essentially, look through the EFI memmap and map every region that |
| * has the runtime attribute bit set in its memory descriptor and update |
| * that memory descriptor with the virtual address obtained from ioremap(). |
| * This enables the runtime services to be called without having to |
| * thunk back into physical mode for every invocation. |
| */ |
| void __init efi_enter_virtual_mode(void) |
| { |
| efi_memory_desc_t *md; |
| efi_status_t status; |
| unsigned long size; |
| u64 end, systab, addr, npages, end_pfn; |
| void *p, *va; |
| |
| efi.systab = NULL; |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if (!(md->attribute & EFI_MEMORY_RUNTIME)) |
| continue; |
| |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| end = md->phys_addr + size; |
| |
| end_pfn = PFN_UP(end); |
| if (end_pfn <= max_low_pfn_mapped |
| || (end_pfn > (1UL << (32 - PAGE_SHIFT)) |
| && end_pfn <= max_pfn_mapped)) |
| va = __va(md->phys_addr); |
| else |
| va = efi_ioremap(md->phys_addr, size); |
| |
| md->virt_addr = (u64) (unsigned long) va; |
| |
| if (!va) { |
| printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n", |
| (unsigned long long)md->phys_addr); |
| continue; |
| } |
| |
| if (!(md->attribute & EFI_MEMORY_WB)) { |
| addr = md->virt_addr; |
| npages = md->num_pages; |
| memrange_efi_to_native(&addr, &npages); |
| set_memory_uc(addr, npages); |
| } |
| |
| systab = (u64) (unsigned long) efi_phys.systab; |
| if (md->phys_addr <= systab && systab < end) { |
| systab += md->virt_addr - md->phys_addr; |
| efi.systab = (efi_system_table_t *) (unsigned long) systab; |
| } |
| } |
| |
| BUG_ON(!efi.systab); |
| |
| status = phys_efi_set_virtual_address_map( |
| memmap.desc_size * memmap.nr_map, |
| memmap.desc_size, |
| memmap.desc_version, |
| memmap.phys_map); |
| |
| if (status != EFI_SUCCESS) { |
| printk(KERN_ALERT "Unable to switch EFI into virtual mode " |
| "(status=%lx)!\n", status); |
| panic("EFI call to SetVirtualAddressMap() failed!"); |
| } |
| |
| /* |
| * Now that EFI is in virtual mode, update the function |
| * pointers in the runtime service table to the new virtual addresses. |
| * |
| * Call EFI services through wrapper functions. |
| */ |
| efi.get_time = virt_efi_get_time; |
| efi.set_time = virt_efi_set_time; |
| efi.get_wakeup_time = virt_efi_get_wakeup_time; |
| efi.set_wakeup_time = virt_efi_set_wakeup_time; |
| efi.get_variable = virt_efi_get_variable; |
| efi.get_next_variable = virt_efi_get_next_variable; |
| efi.set_variable = virt_efi_set_variable; |
| efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; |
| efi.reset_system = virt_efi_reset_system; |
| efi.set_virtual_address_map = virt_efi_set_virtual_address_map; |
| if (__supported_pte_mask & _PAGE_NX) |
| runtime_code_page_mkexec(); |
| early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); |
| memmap.map = NULL; |
| } |
| |
| /* |
| * Convenience functions to obtain memory types and attributes |
| */ |
| u32 efi_mem_type(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->type; |
| } |
| return 0; |
| } |
| |
| u64 efi_mem_attributes(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->attribute; |
| } |
| return 0; |
| } |