| /* |
| * arch/xtensa/mm/init.c |
| * |
| * Derived from MIPS, PPC. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| * |
| * Chris Zankel <chris@zankel.net> |
| * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> |
| * Marc Gauthier |
| * Kevin Chea |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/bootmem.h> |
| #include <linux/swap.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/bootparam.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| |
| |
| #define DEBUG 0 |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| //static DEFINE_SPINLOCK(tlb_lock); |
| |
| /* |
| * This flag is used to indicate that the page was mapped and modified in |
| * kernel space, so the cache is probably dirty at that address. |
| * If cache aliasing is enabled and the page color mismatches, update_mmu_cache |
| * synchronizes the caches if this bit is set. |
| */ |
| |
| #define PG_cache_clean PG_arch_1 |
| |
| /* References to section boundaries */ |
| |
| extern char _ftext, _etext, _fdata, _edata, _rodata_end; |
| extern char __init_begin, __init_end; |
| |
| /* |
| * mem_reserve(start, end, must_exist) |
| * |
| * Reserve some memory from the memory pool. |
| * |
| * Parameters: |
| * start Start of region, |
| * end End of region, |
| * must_exist Must exist in memory pool. |
| * |
| * Returns: |
| * 0 (memory area couldn't be mapped) |
| * -1 (success) |
| */ |
| |
| int __init mem_reserve(unsigned long start, unsigned long end, int must_exist) |
| { |
| int i; |
| |
| if (start == end) |
| return 0; |
| |
| start = start & PAGE_MASK; |
| end = PAGE_ALIGN(end); |
| |
| for (i = 0; i < sysmem.nr_banks; i++) |
| if (start < sysmem.bank[i].end |
| && end >= sysmem.bank[i].start) |
| break; |
| |
| if (i == sysmem.nr_banks) { |
| if (must_exist) |
| printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) " |
| "not in any region!\n", start, end); |
| return 0; |
| } |
| |
| if (start > sysmem.bank[i].start) { |
| if (end < sysmem.bank[i].end) { |
| /* split entry */ |
| if (sysmem.nr_banks >= SYSMEM_BANKS_MAX) |
| panic("meminfo overflow\n"); |
| sysmem.bank[sysmem.nr_banks].start = end; |
| sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end; |
| sysmem.nr_banks++; |
| } |
| sysmem.bank[i].end = start; |
| } else { |
| if (end < sysmem.bank[i].end) |
| sysmem.bank[i].start = end; |
| else { |
| /* remove entry */ |
| sysmem.nr_banks--; |
| sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start; |
| sysmem.bank[i].end = sysmem.bank[sysmem.nr_banks].end; |
| } |
| } |
| return -1; |
| } |
| |
| |
| /* |
| * Initialize the bootmem system and give it all the memory we have available. |
| */ |
| |
| void __init bootmem_init(void) |
| { |
| unsigned long pfn; |
| unsigned long bootmap_start, bootmap_size; |
| int i; |
| |
| max_low_pfn = max_pfn = 0; |
| min_low_pfn = ~0; |
| |
| for (i=0; i < sysmem.nr_banks; i++) { |
| pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT; |
| if (pfn < min_low_pfn) |
| min_low_pfn = pfn; |
| pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT; |
| if (pfn > max_pfn) |
| max_pfn = pfn; |
| } |
| |
| if (min_low_pfn > max_pfn) |
| panic("No memory found!\n"); |
| |
| max_low_pfn = max_pfn < MAX_LOW_MEMORY >> PAGE_SHIFT ? |
| max_pfn : MAX_LOW_MEMORY >> PAGE_SHIFT; |
| |
| /* Find an area to use for the bootmem bitmap. */ |
| |
| bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT; |
| bootmap_start = ~0; |
| |
| for (i=0; i<sysmem.nr_banks; i++) |
| if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) { |
| bootmap_start = sysmem.bank[i].start; |
| break; |
| } |
| |
| if (bootmap_start == ~0UL) |
| panic("Cannot find %ld bytes for bootmap\n", bootmap_size); |
| |
| /* Reserve the bootmem bitmap area */ |
| |
| mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1); |
| bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn, |
| bootmap_start >> PAGE_SHIFT, |
| max_low_pfn); |
| |
| /* Add all remaining memory pieces into the bootmem map */ |
| |
| for (i=0; i<sysmem.nr_banks; i++) |
| free_bootmem(sysmem.bank[i].start, |
| sysmem.bank[i].end - sysmem.bank[i].start); |
| |
| } |
| |
| |
| void __init paging_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| int i; |
| |
| /* All pages are DMA-able, so we put them all in the DMA zone. */ |
| |
| zones_size[ZONE_DMA] = max_low_pfn; |
| for (i = 1; i < MAX_NR_ZONES; i++) |
| zones_size[i] = 0; |
| |
| #ifdef CONFIG_HIGHMEM |
| zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn; |
| #endif |
| |
| /* Initialize the kernel's page tables. */ |
| |
| memset(swapper_pg_dir, 0, PAGE_SIZE); |
| |
| free_area_init(zones_size); |
| } |
| |
| /* |
| * Flush the mmu and reset associated register to default values. |
| */ |
| |
| void __init init_mmu (void) |
| { |
| /* Writing zeros to the <t>TLBCFG special registers ensure |
| * that valid values exist in the register. For existing |
| * PGSZID<w> fields, zero selects the first element of the |
| * page-size array. For nonexistant PGSZID<w> fields, zero is |
| * the best value to write. Also, when changing PGSZID<w> |
| * fields, the corresponding TLB must be flushed. |
| */ |
| set_itlbcfg_register (0); |
| set_dtlbcfg_register (0); |
| flush_tlb_all (); |
| |
| /* Set rasid register to a known value. */ |
| |
| set_rasid_register (ASID_ALL_RESERVED); |
| |
| /* Set PTEVADDR special register to the start of the page |
| * table, which is in kernel mappable space (ie. not |
| * statically mapped). This register's value is undefined on |
| * reset. |
| */ |
| set_ptevaddr_register (PGTABLE_START); |
| } |
| |
| /* |
| * Initialize memory pages. |
| */ |
| |
| void __init mem_init(void) |
| { |
| unsigned long codesize, reservedpages, datasize, initsize; |
| unsigned long highmemsize, tmp, ram; |
| |
| max_mapnr = num_physpages = max_low_pfn; |
| high_memory = (void *) __va(max_mapnr << PAGE_SHIFT); |
| highmemsize = 0; |
| |
| #if CONFIG_HIGHMEM |
| #error HIGHGMEM not implemented in init.c |
| #endif |
| |
| totalram_pages += free_all_bootmem(); |
| |
| reservedpages = ram = 0; |
| for (tmp = 0; tmp < max_low_pfn; tmp++) { |
| ram++; |
| if (PageReserved(mem_map+tmp)) |
| reservedpages++; |
| } |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_ftext; |
| datasize = (unsigned long) &_edata - (unsigned long) &_fdata; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, " |
| "%ldk data, %ldk init %ldk highmem)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| ram << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| initsize >> 10, |
| highmemsize >> 10); |
| } |
| |
| void |
| free_reserved_mem(void *start, void *end) |
| { |
| for (; start < end; start += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(start)); |
| set_page_count(virt_to_page(start), 1); |
| free_page((unsigned long)start); |
| totalram_pages++; |
| } |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| extern int initrd_is_mapped; |
| |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (initrd_is_mapped) { |
| free_reserved_mem((void*)start, (void*)end); |
| printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10); |
| } |
| } |
| #endif |
| |
| void free_initmem(void) |
| { |
| free_reserved_mem(&__init_begin, &__init_end); |
| printk("Freeing unused kernel memory: %dk freed\n", |
| (&__init_end - &__init_begin) >> 10); |
| } |
| |
| void show_mem(void) |
| { |
| int i, free = 0, total = 0, reserved = 0; |
| int shared = 0, cached = 0; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| i = max_mapnr; |
| while (i-- > 0) { |
| total++; |
| if (PageReserved(mem_map+i)) |
| reserved++; |
| else if (PageSwapCache(mem_map+i)) |
| cached++; |
| else if (!page_count(mem_map + i)) |
| free++; |
| else |
| shared += page_count(mem_map + i) - 1; |
| } |
| printk("%d pages of RAM\n", total); |
| printk("%d reserved pages\n", reserved); |
| printk("%d pages shared\n", shared); |
| printk("%d pages swap cached\n",cached); |
| printk("%d free pages\n", free); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #if (DCACHE_WAY_SIZE > PAGE_SIZE) |
| |
| /* |
| * With cache aliasing, the page color of the page in kernel space and user |
| * space might mismatch. We temporarily map the page to a different virtual |
| * address with the same color and clear the page there. |
| */ |
| |
| void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page) |
| { |
| |
| /* There shouldn't be any entries for this page. */ |
| |
| __flush_invalidate_dcache_page_phys(__pa(page_address(page))); |
| |
| if (!PAGE_COLOR_EQ(vaddr, kaddr)) { |
| unsigned long v, p; |
| |
| /* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */ |
| |
| spin_lock(&tlb_lock); |
| |
| p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL))); |
| kaddr = (void*)PAGE_COLOR_MAP0(vaddr); |
| v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0; |
| __asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v)); |
| |
| clear_page(kaddr); |
| |
| spin_unlock(&tlb_lock); |
| } else { |
| clear_page(kaddr); |
| } |
| |
| /* We need to make sure that i$ and d$ are coherent. */ |
| |
| clear_bit(PG_cache_clean, &page->flags); |
| } |
| |
| /* |
| * With cache aliasing, we have to make sure that the page color of the page |
| * in kernel space matches that of the virtual user address before we read |
| * the page. If the page color differ, we create a temporary DTLB entry with |
| * the corrent page color and use this 'temporary' address as the source. |
| * We then use the same approach as in clear_user_page and copy the data |
| * to the kernel space and clear the PG_cache_clean bit to synchronize caches |
| * later. |
| * |
| * Note: |
| * Instead of using another 'way' for the temporary DTLB entry, we could |
| * probably use the same entry that points to the kernel address (after |
| * saving the original value and restoring it when we are done). |
| */ |
| |
| void copy_user_page(void* to, void* from, unsigned long vaddr, |
| struct page* to_page) |
| { |
| /* There shouldn't be any entries for the new page. */ |
| |
| __flush_invalidate_dcache_page_phys(__pa(page_address(to_page))); |
| |
| spin_lock(&tlb_lock); |
| |
| if (!PAGE_COLOR_EQ(vaddr, from)) { |
| unsigned long v, p, t; |
| |
| __asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1" |
| : "=a"(p), "=a"(t) : "a"(from)); |
| from = (void*)PAGE_COLOR_MAP0(vaddr); |
| v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0; |
| __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); |
| } |
| |
| if (!PAGE_COLOR_EQ(vaddr, to)) { |
| unsigned long v, p; |
| |
| p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL))); |
| to = (void*)PAGE_COLOR_MAP1(vaddr); |
| v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1; |
| __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); |
| } |
| copy_page(to, from); |
| |
| spin_unlock(&tlb_lock); |
| |
| /* We need to make sure that i$ and d$ are coherent. */ |
| |
| clear_bit(PG_cache_clean, &to_page->flags); |
| } |
| |
| |
| |
| /* |
| * Any time the kernel writes to a user page cache page, or it is about to |
| * read from a page cache page this routine is called. |
| * |
| * Note: |
| * The kernel currently only provides one architecture bit in the page |
| * flags that we use for I$/D$ coherency. Maybe, in future, we can |
| * use a sepearte bit for deferred dcache aliasing: |
| * If the page is not mapped yet, we only need to set a flag, |
| * if mapped, we need to invalidate the page. |
| */ |
| // FIXME: we probably need this for WB caches not only for Page Coloring.. |
| |
| void flush_dcache_page(struct page *page) |
| { |
| unsigned long addr = __pa(page_address(page)); |
| struct address_space *mapping = page_mapping(page); |
| |
| __flush_invalidate_dcache_page_phys(addr); |
| |
| if (!test_bit(PG_cache_clean, &page->flags)) |
| return; |
| |
| /* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/ |
| #if 0 |
| if (mapping && !mapping_mapped(mapping)) |
| clear_bit(PG_cache_clean, &page->flags); |
| else |
| #endif |
| __invalidate_icache_page_phys(addr); |
| } |
| |
| void flush_cache_range(struct vm_area_struct* vma, unsigned long s, |
| unsigned long e) |
| { |
| __flush_invalidate_cache_all(); |
| } |
| |
| void flush_cache_page(struct vm_area_struct* vma, unsigned long address, |
| unsigned long pfn) |
| { |
| struct page *page = pfn_to_page(pfn); |
| |
| /* Remove any entry for the old mapping. */ |
| |
| if (current->active_mm == vma->vm_mm) { |
| unsigned long addr = __pa(page_address(page)); |
| __flush_invalidate_dcache_page_phys(addr); |
| if ((vma->vm_flags & VM_EXEC) != 0) |
| __invalidate_icache_page_phys(addr); |
| } else { |
| BUG(); |
| } |
| } |
| |
| #endif /* (DCACHE_WAY_SIZE > PAGE_SIZE) */ |
| |
| |
| pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr) |
| { |
| pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0); |
| if (likely(pte)) { |
| pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET); |
| int i; |
| for (i = 0; i < 1024; i++, ptep++) |
| pte_clear(mm, addr, ptep); |
| } |
| return pte; |
| } |
| |
| struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr) |
| { |
| struct page *page; |
| |
| page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0); |
| |
| if (likely(page)) { |
| pte_t* ptep = kmap_atomic(page, KM_USER0); |
| int i; |
| |
| for (i = 0; i < 1024; i++, ptep++) |
| pte_clear(mm, addr, ptep); |
| |
| kunmap_atomic(ptep, KM_USER0); |
| } |
| return page; |
| } |
| |
| |
| /* |
| * Handle D$/I$ coherency. |
| * |
| * Note: |
| * We only have one architecture bit for the page flags, so we cannot handle |
| * cache aliasing, yet. |
| */ |
| |
| void |
| update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte) |
| { |
| unsigned long pfn = pte_pfn(pte); |
| struct page *page; |
| unsigned long vaddr = addr & PAGE_MASK; |
| |
| if (!pfn_valid(pfn)) |
| return; |
| |
| page = pfn_to_page(pfn); |
| |
| invalidate_itlb_mapping(addr); |
| invalidate_dtlb_mapping(addr); |
| |
| /* We have a new mapping. Use it. */ |
| |
| write_dtlb_entry(pte, dtlb_probe(addr)); |
| |
| /* If the processor can execute from this page, synchronize D$/I$. */ |
| |
| if ((vma->vm_flags & VM_EXEC) != 0) { |
| |
| write_itlb_entry(pte, itlb_probe(addr)); |
| |
| /* Synchronize caches, if not clean. */ |
| |
| if (!test_and_set_bit(PG_cache_clean, &page->flags)) { |
| __flush_dcache_page(vaddr); |
| __invalidate_icache_page(vaddr); |
| } |
| } |
| } |
| |