blob: 4ea46262c4f588166ce4dd477e24629160d3f407 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* dehash.c : Functions to account for hashing bits
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/*
* Verify the interleave bits are correct in the different interleaving
* settings.
*
* If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the
* respective interleaving is disabled.
*/
static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2,
u8 num_intlv_dies, u8 num_intlv_sockets)
{
if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) {
pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
return false;
}
if (ctx->map.num_intlv_dies > num_intlv_dies) {
pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies);
return false;
}
if (ctx->map.num_intlv_sockets > num_intlv_sockets) {
pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets);
return false;
}
return true;
}
static int df2_dehash_addr(struct addr_ctx *ctx)
{
u8 hashed_bit, intlv_bit, intlv_bit_pos;
if (!map_bits_valid(ctx, 8, 9, 1, 1))
return -EINVAL;
intlv_bit_pos = ctx->map.intlv_bit_pos;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr);
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
return 0;
}
static int df3_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
u8 hashed_bit, intlv_bit, intlv_bit_pos;
if (!map_bits_valid(ctx, 8, 9, 1, 1))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
intlv_bit_pos = ctx->map.intlv_bit_pos;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
/* Calculation complete for 2 channels. Continue for 4 and 8 channels. */
if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
/* Calculation complete for 4 channels. Continue for 8 channels. */
if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
return 0;
}
static int df3_6chan_dehash_addr(struct addr_ctx *ctx)
{
u8 intlv_bit_pos = ctx->map.intlv_bit_pos;
u8 hashed_bit, intlv_bit, num_intlv_bits;
bool hash_ctl_2M, hash_ctl_1G;
if (ctx->map.intlv_mode != DF3_6CHAN) {
atl_debug_on_bad_intlv_mode(ctx);
return -EINVAL;
}
num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1;
hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
intlv_bit_pos++;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
intlv_bit_pos++;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
return 0;
}
static int df4_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
u8 hashed_bit, intlv_bit;
if (!map_bits_valid(ctx, 8, 8, 1, 2))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (ctx->map.num_intlv_sockets == 1)
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(8);
/*
* Hashing is possible with socket interleaving, so check the total number
* of channels in the system rather than DRAM map interleaving mode.
*
* Calculation complete for 2 channels. Continue for 4, 8, and 16 channels.
*/
if (ctx->map.total_intlv_chan <= 2)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
/* Calculation complete for 4 channels. Continue for 8 and 16 channels. */
if (ctx->map.total_intlv_chan <= 4)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
/* Calculation complete for 8 channels. Continue for 16 channels. */
if (ctx->map.total_intlv_chan <= 8)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(14);
return 0;
}
static int df4p5_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
u8 hashed_bit, intlv_bit;
u64 rehash_vector;
if (!map_bits_valid(ctx, 8, 8, 1, 2))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
/*
* Generate a unique address to determine which bits
* need to be dehashed.
*
* Start with a contiguous bitmask for the total
* number of channels starting at bit 8.
*
* Then make a gap in the proper place based on
* interleave mode.
*/
rehash_vector = ctx->map.total_intlv_chan - 1;
rehash_vector <<= 8;
if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH ||
ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH ||
ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH)
rehash_vector = expand_bits(10, 2, rehash_vector);
else
rehash_vector = expand_bits(9, 3, rehash_vector);
if (rehash_vector & BIT_ULL(8)) {
intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(8);
}
if (rehash_vector & BIT_ULL(9)) {
intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(9);
}
if (rehash_vector & BIT_ULL(12)) {
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
}
if (rehash_vector & BIT_ULL(13)) {
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
}
if (rehash_vector & BIT_ULL(14)) {
intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(14);
}
return 0;
}
/*
* MI300 hash bits
* 4K 64K 2M 1G 1T 1T
* COH_ST_Select[0] = XOR of addr{8, 12, 15, 22, 29, 36, 43}
* COH_ST_Select[1] = XOR of addr{9, 13, 16, 23, 30, 37, 44}
* COH_ST_Select[2] = XOR of addr{10, 14, 17, 24, 31, 38, 45}
* COH_ST_Select[3] = XOR of addr{11, 18, 25, 32, 39, 46}
* COH_ST_Select[4] = XOR of addr{14, 19, 26, 33, 40, 47} aka Stack
* DieID[0] = XOR of addr{12, 20, 27, 34, 41 }
* DieID[1] = XOR of addr{13, 21, 28, 35, 42 }
*/
static int mi300_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
bool hashed_bit, intlv_bit, test_bit;
u8 num_intlv_bits, base_bit, i;
if (!map_bits_valid(ctx, 8, 8, 4, 1))
return -EINVAL;
hash_ctl_4k = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl);
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
/* Channel bits */
num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
for (i = 0; i < num_intlv_bits; i++) {
base_bit = 8 + i;
/* COH_ST_Select[4] jumps to a base bit of 14. */
if (i == 4)
base_bit = 14;
intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
hashed_bit = intlv_bit;
/* 4k hash bit only applies to the first 3 bits. */
if (i <= 2) {
test_bit = BIT_ULL(12 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_4k;
}
/* Use temporary 'test_bit' value to avoid Sparse warnings. */
test_bit = BIT_ULL(15 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_64k;
test_bit = BIT_ULL(22 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_2M;
test_bit = BIT_ULL(29 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1G;
test_bit = BIT_ULL(36 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
test_bit = BIT_ULL(43 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(base_bit);
}
/* Die bits */
num_intlv_bits = ilog2(ctx->map.num_intlv_dies);
for (i = 0; i < num_intlv_bits; i++) {
base_bit = 12 + i;
intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
hashed_bit = intlv_bit;
test_bit = BIT_ULL(20 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_64k;
test_bit = BIT_ULL(27 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_2M;
test_bit = BIT_ULL(34 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1G;
test_bit = BIT_ULL(41 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(base_bit);
}
return 0;
}
int dehash_address(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
/* No hashing cases. */
case NONE:
case NOHASH_2CHAN:
case NOHASH_4CHAN:
case NOHASH_8CHAN:
case NOHASH_16CHAN:
case NOHASH_32CHAN:
/* Hashing bits handled earlier during CS ID calculation. */
case DF4_NPS4_3CHAN_HASH:
case DF4_NPS2_5CHAN_HASH:
case DF4_NPS2_6CHAN_HASH:
case DF4_NPS1_10CHAN_HASH:
case DF4_NPS1_12CHAN_HASH:
case DF4p5_NPS2_6CHAN_1K_HASH:
case DF4p5_NPS2_6CHAN_2K_HASH:
case DF4p5_NPS1_10CHAN_1K_HASH:
case DF4p5_NPS1_10CHAN_2K_HASH:
case DF4p5_NPS1_12CHAN_1K_HASH:
case DF4p5_NPS1_12CHAN_2K_HASH:
case DF4p5_NPS0_24CHAN_1K_HASH:
case DF4p5_NPS0_24CHAN_2K_HASH:
/* No hash physical address bits, so nothing to do. */
case DF4p5_NPS4_3CHAN_1K_HASH:
case DF4p5_NPS4_3CHAN_2K_HASH:
case DF4p5_NPS2_5CHAN_1K_HASH:
case DF4p5_NPS2_5CHAN_2K_HASH:
return 0;
case DF2_2CHAN_HASH:
return df2_dehash_addr(ctx);
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
return df3_dehash_addr(ctx);
case DF3_6CHAN:
return df3_6chan_dehash_addr(ctx);
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
return df4_dehash_addr(ctx);
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return df4p5_dehash_addr(ctx);
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
return mi300_dehash_addr(ctx);
default:
atl_debug_on_bad_intlv_mode(ctx);
return -EINVAL;
}
}